The present invention relates to a feed water pump control device that detects boost pressure (feed water pump intake side pressure) without the installation of a pressure sensor or quantity sensor on the intake side of a feed water pump, and carries out an estimated constant end pressure control.
Normally, a feed water pump control device installed in an office building or condominium is such that an estimated constant end pressure control, which controls water pressure at a demand end to a virtual constant by controlling a feed water pump discharge side pressure, is employed.
The estimated constant end pressure control can be employed without problem in a feed water pipe system wherein a water tank, or the like, is installed on the intake side of the feed water pump, and boost pressure changes little. However, in the kind of case wherein the feed water pump is connected directly part way along the feed water pipe, the boost pressure changes depending on the status of water use, meaning that, when controlling so that the feed water pump discharge side pressure is a constant end pressure, it may be difficult to supply an amount of water appropriate to the amount of water that should be fed.
When the head height (the discharge side pressure at a time of maximum quantity) in the feed water pump is clear, the boost pressure is detected by a pressure sensor installed on the intake side of the feed water pump, and by applying the boost pressure to an appropriate formula, it is possible to obtain simple linearized characteristics showing the relationship between the operating frequency of the feed water pump and the discharge side pressure. By controlling the operating frequency of the feed water pump in accordance with the simple linearized characteristics so that the discharge side pressure is such that the estimated end pressure is constant, an estimated constant end pressure control is theoretically possible.
According to the heretofore described method, although the discharge side pressure at a time of maximum quantity virtually coincides with the simple linearized characteristics, errors occur in the relationship between the quantity and discharge side pressure in a quantity range from zero until reaching a maximum value.
In particular, in an office building or condominium, it is very rare that the feed water pump is operated for a long time at maximum quantity, and normally it is often the case that operation is at half maximum quantity or less. Consequently, errors are likely to occur between the actual discharge side pressure of the feed water pump and the originally necessary discharge side pressure, as a result of which, there is a problem in that there is wasteful expenditure on electricity costs and water costs, which works against resource and energy saving.
Also, although it is also feasible to carry out an estimated constant end pressure control using two analog detection values, from a quantity sensor that detects the actual quantity and a discharge side pressure sensor, two sensors are necessary in this case.
Herein, as feed water pump control devices using an estimated constant end pressure control, those described in, for example, JP-A-5-133343 and JP-A-2001-123962 are publicly known.
The heretofore known technology according to JP-A-5-133343 includes an inverter device 106 and motor M for driving a pump P, pressure sensors 101 and 107 installed on the intake side and discharge side respectively of the pump P on a feed water pipe 200, pressure selection means 102, target pressure computing means 103, rotation speed control means 104, and rotation speed detection means 105, as shown in
The heretofore known technology according to JP-A-5-133343 is such that the target pressure computing means 103 obtains a target pressure signal S3 in accordance with the rotation speed of the motor M using an intake side pressure signal S2X, and outputs the target pressure signal S3 to the rotation speed control means 104. A first setting pressure PA and a pressure signal PBX from the pressure selection means 102 are input into the target pressure computing means 103. The pressure selection means 102 outputs the larger of a second setting pressure PB, smaller than the first setting pressure PA, and the pressure signal S2X as the pressure signal PBX.
The rotation speed control means 104 controls the output frequency of the inverter device 106 so that the discharge side pressure signal S2 coincides with the target pressure signal S3, thereby operating the motor M.
According to the heretofore known technology, when the intake side pressure signal S2X exceeds the second setting pressure PB, it is possible to reduce the pump P discharge side pressure, even when the boost pressure is abnormally high, by substituting the setting pressure PB with the pressure signal S2X, and continuing operation.
Also, the heretofore known technology according to JP-A-2001-123962 includes pressure sensors 101 and 107 installed on the intake side and discharge side respectively of a pump P, a subtractor 108, maximum frequency computing means 109 and minimum frequency computing means 110, end target pressure computing means 111, moving average means 112, subtraction means 113 that obtains a deviation between a target pressure, which is the output of the moving average means 112, and a discharge side pressure detection value, proportional integral means 114, and addition means 115 that adds the output of the proportional integral means 114 and an actual inverter frequency fin, thereby obtaining a frequency command value of the inverter device 106, as shown in
A maximum quantity Qmax is input into the maximum frequency computing means 109, while a maximum setting pressure Pmax, a minimum setting pressure Pmin, and the inverter frequency fin are input into the end target pressure computing means 111.
The heretofore known technology according to JP-A-2001-123962 is such that the maximum frequency computing means 109 and minimum frequency computing means 110 obtain a pressure difference ΔP between the discharge pressure and intake pressure of the pump P, and a maximum frequency fmax and minimum frequency fmin from the maximum quantity Qmax. Also, the end target pressure computing means 111, using the maximum frequency fmax, minimum frequency fmin, maximum setting pressure Pmax, minimum setting pressure Pmin, and inverter frequency fin, computes a target pressure P using a predetermined formula. Then, by the proportional integral means 114 adding a deviation between a moving average value of the target pressure P obtained by the moving average means 112 and a discharge side pressure detection value to the inverter frequency fin, using a proportional integral computation, a frequency command value of the inverter device 106 is computed.
As this heretofore known technology is such that the target pressure P is computed using the maximum frequency fmax and minimum frequency fmin, based on the pressure difference ΔP between the discharge pressure and intake pressure of the pump P, a highly accurate estimated constant end pressure control, unaffected by disturbance, is possible.
According to the heretofore known technologies according to JP-A-5-133343 and JP-A-2001-123962, it is possible to carry out an estimated constant end pressure control while keeping the discharge pressure of the pump P virtually constant. However, as the pressure sensor 101 that detects the pump P intake side pressure is essential in both cases, there is a problem in that the overall cost of the equipment increases.
Therefore, an object of the invention is to render unnecessary a pressure sensor or quantity sensor on the pump intake side, thereby enabling a reduction in the cost of the feed water pump control device.
Also, another object of the invention is to carry out an estimated constant end pressure control by controlling the pump discharge pressure to a predetermined value, thereby achieving resource saving and energy saving.
The invention is premised on a water feed pump control device that carries out an estimated constant end pressure control by controlling the operating speed of a feed water pump installed in a feed water pipe with an inverter device so that the discharge side pressure of the feed water pump is positioned on a pipeline resistance curve.
Further, the invention is such that, when an error occurs between F-P characteristics showing the relationship between the output frequency of the inverter device and the power consumption and an actual operating point, it is determined that there is pump boost pressure. When there is boost pressure, an amount of correction of linearized characteristics showing the relationship between the output frequency of the inverter device and the pump discharge side pressure is automatically calculated using the error between the F-P characteristics and the actual operating point (the inverter device output frequency error), and the linearized characteristics are corrected using the correction amount and a pump discharge side pressure detection value. Subsequently, an estimated constant end pressure control is carried out using proportional, integral, and differential control based on post-correction linearized characteristics.
According to the invention, an error in the F-P characteristics corresponding to the boost pressure is detected without using a pressure sensor or quantity sensor on the pump intake side, and the linearized characteristics are corrected using the error, meaning that a simplification of equipment, a reduction in cost, and a resource saving are possible.
Also, as the linearized characteristics correspond to the pipeline resistance curve, it is possible to suppress the pressure generated by the pump by an amount equivalent to the boost pressure, and operate the pump at an optimum number of rotations. Because of this, an energy saving operation of a feed water pump that carries out an estimated constant end pressure control is possible.
Hereafter, a description will be given, based on the drawings, of an embodiment of the invention.
The inverter control unit 300 is control processing means incorporated in an inverter device 400, and is configured of, for example, a CPU, a memory, a PID regulator, an A/D converter, an input/output interface, and the like. The inverter device 400 is configured of the inverter control unit 300 and the inverter unit 401.
In the inverter control unit 300, linearized characteristics 301 are characteristics showing a relationship between the pump P drive frequency (the output frequency of the inverter unit 401) and the pump P discharge side pressure. In
The pre-correction linearized characteristics are essentially the same as a pipeline resistance curve preset in accordance with a feed water pipeline in order to carry out an estimated constant end pressure control, and the linearized characteristics are stored in a memory (not shown) as a function or data table.
Herein, the pipeline resistance curve is also referred to as quantity-head characteristics (Q-H characteristics), as shown in
In
The PID control means 303 is configured of a regulator that carries out proportionality, integral, and differentiation calculations in order that the deviation should be zero. The acceleration means 304 calculates the frequency command f* based on the output of the PID control means 303, and outputs the frequency command f* to the inverter unit 401.
An equivalent of a feedback control system when there is no pump P boost pressure is as shown in
Also, in
306 is frequency-power characteristics (F-P characteristics) showing the relationship between the output frequency and power consumption of the inverter unit 401 calculated by the power consumption calculation means 305, which are stored in the memory as a function or data table. The F-P characteristics 306, being practically constant regardless of whether or not there is boost pressure, are, for example, the kind of characteristics shown by the solid line in
Now, when assuming that there is no pump P boost pressure, the PID control means 303 operates with a predetermined discharge side pressure for carrying out an estimated constant end pressure control as a target pressure, and the frequency command f* is calculated by the acceleration means 304 and provided to the inverter unit 401. The relationship at this time between the output frequency of the inverter unit 401 and the discharge side pressure can be represented by, for example, the linearized characteristics of the solid line of
However, when there is boost pressure, it should be permissible that the pressure generated by the pump is smaller by an amount equivalent to the boost pressure acting as an intake side effective pressure, as is clear from a comparison of the pipeline resistance curves of
However, when operation of the inverter unit 401 is continued at the operating point A when there is boost pressure, the pump P is caused to rotate excessively with respect to the amount of feed water that is to be provided, and the inverter unit 401, motor M, and pump P consume wasteful energy. That is, as the operating point of the F-P characteristics of the inverter unit 401 of
In
In
Therefore, linearization correction control means 307 of
The acceleration means 304 of
At this time, the switching means 311 is closed, and the linearized characteristic correction means 310 corrects the linearized characteristics 301 from the pre-correction linearized characteristics shown by the solid line in
Subsequently, the switching means 309 is connected to the “No Error” side and the switching means 311 opened, and the deviation between a target pressure chosen based on the post-correction linearized characteristics 301 and the discharge side pressure detection value from the pressure sensor 402 is input into the PID control means 303. The output of the PID control means 303 is input into the acceleration means 304 via the switching means 309, and the frequency command f* is computed by the acceleration means 304 and provided to the inverter unit 401.
Subsequently, the frequency command f* is generated by a PID control in accordance with the target pressure based on the post-correction linearized characteristics, the pump P discharge side pressure is maintained at the target pressure by controlling the output frequency of the inverter unit 401, and an estimated constant end pressure control is carried out. Also, every time an error occurs between the F-P characteristics and operating point due to the boost pressure, it is sufficient that the heretofore described linearized characteristic correction process is repeated.
When the amount of feed water to be provided or the pump P boost pressure changes, causing a change in the discharge side pressure, the operating point deviates from the F-P characteristics of
As opposed to this, in the event that the linearized characteristic correction amount is large, the operating point exists within the F-P characteristics, but the amount of feed water is insufficient. In this case, it is sufficient to correct the linearized characteristics by gradually increasing the target pressure of the linearized characteristics, calculating the frequency difference ΔF when the operating point deviates from the F-P characteristics, and utilizing the fact that the frequency and quantity are proportional, thereby correlating the linearized characteristics with the pipeline resistance curve of
Number | Date | Country | Kind |
---|---|---|---|
2011-087150 | Apr 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/053081 | 2/10/2012 | WO | 00 | 4/11/2013 |