The present application claims priority to Japanese Patent Application No. 2015-007559 filed on Jan. 19, 2015, which is incorporated herein by reference in its entirety.
Embodiments of the present invention relate to a feed system of lubricating oil or fuel of a vehicle.
Known in the art is a vehicle in which a discharge antenna or other discharge device is attached to an engine of a vehicle or a member related to an engine to discharge and release to the outside the high voltage electricity, static electricity, etc. which is generated or stored at the engine part and thereby improve the fuel economy (for example, see Japanese Patent Publication No. 5-238438A)
As described in the above Japanese patent literature, it has been known that vehicles carry static electricity and that this static electricity has some sort of effect on vehicle operation. However, what kind of effect this static electricity has on the operation of a vehicle and the specific reason for that effect are not well known. Without a full understanding of the effects of static electricity, which is carried in a vehicle, has on the operation of the vehicle, it is not possible to suitably cope with static electricity which the vehicle carries.
Therefore, the inventors focused on the feed system of lubricating oil or fuel of vehicles in particular and investigated what kind of effect static electricity which a vehicle carries has on the feed system of lubricating oil or fuel of vehicles and the specific reasons for these effects. As a result of their investigation, the inventors discovered that if a vehicle is charged with static electricity, the viscosity of the lubricating oil or fuel rises and affects the operating response of the engine and discovered a suitable method of eliminating static electricity which is required for improving the engine operating response.
That is, according to embodiments of the present invention, there is provided a feed system of lubricating oil or fuel of a vehicle including a tank which stores a lubricating oil or fuel, a strainer for lubricating oil or fuel, which is arranged at a bottom portion of the tank, and the tank and the lubricating oil or fuel which is stored in the tank carrying a positive charge. A self-discharge type static eliminator which can discharge a positive carried charge to air is placed on an outside surface of a bottom wall of the tank which corresponds to a back side of an inside surface of the bottom wall of the tank which faces said strainer to thereby eliminate static electricity from lubricating oil or fuel which flows into said strainer by said self-discharge type static eliminator.
It is possible to remarkably improve the operating response of the engine by eliminating static electricity from the lubricating oil or fuel by the self-discharge type static eliminator to thereby lower the viscosity of the lubricating oil or fuel.
Vehicles mount various shapes and types of lubricating oil tanks and various shapes and types of fuel tanks which differ with each vehicle. The lubricating oil tanks and fuel tanks may differ in shapes and types but these tanks are provided with strainers arranged therein, and further, these tanks are provided with pumps for sucking lubricating oil or fuel inside the tanks through the strainers at the insides or the outsides of the tanks.
At the time of engine operation, the lubricating oil or fuel 4 inside the tank 1 is sucked through the strainer 2 by the pump 3. Where lubricating oil is stored in the tank 1, the lubricating oil which is sucked through the strainer 2 by the pump 3 is fed through a flow pipe 5 to the engine or automatic transmission. Where fuel is stored in the tank 1, the fuel which is sucked through the strainer 2 by the pump 3 is fed through the flow pipe 5 to the engine. Note that the strainer 2 is arranged near the inside surface 7 of the bottom wall 6 of the tank 1. Therefore, the lubricating oil or fuel 4 inside the tank 1, as shown by the arrows, flows toward the strainer 2 while flowing along the inside surface 7 of the bottom wall 6 of the tank 1 and flows into the inside of the strainer 2.
Now then, if the vehicle is run, the different parts of the tires repeatedly contact and separate from the road surface whereby static electricity is generated. Further, the component parts of the engine and the component parts of the brake system move relative to each other whereby static electricity is also generated. Further, when the vehicle is running, air runs while contacting the outer circumferential surface of the vehicle with friction whereby static electricity is generated as well. Due to the static electricity which is thus generated, the body of the vehicle, engine, etc. carry a charge, and the tank 1 and the lubricating oil or fuel 4 inside the tank 1 also carry a charge. At this time, it has been confirmed that the tank 1 and the lubricating oil or fuel 4 inside the tank 1 carry a positive charge, and further, it has been confirmed that the value of the voltage of the tank 1 and the lubricating oil or fuel 4 inside the tank 1 becomes a high voltage of 1000V or more.
If the lubricating oil or fuel carries a charge, the viscosity of the lubricating oil or fuel rises. As a result, at the time of engine operation, the lubricating oil or fuel is no longer fed to the required locations with a good response. As a result, the operating response of the engine deteriorates. In this case, to prevent the operating response of the engine from deteriorating, the viscosity of the lubricating oil or fuel has to be lowered, and to this end, it is necessary to eliminate the charge which is carried by the lubricating oil or fuel, that is, to eliminate the static electricity of the lubricating oil or fuel.
Therefore, the inventors studied simple methods of static elimination for reducing the charge carried at the lubricating oil or fuel and discovered a simple method of static elimination which uses a self-discharge type static eliminator. One example of this self-discharge type static eliminator is shown from
In embodiments of the present invention, as shown in
Now, as explained above, in an embodiment according to the present invention, the tank 1 and lubricating oil or fuel 4 carry a positive charge. In this case, in the example which is shown in
In this regard, the voltage of the self-discharge type static eliminator 10 becomes substantially equal to the voltage of the bottom wall 6 of the tank 1 around the self-discharge type static eliminator 10. Therefore, the voltage of the self-discharge type static eliminator 10 becomes considerably high. On the other hand, air tends to be positively charged. Therefore, as shown in
If discharge occurs between the air ion and the corner portion 13 of the self-discharge type static eliminator 10, as shown in
If discharge continuously occurs between the air ions and the corner portion 13 of the self-discharge type static eliminator 10, the positive charge which is carried at the self-discharge type static eliminator 10 is successively neutralized. As a result, the amount of positive charge which is carried at the self-discharge type static eliminator 10 decreases. If the amount of positive charge which is carried at the self-discharge type static eliminator 10 decreases, the positive charge which is carried in the bottom wall 6 of the tank 1 around the self-discharge type static eliminator 10 moves through the inside of the self-discharge type static eliminator 10. Therefore, the positive charge which is carried on the surface of the bottom wall 6 of the tank 1 around the self-discharge type static eliminator 10 is decreased. If the positive charge which is carried on the surface of the bottom wall 6 of the tank 1 around the self-discharge type static eliminator 10 is decreased, the positive charge which is carried in the bottom wall 6 of the tank 1 away from the self-discharge type static eliminator 10 moves to the surroundings of the self-discharge type static eliminator 10, and as shown in
In this case, if the amount of the positive charge which is carried in the bottom wall 6 of the tank 1 away from the self-discharge type static eliminator 10 is decreased, the large amount of the positive charge which is carried in the lubricating oil or fuel 4 moves toward the inside of the bottom wall 6 of the tank 1 around the self-discharge type static eliminator 10. As a result, in
Note that, even if arranging the self-discharge type static eliminator 10 on the outside surface 8 of the bottom wall 6 of the tank 1 away from the strainer 2, it is possible to eliminate static electricity from the lubricating oil or fuel 4 by the self-discharge type static eliminator 10. However, at this time, static electricity can be eliminated from only part of the lubricating oil or fuel 4 which is present in a limited region of the tank 1, and static electricity cannot be eliminated from the majority of the lubricating oil or fuel 4 which flows into the strainer 2. That is, to eliminate static electricity from all of the lubricating oil or fuel 4 which flows into the strainer 2, the self-discharge type static eliminator 10 has to be placed at the outside surface 8 of the bottom wall 6 of the tank 1 which corresponds to the back side of the inside surface 7 of the bottom wall 6 of the tank 1 which faces the strainer 2.
Therefore, in embodiments of the present invention, there is provided a feed system of lubricating oil or fuel 4 of a vehicle 1 including a tank 1 which stores a lubricating oil or fuel 4; a strainer 2 for lubricating oil or fuel 4, which is arranged at a bottom portion of the tank 1 (the tank 1 and the lubricating oil or fuel 4 which is stored in the tank 1 carrying a positive charge); and a self-discharge type static eliminator 10 which can discharge a positive carried charge to air. The self-discharge type static eliminator 10 is placed on an outside surface 8 of a bottom wall 6 of the tank 1 which corresponds to a back side of an inside surface 7 of the bottom wall 6 of the tank 1 which faces the strainer 2 to thereby eliminate static electricity from lubricating oil or fuel 4 which flows into the strainer 2 by the self-discharge type static eliminator 10.
In this regard, as explained above, if discharge occurs between the air ions and the corner portion 13 of the self-discharge type static eliminator 10, as shown in
Discharge between the air ions and the self-discharge type static eliminator 10 occurs between the air ion and the corner portion 13 of the self-discharge type static eliminator 10 or between the air ions and the sharp projections 14 at the peripheral parts of the self-discharge type static eliminator 10. Therefore, to make it easier for discharge to occur between the air ions and the self-discharge type static eliminator 10, it can be said to be preferable to form a large number of sharp projections 14 in addition to the corner portion 13 at the peripheral parts of the self-discharge type static eliminator 10. Therefore, when preparing the self-discharge type static eliminator 10, if cutting large dimension metal foil to prepare the metal foil 11, it is preferable to cut the metal foil so that burrs like sharp projections 14 occur at the cut surface.
The metal foil 11 of the self-discharge type static eliminator 10 which is shown in
On the other hand, even when the bottom wall 6 of the tank 1 is formed from a nonconductive plastic material, as shown in
When the bottom wall 6 of the tank 1 is formed from a nonconductive plastic material, as shown in
If discharge occurs between the air ions and the corner portion 13 of the self-discharge type static eliminator 10 and the amount of positive charge carried at the self-discharge type static eliminator 10 decreases, the positive charge carried on the outside surface 8 of the bottom wall 6 around the self-discharge type static eliminator 10 moves to the inside of the self-discharge type static eliminator 10, therefore the positive charge which is carried on the outside surface 8 of the bottom wall 6 around the self-discharge type static eliminator 10 decreases. As a result, the voltage of the self-discharge type static eliminator 10 and the outside surface 8 of the bottom wall 6 around the self-discharge type static eliminator 10 gradually falls. This action of reduction of the voltage of the self-discharge type static eliminator 10 and the outside surface 8 of the bottom wall 6 around the self-discharge type static eliminator 10 continues until the voltage of the self-discharge type static eliminator 10 becomes lower and the discharge action stops. As a result, as shown in
On the other hand, at this time, the voltage at the inside surface 7 of the bottom wall 6 in the limited range D centered around the location of placement of the self-discharge type static eliminator 10 also falls. However, in this case, the amount of drop of the voltage of the inside surface 7 of the bottom wall 6 is smaller than the amount of drop of the voltage of the outside surface 8 of the bottom wall 6. In this way, even if placing the self-discharge type static eliminator 10 on the outside surface 8 of the bottom wall 6, the voltage of the inside surface 7 of the bottom wall 6 drops because the drop in voltage at the outside surface 8 of the bottom wall 6 probably appears at the inside surface 7 of the bottom wall 6 as a drop in voltage of the inside surface 7 of the bottom wall 6.
If the voltage of the inside surface 7 of the bottom wall 6 falls, the voltage of the lubricating oil or fuel 4 which flows along the inside surface 7 of the bottom floor 6 falls and therefore the voltage of the lubricating oil or fuel 4 which flows into the strainer 2 falls. The voltage of the lubricating oil or fuel 4 falling in this way means the fall of the amount of charge which is carried at the lubricating oil or fuel 4, therefore in this case as well, static electricity is eliminated from the entire lubricating oil or fuel 4 which flows into the strainer 2.
On the other hand, if placing the self-discharge type static eliminator 10 on the outside surface of the pump 3, static electricity is eliminated from the lubricating oil or fuel which flows through the inside of the pump 3. Therefore, in this case as well, the viscosity of the lubricating oil or fuel is reduced. As a result, at the time of engine operation, the lubricating oil or fuel is fed to the required locations with a good response, so the operating response of the engine is improved. Therefore, in one embodiment according to the present invention, as shown in
Further, if placing the self-discharge type static eliminator 10 on the outside surface of the flow pipe 5, static electricity is eliminated from the lubricating oil or fuel which flows through the inside of the flow pipe 5. Therefore, in this case as well, the viscosity of the lubricating oil or fuel is reduced and, as a result, at the time of engine operation, lubricating oil or fuel is fed to the required locations with a good response, so the operating response of the engine is improved. Therefore, in one embodiment according to the present invention, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2015-007559 | Jan 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3255771 | MacSpadden | Jun 1966 | A |
3597668 | Yoshimine | Aug 1971 | A |
3922214 | Van Cakenberghe | Nov 1975 | A |
4795935 | Fujii et al. | Jan 1989 | A |
5095400 | Saito | Mar 1992 | A |
5382359 | Brandt | Jan 1995 | A |
6168713 | Sekine | Jan 2001 | B1 |
6207592 | Nickell | Mar 2001 | B1 |
6223731 | Yoshiume | May 2001 | B1 |
6235385 | Lee | May 2001 | B1 |
6589420 | Mathew | Jul 2003 | B1 |
7248454 | Takayanagi | Jul 2007 | B2 |
7467549 | Forgue | Dec 2008 | B2 |
7527042 | Crary | May 2009 | B2 |
7684169 | Larkin | Mar 2010 | B1 |
7832528 | Liang | Nov 2010 | B1 |
7971689 | Moore | Jul 2011 | B2 |
8372278 | Nguyen | Feb 2013 | B1 |
8503154 | Nakai | Aug 2013 | B2 |
9044916 | Koike | Jun 2015 | B2 |
20020179311 | Alper | Dec 2002 | A1 |
20030131828 | Crary | Jul 2003 | A1 |
20030183465 | Ikeda | Oct 2003 | A1 |
20040231730 | Nakamura | Nov 2004 | A1 |
20050018375 | Takayanagi | Jan 2005 | A1 |
20080036241 | Aisenbrey | Feb 2008 | A1 |
20080099595 | Lewis | May 2008 | A1 |
20120039012 | Nakai | Feb 2012 | A1 |
20140120293 | Gupta | May 2014 | A1 |
20160059838 | Yamada et al. | Mar 2016 | A1 |
20160108868 | Tanahashi et al. | Apr 2016 | A1 |
20160177811 | Tanahashi et al. | Jun 2016 | A1 |
20160186639 | Tanahashi | Jun 2016 | A1 |
20160186703 | Tanahashi et al. | Jun 2016 | A1 |
20160200270 | Tanahashi et al. | Jul 2016 | A1 |
20160214453 | Tanahashi | Jul 2016 | A1 |
20160223024 | Tanahashi et al. | Aug 2016 | A1 |
20160230824 | Tanahashi et al. | Aug 2016 | A1 |
20160280162 | Yamada et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
S50-026778 | Mar 1975 | JP |
S61-194999 | Aug 1986 | JP |
H05-238438 | Sep 1993 | JP |
2000-013280 | Jan 2000 | JP |
2001-355524 | Dec 2001 | JP |
2002-104106 | Apr 2002 | JP |
2003-312277 | Nov 2003 | JP |
2006234093 | Sep 2006 | JP |
2008181694 | Aug 2008 | JP |
2009-024361 | Feb 2009 | JP |
2009-208882 | Sep 2009 | JP |
2010192177 | Sep 2010 | JP |
2010-236464 | Oct 2010 | JP |
Entry |
---|
Office Action issued in U.S. Appl. No. 15/018,085 dated Dec. 14, 2016. |
US Patent and Trademark Office, Final Office Action in U.S. Appl. No. 15/018,085, dated Jun. 7, 2017, 26 pages. |
US Patent and Trademark Office, Notice of Allowance in U.S. Appl. No. 15/018,085, dated Oct. 20, 2017, 7 pages. |
U.S. Patent and Trademark Office, Corrected Notice of Allowability dated Dec. 14, 2017 in U.S. Appl. No. 15/018,085, 4 pages. |
U.S. Patent and Trademark Office, Corrected Notice of Allowability dated Jan. 9, 2018 in U.S. Appl. No. 15/018,085, 4 pages. |
U.S. Patent and Trademark Office, Corrected Notice of Allowability dated Feb. 2, 2018 in U.S. Appl. No. 15/018,085, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160208748 A1 | Jul 2016 | US |