This invention relates to a feed roll and stripper assembly for a rolling mill and a method of setting up and operating the assembly.
In the field of metal rolling it is well known that the metal being rolled can stick to the surface of the roll and therefore a device known as a stripper is used to peel or strip the metal away from the surface of the roll and guide it out of the rolling mill.
One or more feed rollers can be used to guide and transport the material from the ingoing side of the mill into the work rolls and to guide and transport the material away from the work rolls on the outgoing side. Feed rollers are generally distinguished from the other roller tables around the mill area because they are installed between the housing posts of the mill stand in order to get them much closer to the work rolls than is otherwise possible. Getting the innermost feed rollers close to the work rolls is particularly important when rolling very short slabs or plates because if the distance is greater than approximately half the length of the slab or plate then there is a risk that the slab or plate will not feed properly. There may also be problems of excessive loading on the exit side and damage to the stripper if the set-up is not correct.
JP 8-155516 describes a method of preventing concave or convex warping after rolling caused by the amount of dog bone lifting the material above the roller table. This problem is addressed by changing the relative position of the pass line and feed rollers. In this document, a change in position of the stripper guide is achieved using an eccentric shaft drive, which changes the height of the stripper guide relative to the lower rolling roller and feed rollers, the stripper tip position being determined by where it contacts with the lower rolling roll.
In accordance with a first aspect of the present invention a feed roll and stripper assembly for a rolling mill comprises at least one feed roll at each of an entry side and an exit side of a pair of work rolls; and a stripper at each of the entry and exit side of the pair of work rolls; wherein each stripper comprises a stripper tip; wherein at least one of the strippers and the feed rolls are adapted to have an adjustable vertical separation from one of the work rolls, according to the direction of movement of material through the work rolls; the vertical separation of the at least one of the strippers and the feed rolls from one of the work rolls on one of the entry and exit side being different from the vertical separation of the other of the at least one of the strippers and the feed rolls on the other of the entry and exit side; and wherein each stripper tip has a separation from the one of the work rolls.
The present invention controls the vertical separation of the stripper or feed rolls from the work roll, as well as the separation of the stripper tip from the work roll. This protects the material to be rolled by preventing contact between the work roll and the stripper tip, whilst benefiting from the ability to independently adjust the height of the stripper tip relative to the work roll at entry and exit sides.
Preferably, the vertical separation is measured from a first point on the work roll to a second point on the stripper or feed roll.
Preferably, the first point is a reference point at, or a fixed distance from, an uppermost point on the circumference of the work roll.
Preferably, the second point is a reference point at, or a fixed distance from, an uppermost point on the stripper or feed roll.
Preferably, the stripper or feed roll on an entry side of the pair of work rolls has a smaller vertical separation from the work roll than the stripper or feed roll on an exit side of the pair of work rolls.
Although the vertical separation may be established relative to the bottom of a top work roll, preferably the vertical separation is established relative to a bottom work roll of the pair of work rolls.
It is preferred that the vertical separation is measured from the closest point, i.e. the top of the bottom work roll, or the bottom of the top work roll, although it could be measured from any other repeatable point in the work roll.
Preferably, the stripper is mounted on a feed roll assembly.
Preferably, the feed roll assembly further comprises a slide attached to a feed roll support, wherein the feed roll assembly is adapted for movement on the slide.
Preferably, the feed roll support is a pivotable support.
Preferably, the pivotable support is adapted to move to position the feed roll and stripper at a vertical separation from the work roll.
Preferably, the pivotable support pivots on a base, at an end remote from the stripper and work roll.
Preferably, the support further comprises an actuator to move the support and feed roll.
Preferably, the rolling mill comprises a reversing mill.
As the mill reverses, the entry and exit sides change and the vertical separation of the strippers on each side is adapted according.
Preferably, the rolling mill comprises a single directional twin or tandem mill.
Preferably, each stripper is mounted on a work roll chock.
For a reversing mill, an adjustment mechanism is incorporated into the chocks such that the entry stripper can be made lower and the exit stripper higher every time the direction is reversed.
In accordance with a second aspect of the present invention a method of operating a feed roll assembly for a rolling mill, the assembly comprising at least one feed roll and a stripper and stripper tip on an entry side of a pair of work rolls and at least one feed roll and a stripper and stripper tip on an exit side of the pair of work rolls comprises determining according to the material to be rolled a required vertical separation of one of the entry and exit side strippers or feed rolls from one of the work rolls and setting the vertical separation of the entry side stripper or feed roll to be different from the vertical separation of the exit side stripper or feed roll; determining a minimum separation of the stripper tip from the work roll; and setting the stripper tip at a separation from the work roll greater than or equal to the minimum determined.
Preferably, the method further comprises passing an article to be rolled through the pair of work rolls in an initial direction from the entry side to the exit side; reversing the direction of operation and resetting the vertical separation of the entry and exit side stripper or feed roll for a new entry side and new exit side and passing the article back through the pair of work rolls.
Preferably, the method is repeated for a predetermined number of passes.
Preferably, the vertical separation at the new entry side is set to the same separation as at the old entry side and the vertical separation at the new exit side is set to the same separation as the old exit side.
The set up values for vertical separation may be used on each subsequent pass, or the values for vertical separation may be re-calculated for each pass, but preferably the vertical separation at the entry side is recalculated for each pass in the initial direction and applied at the entry side and new entry side.
Preferably, the method comprises setting the vertical separation of the entry side stripper or feed roll according to the anticipated draft.
Preferably, the method comprises setting the vertical separation of the entry side stripper or feed roll according to at least one of work roll diameter and pass line height.
Preferably, the vertical separation at the exit side is set to a position closer to the pass line height than the vertical separation at the entry side.
Preferably, the method comprises determining when a head end of an article being rolled has passed the stripper onto the feed roll assembly on the exit side and then causing an actuator to move the stripper further from the work roll than a required stripper gap.
The stripper on the exit side can be backed off from the work roll once the article is threaded, as there is no longer a risk of the article getting between the stripper and the work roll.
An example of a feed roll assembly for a rolling mill and a method of setting up and operating the assembly will now be described with reference to the accompanying drawings in which:
The vertical position of the bottom work roll relative to the entry feed roller height is very important for controlling turn up or turn down of the material being rolled. This is illustrated in
In the example of
The ideal arrangement of strippers and feed rollers is to have the entry side feed rollers 25 positioned as illustrated in
A problem with the arrangement illustrated in
The arrangement illustrated in
The most common method for mounting the strippers on plate mills is to fix them between the work roll chocks. An example is shown in U.S. Pat. No. 3,258,953. The positions of the strippers relative to the top of the work roll are usually preset when the rolls and chocks are assembled. Various means are used to set the position of the strippers relative to the top of the work roll including shims, bolts and eccentrics. But whatever the means used to adjust the stripper positions, they cannot be easily changed once the rolls are installed in the mill and therefore the entry and exit strippers are usually set both to the same height below the top of the work roll and this height has to be greater than half of the maximum draft that the mill will roll.
Another method of mounting the strippers is to attach them to either the entry and exit feed roller support frames, or to the mill housings, or to other equipment which is attached to the mill housings. Various methods of attaching the strippers directly or indirectly to the mill housing are used, the most common of which are pivoting connections, or sliding connections. DE3312009, DE19946946 and JP11057832 are examples of this type of stripper arrangement. DE2627162 is a similar type of stripper, except that the stripper itself incorporates a roll. JP4033713 describes a stripper arrangement which changes position after the material has passed between the strippers. None of these prior art designs can achieve the ideal positioning of the entry and exit side strippers and feed rollers as illustrated in
DE102007048747 discloses a design in which the strippers are mounted on the feed roller assembly and this whole stripper and feed roll assembly can be moved horizontally. By linking horizontal movement of the feed roller assembly with vertical movement of the bottom work roll it is possible to set the height of the stripper and feed roller assemblies relative to the top of the bottom work roll. However since the movements of the stripper and feed roller assemblies are horizontal it is clear that the entry and exit side strippers and feed rollers have to be at the same height. Furthermore, due to the geometry it is clear that even a small vertical movement of the bottom work roll for the purpose of thickness control requires a much larger movement of the horizontal position of the feed roller assembly if the gap between the stripper and the roll is going to be maintained.
The present invention allows improved positioning of the strippers 26, 27 and feed rollers 25, 28 in a reversing rolling mill, such as hot mills, plate mills, or roughing mill stands, where turn up and turn down can be significant issues. The invention addresses the problem of controlling the distance between a point on a work roll closest to a surface of a material to be rolled and the height of feed rollers on which the material is transported, according to a required difference between entry and exit thickness of the material.
In the present invention, the entry and exit side strippers and feed rollers are made independently adjustable for height relative to the top of one of the work rolls. The strippers and feed rollers are rapidly adjustable, meaning that the strippers and feed rollers can be adjusted in the few seconds between reversing passes in the rolling mill to give the required gap between the stripper tip and the work roll, as well as the feed rollers being at the best height for the direction of movement. This can be used in single or twin reversing mills. Generally, the arrangement is adjusted relative to the top of the bottom work roll, although with some modifications, the same principle may be applied and adjustment made relative to the bottom of the top work roll. In this case, the arrangement is literally inverted, so that the strippers are next the top roll and are the other way up.
In addition, the present invention enables different stripper and feed roll heights to be set on a non-reversing mill, e.g. for aluminium cold mill stands, thereby optimising performance, even without being able to make any adjustment for successive passes, as is required in the reversing mill.
It can be seen from
In view of the fact that the mechanism must cater for different roll diameters and the requirement that the strippers also have to maintain the correct position when the roll moves vertically for thickness control purposes, it is convenient to achieve the correct positioning of each stripper by a combination of vertical movement and horizontal movement.
A preferred embodiment is illustrated in
From
When the work roll moves up or down for the purpose of thickness control, or pass-line adjustment, this movement may be followed by linking the movement of cylinders 13 and 14 with the vertical movement of the work roll. In the embodiment illustrated in
The embodiment illustrated in
An alternative embodiment is to move only the strippers 26, 27 independently and to keep the feed roller tables at the same height. Horizontal movement, whether under servo control or otherwise, allows for work roll turndown and roll changing, but in operation, it is not necessary to adjust the horizontal position of the feed roller tables between passes in the reversing mill.
Another alternative is to use strippers attached to the work roll chocks, as described in U.S. Pat. No. 3,258,953, which are therefore at the same height as each other and to move only the feed roller assemblies independently. These embodiments are better than the prior art described, but are not as close to the ideal as the embodiment illustrated in
As illustrated by the positions in
It is desirable that the exit stripper is in closest proximity to the work roll just as material is threaded into the roll bit. The hydraulic cylinder roll gap is set to a position which is intended to compensate for any mill stretch based upon the anticipated rolling load for that particular pass. However, in practice, the actual head end load tends to differ from this anticipated load to some extent. The roll load cylinder position may then be adjusted based upon a function of the difference between the actual and anticipated load and the mill stretch characteristic. This may act to either decrease or increase the stripper tip 40, 41 to work roll 21 gap 42, 43. As well as setting the stripper positions initially, the feed roller system can act dynamically to compensate for this change and help maintain the stripper gap at the desired value.
Whilst the preferred embodiment and the examples described have referred to the bottom roll it is also possible to do a similar thing on the top roll. Generally there are no driven feed rollers above the pass line, but as DE2627162 illustrates, the strippers and guides for the top roll can incorporate rollers. Thus, a similar system to that illustrated in
In a typical system, the desired separation between a surface of the work roll closest to the material and the feed rollers is half the draft, plus 10 mm. A draft of 80 mm is typical, although it may be as much as 120 mm. For thinner materials, the feed roller table is relatively close to the work roll surface, whereas for thicker materials, there is a noticeable separation. For a reversing mill, there may be a need to change, between each pass, from 70 mm to 10 mm for the separation, or vice versa, according to the direction in which the material is moving through the work roll nip.
In the invention, entry and exit side strippers, or feed rolls, or a combination of both parts, e.g. with the strippers fixed to the frame of the feed roller assemblies may be independently set for height relative to the work roll and the height can be changed between rolling passes in a reversing rolling process. The gap between the stripper tip 40, 41 or feed roll 34, 35 and the surface of the work roll 21 on the exit side of the rolling direction may be set to a distance of less than the exit thickness of the material being rolled. Typically, the vertical separation on the exit side is smaller than on the entry side. The vertical position of the strippers or feed rolls may be linked to vertical movements of the work roll in order to maintain a constant relative height, or a constant gap between the stripper and the work roll. Movements along two different axes may be used to achieve the setting of the height and gap between the stripper tip and the work roll and the movements on the two different axes are done synchronously. If done sequentially this helps to avoid a clash between the stripper tip and the work roll. The parts on both entry and exit side are moveable independently and in such a way that they can be adjusted to a different vertical separation and also to achieve the desired stripper tip to roll gaps on the entry side and the exit side, with movement possible in both the vertical and horizontal directions to achieve both a different vertical separation and the correct roll gap, although when movement is of the feed rolls alone, this can be with just vertical or pivoting movement. The parts are moveable in a short time, of a few seconds, so that the vertical separations can be altered between passes in a reversing rolling process, which is not possible with manual adjustment systems. A preferred embodiment comprises strippers mounted on feed roller assemblies, feed roller assemblies sliding on feed roller supports, an actuator for the slide movement, feed roller supports pivoting about a pivot about a base, and an actuator to move the feed roller supports about the pivot.
The invention may also provide a method of rolling in a reversing rolling process where the height of the feed roller and stripper assembly at the entry side of each pass is set according to the anticipated draft and other rolling parameters including the roll diameter and pass-line height whilst the feed roller and stripper assembly at the exit side of each pass is set to a position closer to the pass-line height.
In view of the limits on space in the stripper area and concerns about damage to the roll when the tolerances are not correct, operation of the rolling mill may be further enhanced by positioning the stripper tip at the minimum gap only long enough for the head end of the material to pass through the work roll gap. Once the stripper is threaded and the head end has been safely passed through the roll gap, then the stripper tip is backed off out of the way. The back-off is carried out using standard assumptions about the shape and tolerances of the component parts of the assembly. After initial set-up, the movement away and movement back are kept the same, with the assumption that the resulting gap will be the same. Moving the stripper tip away from the work roll, other than for the initial threading of the article protects the work roll against adverse loading which occurs after the head end of the article being rolled has been safely threaded. The determination of the correct time to back-off the stripper tip may be based on tracking the article, detection of load on the mill stand, or stripper, tracking speed and time for the article to determine when the head end has passed through or some combination of these parameters. The gap is then actively opened sufficiently, once the head end has passed the stripping point, to give additional protection against roll contact in case of adverse loading.
The adjustment afforded by the feed roll assembly of the present invention also enables correction of the position of the feed roll table with respect to the work roll after a work roll change. As the work rolls become worn, they have to be removed and ground down to a smooth surface. When replaced, their size has changed, but this need not be an issue if the set-up includes positioning the feed rollers and strippers correctly for the new size roll, then for a reversing mill swapping the vertical settings in operation, according to which side is the entry or exit side, as described above.
Number | Date | Country | Kind |
---|---|---|---|
1106138.9 | Apr 2011 | GB | national |
1115196.6 | Sep 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/056590 | 4/11/2012 | WO | 00 | 1/3/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/140090 | 10/18/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3258953 | Hermes | Jul 1966 | A |
3328993 | Roy et al. | Jul 1967 | A |
4096725 | Kano | Jun 1978 | A |
4538706 | Koppensteiner | Sep 1985 | A |
5195347 | Seto et al. | Mar 1993 | A |
8365566 | Langer et al. | Feb 2013 | B2 |
Number | Date | Country |
---|---|---|
200988055 | Dec 2007 | CN |
945682 | Jul 1956 | DE |
26 27 162 | Dec 1976 | DE |
3312009 | Oct 1984 | DE |
285936 | Jan 1991 | DE |
69108373 | Nov 1995 | DE |
19946946 | Apr 2001 | DE |
10 2007 048 747 | Mar 2009 | DE |
1070551 | Jun 1967 | GB |
S55139109 | Oct 1980 | JP |
59177287 | Oct 1984 | JP |
S61283409 | Dec 1986 | JP |
0433713 | Feb 1992 | JP |
08155516 | Jun 1996 | JP |
1157832 | Mar 1999 | JP |
2003341990 | Dec 2003 | JP |
2006239762 | Sep 2006 | JP |
2006289490 | Oct 2006 | JP |
2006326668 | Dec 2006 | JP |
2007319879 | Dec 2007 | JP |
4033713 | Jan 2008 | JP |
11619 | Sep 1929 | SU |
Entry |
---|
Machine Translation of Takashima et al., JP 2006289490A, date translated Jan. 8, 2016, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20140033783 A1 | Feb 2014 | US |