A number of different techniques have been employed to use wireless media or wireless resources more efficiently. For example, it is common for wireless nodes or devices to provide rate adaptation, where a modulation scheme may be adjusted based on changing channel conditions. This may allow higher order modulation schemes to be used where channel conditions are more favorable.
For example, as described in “WCDMA for UMTS—Radio Access For Third Generation Mobile Communications”, H. Holma and A. Toskala (editors), 2005, wireless technologies such as Wideband Code-Division Multiple Access (WCDMA) through high-speed downlink packet access (HSDPA) and Third Generation Partnership Project (3GPP) UTRAN Long Term Evolution may allow improved exploitation of radio channel variations through link adaptation and channel dependent scheduling. Data transmission rate may be adjusted based on downlink channel quality information (CQI) provided as feedback from the wireless node (or user terminal, UE) to the scheduler located in the infrastructure node (or base station, eNodeB).
In addition to adaptation in the time-domain as exemplified in e.g. HSDPA, wireless systems based on orthogonal frequency domain multiple access (OFDMA), such as the UTRAN Long Term Evolution “Technical Solution for the 3G Long-Term Evolution,” Ekstrom, et al, March, 2006 allow for channel dependent scheduling also in the frequency domain provided that information about the channel quality in both time and frequency at each UE (user equipment) location are available at the scheduling node.
In addition, there are different techniques that have been developed to report or provide channel quality information (CQI) (or channel quality indication), to a packet scheduler for OFDMA systems. For example, the best-M method allows a wireless node to report channel quality information for the M highest quality channels (or sub-channels). As another example, a threshold CQI technique may be employed, where a wireless node may report channel quality information for the best or highest quality channel, and for other channels having a channel quality that is within a specific threshold of the best or highest quality channel. Unfortunately, current techniques for feedback and link adaptation may not sufficiently adapt to changing channel conditions or network complexities.
Various example embodiments are disclosed relating to feedback and link adaptation techniques for wireless networks. According to an example embodiment, a method may include determining a channel quality indication (CQI) value for each of a plurality of wireless sub-channels, discarding any of the CQI values older than a threshold time, leaving a set of current CQI values, determining a percentile CQI value based on the set of current CQI values and transmitting the percentile CQI value to an infrastructure node.
According to another example embodiment, an apparatus may include a processor or controller. The controller may be configured to determine a channel quality indication (CQI) value for each of a plurality of wireless sub-channels, discard any of the CQI values older than a threshold time, leaving a set of current CQI values, determine a percentile CQI value based on the set of current CQI values, and transmit the percentile CQI value to an infrastructure node. The infrastructure node may, for example, determine or select one or more data transmission parameters, such as a modulation scheme and/or coding rate, based at least in part on the received percentile CQI value.
According to another example embodiment, a method may include receiving a percentile request from an infrastructure node in a wireless network, receiving one or more packets, each packet including signals on a plurality of sub-channels, determining a channel quality indication (CQI) value for each of a plurality of the sub-channels based on the one or more received packets, discarding CQI values older than a threshold time, leaving a set of current CQI values, determining a percentile CQI value for a first group of the CQI values based on the set of current CQI values, determining a percentile CQI value for a second group of the CQI values based on the set of current CQI values, and transmitting the percentile CQI values for the first and second groups to the infrastructure node in response to the percentile request.
In another example embodiment, an apparatus may include a controller and a wireless transceiver. The controller may be adapted or configured to receive a percentile request from an infrastructure node in a wireless network, receive one or more packets, each packet including signals on a plurality of sub-channels, determine a channel quality indication (CQI) value for each of a plurality of the sub-channels based on the one or more received packets, discard CQI values older than a threshold time, leaving a set of current CQI values, determine a percentile CQI value for a first group of the CQI values based on the set of current CQI values, determine a percentile CQI value for a second group of the CQI values based on the set of current CQI values, and transmitting the percentile CQI values for the first and second groups to the infrastructure node in response to the percentile request.
According to another example embodiment, a method may include receiving a percentile request from an infrastructure node in a wireless network, receiving one or more packets, each packet including signals on a plurality of sub-channels, determining a channel quality indication (CQI) value for each of a plurality of the sub-channels based on the one or more received packets, discarding CQI values older than a threshold time, leaving a set of current CQI values, determining a percentile CQI value for a first group of the subchannels based on the set of current CQI values, determining a percentile CQI value for a second group of the subchannels based on the set of current CQI values, and transmitting the percentile CQI values for the first and second groups to the infrastructure node in response to the percentile request.
In another example embodiment, an apparatus may include a controller and a wireless transceiver. The controller may be adapted or configured to receive a percentile request from an infrastructure node in a wireless network, receive one or more packets, each packet including signals on a plurality of sub-channels, determine a channel quality indication (CQI) value for each of a plurality of the sub-channels based on the one or more received packets, discard CQI values older than a threshold time, leaving a set of current CQI values, determine a percentile CQI value for a first group of the subchannels based on the set of current CQI values, determine a percentile CQI value for a second group of the subchannels based on the set of current CQI values, and transmitting the percentile CQI values for the first and second groups to the infrastructure node in response to the percentile request.
According to another example embodiment, a method may include sending a percentile request to a wireless node, receiving a percentile CQI value from the wireless node, the percentile CQI value being based on a current set of CQI values maintained at the wireless node, and determining or selecting a modulation scheme and/or coding rate for data transmissions to the wireless node based on the percentile CQI value.
According to yet another example embodiment, an apparatus may include a controller or processor. The controller may be adapted or configured to send a percentile request to a wireless node, receive a percentile CQI value from the wireless node, the percentile CQI value being based on a current set of CQI values maintained at the wireless node, and determine or select a modulation scheme and/or coding rate for data transmissions to the wireless node based on the percentile CQI value.
The details of one or more implementations are set forth in the accompanying drawings and the description below.
Referring to the Figures in which like numerals indicate like elements,
The various embodiments described herein may be applicable to a wide variety of wireless network technologies, such as, for example, WLAN (wireless local area network) networks (e.g., IEEE 802.11 type networks), IEEE 802.16 Wi MAX networks, cellular networks, relay networks, multi-hop networks, 3GPP related networks including Long Term Evolution (LTE) of 3GPP, HSDPA (high speed downlink packet access), UMTS Terrestrial Radio Access Network (UTRAN), wireless networks based on orthogonal frequency division multiplexing (OFDM), orthogonal frequency division multiple access (OFDMA) or other techniques, radio networks, or other wireless networks. These are merely some example networks or technologies, and the various embodiments described herein are not limited thereto. In another example embodiment, the various examples and embodiments may be applied, for example, to a mesh wireless network, where a plurality of mesh points (e.g., Access Points) may be coupled together via wired or wireless links. The various embodiments described herein may be applied to wireless networks, both in an infrastructure mode, as well as an ad-hoc mode in which wireless nodes or stations may communicate directly via a peer-to-peer network, for example.
The term “wireless node” or “node,” or wireless station or the like, may include, for example, a wireless mobile device, mobile station or user equipment, an access point (AP), base station or other infrastructure node, a wireless personal digital assistant (PDA), a cell phone, an 802.11 WLAN phone, a wireless mesh point, or any other wireless device. An infrastructure node may include, as examples, a base station, an access point, a relay station or relay node, a node-B, or any other infrastructure node. These are merely a few examples of the wireless devices that may be used to implement the various embodiments described herein, and this disclosure is not limited thereto.
Feedback of channel state information or channel quality information has been employed to allow a node to adjust data transmission parameters (e.g., modulation scheme, coding rate) based on the quality of the channel. This may allow higher data rates to be provided when channel conditions improve, and may allow data rates to be decreased to accommodate deteriorating channel conditions. Unfortunately, in some instances, a single channel quality value may not be sufficient to accurately reflect the conditions of complex wireless networks. For example, it may be desirable for channel quality feedback to account for or accommodate one or more complicating factors, such as the use of multi-hop networks or a number of hops in a path (e.g., of a relay network), a target block error rate (target BER) or target packet error rates, one or more applications that may have varying sensitivity to packet delay or varying delay constraints (e.g., VoIP and data or best efforts applications), different traffic classes or QOS/priority levels for different packets or flows, the use of soft frequency reuse through the use of power masks by one or more infrastructure nodes in a wireless network(s) to decrease radio interference (for example), the time varying nature of a wireless channel and how different frequencies or subcarriers may vary differently over time, and other factors. These are merely a few examples, and the disclosure is not limited by or to these factors.
According to an example embodiment, a number of different techniques are provided or described herein for feedback and link adaptation. In an example embodiment, a wireless node (e.g., user terminal or relay node) may receive data or packets, and may determine a channel quality indication (CQI) value for each of a plurality of wireless sub-channels. For example, a received packet may include signals on each of a plurality of subcarriers. Based on the received packet(s), the wireless node may determine a CQI value for each of a plurality of subcarriers. A number of different CQI values may be determined, such as a signal-to-interference and noise ratio (SINR), or other CQI value. For example, a higher SINR may typically correspond to a higher quality wireless channel at that time.
In an example embodiment, each subchannel may include a plurality (e.g., 12 or other number) of subcarriers. A CQI for a subchannel may be determined, in an example embodiment, as an average of the CQIs (e.g., average SINRs) of each of the subcarriers of a channel. Thus, a CQI value may be determined for each subchannel by taking an average CQI across the subcarriers of the channel, for example. These subcarrier CQI values may be averaged for one time slot or 1 sample, for example, to determine a CQI value for a subchannel. Other techniques may be used as well.
In addition, for each CQI value, a time stamp (or time indication) may be stored in memory to indicate how current or fresh (or stale) a CQI value may be. The time stamp values may include, as an example, a time stamp 1, time stamp 2, time stamp 3 . . . time stamp 4 for CQI values 1 . . . Z. The time stamp may indicate, for example, the approximate time that the packet was received upon which the CQI was calculated or determined, or the superframe number in which the packet or frame was received, upon which the CQI value was determined. This may allow the wireless node to detect and discard relatively stale or relatively old CQI values from memory (e.g., discard CQI values after 500 ms, or having time stamps older than a threshold value, such as older than 500 ms), or discard CQI values received more than 20 frames (or 20 superframes) ago, for example (e.g., may keep only the X most recent SINR or CQI values for each subchannel). Or, for example, each CQI value (e.g., each SINR value) may be discarded after it has expired (e.g., after 500 ms), or may keep only the 10 most recent SINR or CQI values, as another example. This may allow more current (more accurate) channel state or channel quality information to be maintained by the wireless node, since channel state for each channel or subcarrier may vary substantially over time.
In an example embodiment, the wireless node may calculate or determine a percentile CQI value based on a current set of CQI values. As noted, any of the CQI values that are stale (e.g., that have expired or that have time stamps older than a threshold) may be discarded, leaving a set of (relatively) current CQI values in memory. The threshold time may be measured in time (e.g., seconds), as a number of frames, sub-frames, superframes, or some other measurement or indication, and is not limited to a time reference (e.g., seconds). The percentile CQI value may be calculated or determined based on the set of current CQI values, for example. The percentile CQI value may refer to (or may include) a minimum CQI value for the identified percentile. For example, a 20 (or 20th) percentile CQI value may indicate the minimum CQI value for the top 80% of the current CQI values.
The percentile CQI value may be transmitted to a requesting infrastructure node, e.g., base station, access point, relay node or relay station, or the like. The infrastructure node may then, for example, determine or adjust one or more data transmission parameters (e.g., modulation scheme or coding rate) for transmitting data to the (reporting) wireless node, based on the percentile CQI value.
In another example embodiment, the sub-channels or the CQI values for the various sub-channels may be placed into two or more groups, and a percentile CQI value may be calculated or determined for each group. For example, the sub-channels may be divided into two or more groups, and a percentile CQI value may be determined and reported for each group of subchannels. Different groups of sub-channels may include, for example:
Many other groups of subchannels may be provided. In an example embodiment, a percentile CQI value may be determined and reported to an infrastructure node for each group of sub-channels, for example. This may allow, for example, the infrastructure node, to separately assign data transmission parameters for the sub-channels associated with each group.
Referring to
where
p estimated SINR of sub-carrier part of best M sub-channels
P number sub-carriers in sub-channel
k estimated SINR of sub-carrier not part of best M sub-channels
K number of sub-carriers in sub-channel
With reference to
The RAP or infrastructure node, may use this SINR value (or percentile CQI value) to select the modulation and coding scheme for example.
A number of different options or variations may be applied, for example:
In the case of soft-frequency reuse, with e.g., 3 power steps, a separate buffer can be used for each power step. If the system uses a large amount of power steps compared to the number of sub-channels, it may become difficult to collect a sufficient amount of SINR values for each phase or power step. In such systems several power steps might use the same SINR value. In the following an example embodiment is briefly described for a system with 7 power steps:
The best transmission opportunities may be for power steps where high power is assigned to the RAP. Therefore the wireless node or user terminal may use a single SINR (CQI) buffer for the power step with the highest power.
The wireless node may then combine the power steps of the second and third highest power value and uses a single SINR buffer for those.
The remaining 4 power steps with the lowest power assigned may be combined and use a single SINR buffer for the link adaptation.
An infrastructure node may send a request message to a wireless node requesting a CQI percentile value for one or more groups of sub-channels. Table 1 below illustrates an example format for such a request message. The request message may include a message ID to identify the message as a request message, e.g., requesting a percentile CQI value. A CQI percentile field may indicate the percentile that should be reported, such as 30 (or 30th) percentile (001), 20 percentile (010), 10 (or 10th) percentile (011), and 5 percentile (100), request a percentile CQI value for one group of sub-channels. The values of 101, 110 and 111 in the CQI percentile field may request a percentile CQI value for two group of sub-channels. For example, the request message may request CQI percentile values for 30 percentile for one group and 5 percentile for another group. The value 110 may indicate a request for a 30 and 10 percentile CQIs for groups of sub-channels, while the value 111 may indicate a request for 20 and 5 percentile CQIs for groups of sub-channels.
The percentile that is used for the link adaptation can be set according to the target packet error rate at which the system wants to operate and it can be set differently for different flows. Typically for a real time service the target packet error rate will be lower than for a best effort service. Moreover, if the traffic has to be sent over multiple hops, then the target packet error rate should be even lower (to avoid the costly retransmissions, if possible). Therefore a RAP can request the next RN or UT to report percentiles according to the number of hops and the traffic requirements. An example of such a message is illustrated in Table 1.
Depending on the network implementation the RN or BS can be aware of the network topology. Thus, the RN or BS may know how many hops the packet will have to pass in the mesh network. In one example, for two hops it may use HARQ (Hybrid ARQ) (which allows for retransmission of coded data blocks that are uncorrectable) when forwarding in the backhaul system. For 3 or more hops, HARQ may, for example, be switched off and it uses more robust link adaptation (more robust modulation and coding to reduce possibility of errors). Thus, it will request the user to feed back different SINR percentiles depending on the HARQ settings, e.g. amount of retransmissions.
In another network implementation each delay sensitive packets get a timestamp when they arrive at the BS (in the DL or downlink direction) or at the first RN (in the UL or uplink direction). Thus, the RNs may typically know when forwarding the packet how much time it has spent already in the network. Depending on that information and on the number of hops yet to reach, the RN decides to deactivate HARQ (or change the number of retransmissions permitted) and to use a more robust link adaptation. Thus, again it will request the user to feed back different SINR percentiles.
A more advanced implementation could be devised, where more QoS classes are used, with increasing delay requirements. Then, more flexibility could be given to the RNs in the backhaul system. Following the same procedure than described above they decide to disable the per-link HARQ and choose the appropriate SINR percentile independently for each QoS class.
Next to delay sensitive traffic like VoIP, also traffic sensitive to delay jitters (e.g. streaming) is an important QoS class. The same mechanisms can be applied also to this QoS class to reduce the delay jitter of such traffic streams.
In an example embodiment, the determining (710,
The method of
The method of
The method illustrated in
The method illustrated in
The method of
The method wherein the determining (730) a channel quality indication (CQI) value may include determining an average channel quality indication (CQI) value for each of a plurality of groups of wireless sub-channels.
In another example embodiment, an apparatus may include a controller and a wireless transceiver. The controller may be configured to: determine a channel quality indication (CQI) value for each of a plurality of wireless sub-channels; discard any of the CQI values older than a threshold time, leaving a set of current CQI values; determine a percentile CQI value based on the set of current CQI values; and transmit the percentile CQI value to an infrastructure node.
The flow chart of
The flow chart of
The flow chart of
The flow chart of
An apparatus may include a controller and a wireless transceiver. The controller may be configured to: receive a percentile request from an infrastructure node in a wireless network; receive one or more packets, each packet including signals on a plurality of sub-channels; determine a channel quality indication (CQI) value for each of a plurality of the sub-channels based on the one or more received packets; discard CQI values older than a threshold time, leaving a set of current CQI values; determine a percentile CQI value for a first group of the CQI values based on the set of current CQI values; determine a percentile CQI value for a second group of the CQI values based on the set of current CQI values; and transmit the percentile CQI values for the first and second groups to the infrastructure node in response to the percentile request.
The flow chart of
The flow chart of
The flow chart of
The flow chart of
The flow chart of
The flow chart of
In another example embodiment, an apparatus may include a controller and a wireless transceiver, the controller configured to: send a percentile request to a wireless node; receive a percentile CQI value from the wireless node, the percentile CQI value being based on a current set of CQI values maintained at the wireless node; and determine or select a modulation scheme and/or coding rate for data transmissions to the wireless node based on the percentile CQI value.
Therefore, according to an example embodiment, a link adaptation and feedback scheme is provided that may, for example, adapt to the bursty and changing interference situation in an OFDMA wireless network. This scheme may also with work with interference coordination schemes such as soft frequency reuse, where power masks are used to coordinate the interference between RAPs. Secondly the link adaptation and feedback scheme may also take QoS aspects and multi-hop communication into account.
As can be seen from
To exploit these variations and to achieve multi-user scheduling gain, the best M feedback scheme, or other feedback scheme may be used. In Best-M technique, for example, each user (or each user terminal/wireless node) may report the best M sub-channels (highest SINR) to the serving RAP and the RAP will try to allocate these M sub-channels to the user. Thus, given a sufficient amount of users and the possibility to delay packet transmissions, each user may typically, at least in some situations, obtain packets on its best M sub-channels. Additionally to the best M sub-channels the user terminals feed back one channel quality indicator CQI, e.g. SINR value that is used for link adaptation on these sub-channels. The position of the sub-channels may vary over time and may be signaled to the RAP. The SINR value is typically the averaged value over this varying set of sub-channels.
However in reality, the number of users might be lower and QoS constraints may in some cases require that delay sensitive traffic is scheduled also on other than the best M sub-channels. Therefore, according to an example embodiment, the users not only feed back a CQI value, e.g. SINR for the best M sub-channels but also a second CQI value for the other sub-channels.
Controller (or processor) 1004 may be programmable and capable of executing software or other instructions stored in memory or on other computer media to perform the various tasks and functions described herein.
In addition, a storage medium may be provided that includes stored instructions, when executed by a controller or processor that may result in the controller 604, or other controller or processor, performing one or more of the functions or tasks described herein.
Implementations of the various techniques described herein may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Implementations may implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program, such as the computer program(s) described above, can be written in any form of programming language, including compiled or interpreted languages, and can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
Method steps may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method steps also may be performed by, and an apparatus may be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art.
This application was originally filed as PCT Application No. PCT/IB2008/001078 filed Apr. 30, 2008, which claims priority to U.S. Provisional Application No. 60/916,540 filed May 7, 2007. This application claims the benefit of priority of U.S. Provisional Patent Application No. 60/916,540, filed May 7, 2007, entitled “Feedback And Link Adaptation Techniques For Wireless Networks,” the disclosure, which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/001078 | 4/30/2008 | WO | 00 | 9/2/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/135833 | 11/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020147017 | Li et al. | Oct 2002 | A1 |
20040037247 | Ngo | Feb 2004 | A1 |
20040151146 | Hammerschmidt | Aug 2004 | A1 |
20040203420 | Rick et al. | Oct 2004 | A1 |
20040233872 | Lobinger et al. | Nov 2004 | A1 |
20050054359 | Ishii et al. | Mar 2005 | A1 |
20060094436 | Kim et al. | May 2006 | A1 |
20070026810 | Love et al. | Feb 2007 | A1 |
20070298728 | Imamura et al. | Dec 2007 | A1 |
20080240030 | Kolding et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1781274 | May 2006 | CN |
0049760 | Aug 2000 | WO |
2004098072 | Nov 2004 | WO |
Entry |
---|
3GPP TSG RAN WG1, Tdoc R1071104, Huawei, ‘System level evaluation of CQI compression schemes for E-UTRA’, St. Louis USA, Feb. 2007. |
Dottling, m. et al; ‘Efficient channel quality feedback schemes for adaptive modulation and coding of packet data,’ Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 2, p. 1243-1247, Sep. 26-29, 2004. |
“International Search Report and the Written Opinion of the International Searching Authority”, received in corresponding PCT Application No. PCT/IB2008/001078, Dated Nov. 19, 2008, 6 pages. |
Office Action received for corresponding Chinese Patent Application No. 200880015117.X, dated Jan. 6, 2013, 6 pages. |
Office Action received for corresponding Chinese Patent Application No. 200880015117.X, dated Apr. 25, 2012, 25 pages. |
R1-060306, “Link Adaptation Scheme for Single-antenna Transmission in E-UTRA Downlink”, 3GPP TSG-RAN WG1 Meeting #44, Feb. 2006. |
R1-071417, “System level evaluation of CQI compression schemes for E-UTRA”, 3GPP TSG RAN WG1 Meeting #48bis, Mar. 2007. |
Soo-Yong Jeon, Dong-Ho Cho, “Channel Adaptive CQI Reporting Schemes for HSDPA Systems”, IEEE Communications Letters, vol. 10, No. 6, Jun. 2006. |
R1-063268, “CQI reporting for E-UTRA” 3GPP TSG RAN WG1 Meeting #47 Riga, Latvia, Nov. 6-10, 2006. |
R1-062842, “CQI design and its impact of DL performance”. R3GPP TSG RAN WG1#46bis, Seoul, Korea, Oct. 9-13, 2006. |
Chinese Office Action application No. 200880015117.X dated Jun. 4, 2013. |
T.E. Kolding et al., “Low-Bandwidth Channel Quality Indication for OFDMA Frequency Domain Packet Scheduling”, Wireless Communication Systems, IEEE, Sep. 1, 2006, 5 pages. |
Hiawei, “Downlink Adaptation/Scheduling Guided by an Efficient CQI-Feedback Scheme”, TSG RAN WG1 meeting 44bis, R1-060821, Mar. 2006, 5 pages. |
European Search Report application No. 08750869.3 dated Sep. 26, 2013. |
Office Action dated Aug. 5, 2015, issued in corresponding CN Application No. 200880015117.X (with English translation). |
Number | Date | Country | |
---|---|---|---|
20100329134 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
60916540 | May 2007 | US |