The present invention generally relates to a system and method for directing high-powered laser energy through a connector unit for use within a process environment. More particularly, this invention relates to a system and method for establishing an environmental barrier between the process environment and the outside environment from which the laser energy is received therefrom.
Today, many typical industrial applications of high-powered lasers implement an open beam laser for a process operation. For example, in welding applications, open beam lasers are used to join components together. In these industrial settings, however, open beam cutting can pose a potential danger to nearby personnel by exposing them to harmful vapors and residual debris arising from the open beam cutting process. Moreover, the task of re-directing open beam lasers is tedious as well as hazardous. Typically, open beam laser beams are ultimately re-directed toward a process operation according to the meticulous placement of mirrors. A misguided beam could damage the process operation in which the beam is applied to. For example, a misguided beam could damage component parts to be welded and possibly injure nearby personnel.
In terms of cost and safety issues, the application of open beam lasers is not acceptable. In the attempt to address these issues, some high-powered lasers are provided through a closed beam arrangement. A typical closed beam arrangement involves providing a beam through a large rigid protective shelter, such as an opaque tube. Due to the rigid nature of the enclosing, although providing limited safety by restricting objects from passing through the beam, re-directing a closed laser beam toward a desired application is difficult.
Currently, in terms of safety, there is a growing trend to provide high-powered laser beams through a fiber optic line. Fiber optic lines redirect a passing beam with negligible loss in fidelity, thus allowing the lines to transfer a high-powered laser beam through them.
The task of introducing laser beams into a closed environment, such as for example a vacuum chamber, a pressure vessel, or a closed chamber to isolate hazardous material, is not typically provided in high-powered laser applications. Accordingly, the laser industry does not currently provide a coupling arrangement to transfer high-powered laser energies from a fiber optic-line to an application within a closed environment while maintaining the environmental integrity of that closed environment. Moreover, most typical connector arrangements are not cost effective, replaceable or easy to use. This is especially true for those that feed laser energies from a high-powered line into a process environment. Many other problems and disadvantages of the prior art will become apparent to one skilled in the art after comparing such priority with the present invention as described herein.
Aspects of the invention are found in a lasing system that receives high-powered laser energy from a line. The lasing system forms a sealed barrier between a process environment and an environment external to the process environment. In one aspect, a wall encloses the process environment and provides an environmental barrier from the outside environment. In another aspect, a sealer isolates the process environment to an external environment. In another aspect, a process operation, located within the process environment, performs a function using the received laser energy. In one exemplary embodiment, laser energy that is transmitted through a line and received by a process operation is in the range between 100 to about 1000 watts. Illustratively, a process operation may include a welding operation where laser energy is used to join components together. Additionally, among other functions, a process operation may include testing the mechanical characteristics of a system, such as for example strength and fracture characteristics, using laser energy.
In a further aspect, a laser connector is releasably coupled to the line and to the wall. As such, various aspects of the invention may quickly and effortlessly be repaired or replaced in a cost effective manner.
Other aspects, advantages, and novel features of the present invention will become apparent from the detailed description of the invention when considered in conjunction with the accompanying drawings. Many other beneficial results can be attained by applying the disclosed invention in a different manner or modifying the invention as will be described. Accordingly, a fuller understanding of the invention may be had by referring to the following detailed description.
For a more complete understanding of the present invention and the advantages thereof, reference should be made to the following Detailed Description taken in connection with the accompanying drawings in which:
The line 30 may be any suitable optical medium for the transmission of high-powered laser energy 35. Illustrative examples for such a line may include air, glass, vacuum, plastics, and a fiber optic line, among others.
Shown in
A process operation 25, located within the process environment 20, performs a function using the received laser energy 35. Illustratively, in one embodiment, a vacuum 20 exerts a negative pressure on the barrier 21 as the process operation 25 receives high-powered laser energy 35 for mechanically inspecting a system. In another exemplary embodiment, the wall 21 may define a pressure vessel so that a process operation 25 receives high-powered laser energy 35 for manufacturing-related applications. It should be added that a process interface 23 may be provided by the process environment 20 to facilitate reception and/or transmission of high-powered laser energy 35 for use with the process operation 25.
In one exemplary embodiment, the process operation 25 receives the lasing energy 35 in a range between 10 and 200 watts. In another embodiment, lasing energy is received by the lasing system 15 in a range between 200 to about 1400 watts. In yet another exemplary embodiment, the lasing energy 35 may be sent through the line 30 in a range between 1400 to about 10000 watts.
As shown in FIG. 1 and
Shown in FIG. 1 and
A sealer 50 is coupled to the connector 80 and the mounter 60. The sealer 50 isolates the process environment 20 to an external environment. The sealer 50 includes a sealing body 51. In one exemplary embodiment, as shown in
The sealing body 51 can includes a sealing face 52. To form an environmental barrier between the process environment and the outside environment, the sealing face 52 is positioned against the mounter 60. Moreover, the sealer 50 may include at least one system seal 55. The system seal 55 is disposed between the sealing body 51 and the mounter 60 to establish a barrier for isolating the process environment.
As shown in
In one embodiment, a laser connector connection unit 40 is releasable from coupling with the wall 21 of the process environment 20. Particularly, the connector 80 of the laser connection unit 40 is releasably coupled to the mounter 60 and the line 30. The interface connection 70 may be releasable from the mounter 60. The sealer 50 may be releasable from the interface connection 70. The mounter 60 in one exemplary embodiment is releasable from the wall 21. Releasably coupling connector 80 to mounter 60 involves securing the connector to the mounter with a mechanical connection operable to mechanically engage and disengage in a controlled manner (i.e. designed to be released).
In general, as shown in
Alternatively, one exemplary embodiment provides linking a process environment 20 to a lasing system 15 through a line 30. As such, the line 30 is placed in a connector line interface 82 provided by the connector 80. The line 30 passes through the connector line interface 82 through a connector 80.
The line 30 passes through the connector 80 from the connector line interface 82 through a connector shell 85 to a feeder line 89 positioned within the process environment 20. Ultimately, the feeder line 89 is coupled to the process operation 25 to deliver lasing energy thereto. To relieve the line 30 of mechanical strain, the line is set within strain relief material 86 of a type well known in the industry, such as for example rubber. It should be also added that shell potting 87 is provided to mechanically affix the laser energy transmission line 30 to the connector shell 85 as well as to provide an environmental seal.
As is typical in the high-powered laser industry, the connector 80 is primarily composed of metallic materials. Some examples of high-powered laser connections are the losch LD 80 by Richard Losch, Inc. of Bend, Oreg. and Pave-Optic Seal by Pave Technology Company of Dayton, Ohio.
Continuing with the exemplary embodiment, the connector 80 couples to a mounting flange 60. The mounting flange 60 includes a passageway 61 for the transmission of high-powered laser energy 35 from the line and directs the energy to the process environment 20. A sealing assembly 50 seals the interface between the connector 80 and the mounter 60.
As such, a system for coupling energy from a high-powered laser to a process operation within a process environment is described. Additionally, a releasable connection system for engagement to a wall enclosing a process environment and receiving high-powered laser energies is described. In view of the above detailed description of the present invention and associated drawings, other modifications and variations will now become apparent to those skilled in the art. It should also be apparent that such other modifications and variations might be effected without departing from the spirit and scope of the present invention as set forth in the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 09/909,606 filed Jul. 20, 2001 now U.S. Pat. No. 6,597,855 entitled, “FEED-THROUGH SEAL FOR A HIGH-POWER LASER FIBER OPTIC CABLE”, by Brian T. Rosenberger and William M. Carra.
Number | Name | Date | Kind |
---|---|---|---|
4119363 | Camlibel et al. | Oct 1978 | A |
4466009 | Konishi et al. | Aug 1984 | A |
4491717 | Geffroy et al. | Jan 1985 | A |
4707066 | Falkenstein et al. | Nov 1987 | A |
4707073 | Kocher | Nov 1987 | A |
4770485 | Buckley et al. | Sep 1988 | A |
5031984 | Eide et al. | Jul 1991 | A |
5155795 | Wasserman et al. | Oct 1992 | A |
5159651 | Gandy | Oct 1992 | A |
5444810 | Szegda | Aug 1995 | A |
5588086 | Fan | Dec 1996 | A |
5778122 | Giebel et al. | Jul 1998 | A |
5977515 | Uraki et al. | Nov 1999 | A |
6115528 | Schmucker et al. | Sep 2000 | A |
6445868 | Grunbeck et al. | Sep 2002 | B1 |
6445869 | Tanner | Sep 2002 | B1 |
6526212 | Mishriky et al. | Feb 2003 | B1 |
20020081080 | Balle-Petersen et al. | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
0105198 | Apr 1984 | EP |
Number | Date | Country | |
---|---|---|---|
20030198433 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09909606 | Jul 2001 | US |
Child | 10417582 | US |