The disclosure is directed to an apparatus including feedback-assisted control of the heating process in rapid discharge heating and forming (RDHF) of metallic glasses.
U.S. Pat. No. 8,613,813 entitled “Forming of Metallic Glass by Rapid Capacitor Discharge” is directed, in certain aspects, to a rapid discharge heating and forming method (RDHF method), in which a metallic glass is rapidly heated and formed into an amorphous article by discharging an electrical energy through a metallic glass sample cross-section to rapidly heat the feedstock to a process temperature in the range between the glass transition temperature of the metallic glass and the equilibrium liquidus temperature of the glass-forming alloy (termed the “undercooled liquid region”) and shaping and then cooling the sample to form an amorphous article.
U.S. Pat. No. 8,613,813 is also directed, in certain aspects, to a rapid discharge heating and forming apparatus (RDHF apparatus), which includes a metallic glass feedstock, a source of electrical energy, at least two electrodes interconnecting the source of electrical energy to the metallic glass feedstock, where the electrodes are attached to the feedstock such that connections are formed between the electrodes and the feedstock, and a shaping tool disposed in forming relation to the feedstock. In the disclosed apparatus, the source of electrical energy is capable of producing electrical energy uniformly through a sample such that the generated electrical current heats the entirety of the sample to a process temperature between the glass transition temperature of the amorphous material and the equilibrium liquidus temperature of the alloy, while the shaping tool is capable of applying a deformational force to form the heated sample to a net shape article.
The description will be more fully understood with reference to the following figures and data graphs, which are presented as various embodiments of the disclosure and should not be construed as a complete recitation of the scope of the disclosure.
The disclosure is directed to an apparatus including feedback-assisted control of the heating process in rapid discharge heating and forming of metallic glass articles.
In some embodiments, the disclosure is directed to an RDHF apparatus including an electrical circuit that includes a source of electrical energy, a metallic glass feedstock sample, at least two electrodes interconnecting the source of electrical energy to the sample, and a feedback control loop. The RDHF apparatus also includes a shaping tool disposed in forming relation to the sample.
The feedback control loop according to embodiments of the disclosure includes a temperature-monitoring device, a computing device, and a current interrupting device. The temperature-monitoring device is disposed in temperature monitoring relationship with the sample, and is configured to generate a signal indicative of the temperature of the sample. The computing device is in communication with the temperature-monitoring device, and is configured to convert the signal from the temperature-monitoring device to a sample temperature T, compare T to a predefined temperature value To, and generate a current terminating signal when T substantially matches To. The current interrupting device is electrically connected with the source of electrical energy and in signal communication with the computing device. The current interrupting device is configured to terminate (e.g., switch off) the electrical current generated by the source of electrical energy when a current terminating signal is received from the computing device.
In another embodiment, the temperature monitoring device is selected from a group consisting of a thermocouple, a pyrometer, thermographic camera, a resistance temperature detector, or combinations thereof.
In another embodiment, the current interrupting device is selected from a group consisting of a gate turn-off thyristor, a power MOSFET (metal oxide semiconductor field emission transistor), an integrated gate-commutated thyristor, and an insulated gate bipolar transistor, or combinations thereof.
In another embodiment, the source of electrical energy of the RDHF apparatus includes a capacitor.
In another embodiment, the electrical circuit of the RDHF apparatus is a capacitive discharge circuit.
In another embodiment, the shaping tool of the RDHF apparatus includes an injection mold, and monitoring of temperature is achieved by the use of a pyrometer via a fiber-optic feedthrough across the feedstock barrel.
In another embodiment, the shaping tool of the RDHF apparatus includes an injection mold, and monitoring of temperature is achieved by the use of a thermocouple or a resistive temperature detector embedded in the feedstock barrel in proximity to the feedstock.
Additional embodiments and features are set forth in part in the description that follows, and will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed subject matter. A further understanding of the nature and advantages of the disclosure may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.
The disclosure is directed to an apparatus including feedback-assisted control of the heating process in rapid discharge heating and forming of metallic glass articles. In some embodiments, the disclosure is directed to an RDHF apparatus including an electrical circuit. The electrical circuit includes a source of electrical energy, at least two electrodes interconnecting the source of electrical energy to a metallic glass feedstock sample, and a feedback control loop. The RDHF apparatus also includes a shaping tool disposed in forming relation to the sample. The feedback control loop can comprise a temperature-monitoring device disposed in a temperature monitoring relationship with the sample configured to generate a signal indicative of the temperature of the sample; a computing device in communication with the temperature-monitoring device and configured to convert the signal from the temperature monitoring device to a sample temperature T, compare T to a predefined temperature value To, and generate a current terminating signal when T substantially matches To; and a current interrupting device electrically connected with the source of electrical energy and in signal communication with the computing device, and where the current interrupting device is configured to terminate (e.g., switch off) the electrical current generated by the source of electrical energy when a current terminating signal is received from the computing device.
The RDHF process involves rapidly discharging electrical current across a metallic glass feedstock via electrodes in contact with the feedstock in order to rapidly and uniformly heat the feedstock to a temperature conducive for viscous flow. A deformational force is applied to the heated and softened feedstock to deform the heated feedstock into a desirable shape. The steps of heating and deformation are performed over a time scale shorter than the time required for the heated feedstock to crystallize. Subsequently, the deformed feedstock is allowed to cool to below the glass transition temperature, typically by contact with a thermally conductive metal mold or die in order to vitrify it into an amorphous article.
RDHF techniques are methods of uniformly heating a metallic glass rapidly using Joule heating (e.g. heating times of less than 1 s, and in some embodiments less than 100 milliseconds), softening the metallic glass, and shaping it into a net shape article using a shaping tool (e.g. an extrusion die or a mold). In some embodiments, the methods can utilize the discharge of electrical energy (e.g. 50 J to 100 kJ) stored in an energy source to uniformly and rapidly heat a sample of a metallic glass to a “process temperature” between the glass transition temperature Tg of the metallic glass and the equilibrium melting point of the metallic glass forming alloy Tm on a time scale of several milliseconds or less, and is referred to hereinafter as rapid discharge heating and forming (RDHF).
An “RDHF apparatus,” as disclosed in U.S. Pat. No. 8,613,813, includes a metallic glass feedstock, a source of electrical energy, at least two electrodes interconnecting the source of electrical energy to the metallic glass feedstock where the electrodes are attached to the feedstock such that connections are formed between electrodes and feedstock, and a shaping tool disposed in forming relation to the feedstock. In some embodiments, the metallic glass feedstock can have a uniform cross-section. The feedstock having a uniform cross-section means that the cross-section along the length of the feedstock does not vary by more than 20%. In other embodiments, the feedstock having a uniform cross-section means that the cross-section along the length of the feedstock does not vary by more than 10%. In yet other embodiments, the feedstock having a uniform cross-section means that the cross-section along the length of the feedstock does not vary by more than 5%. In yet other embodiments, the feedstock having a uniform cross-section means that the cross-section along the length of the feedstock does not vary by more than 1%.
In some embodiments, the source of electrical energy includes a capacitor. In some embodiments, the source of electrical energy includes a capacitor connected to at least one current interrupting device selected from a gate turn-off thyristor, a power MOSFET (metal oxide semiconductor field emission transistor), an integrated gate-commutated thyristor, and an insulated gate bipolar transistor. In some embodiments, the shaping tool is selected from the group consisting of an injection mold, a dynamic forge, a stamp forge and a blow mold. In some embodiments, the shaping tool is operated by a pneumatic drive, magnetic drive, or electrical drive. An “RDHF apparatus” where the shaping tool is an injection mold, as disclosed in U.S. Patent Application Publication No. 2013/0025814, also includes a “feedstock barrel” to electrically insulate and mechanically confine the feedstock.
In the RDHF process, controlling the heating of the feedstock such that the feedstock reaches a selected process temperature in the undercooled liquid region is important, because the temperature of the feedstock in the undercooled liquid region determines the viscosity of the feedstock and the time window in which the feedstock is stable against crystallization. The viscosity and time window of stability against crystallization are, in turn, critical in determining the success of the RDHF process. In some embodiments of the RDHF process, the viscosity is in the range of 100 to 104 Pa-s, while in other embodiments, the viscosity is in the range of 101 to 103 Pa-s. If the viscosity is very high (i.e. higher than 104 Pa-s), a high pressure may be needed in order to shape the undercooled liquid and form an amorphous article. On the other hand, if the viscosity is very low (i.e. lower than 100 Pa-s), the shaping process may become unstable causing flow instabilities that may result in structural and cosmetic defects in the amorphous article. The time window of stability against crystallization must be large enough that the heating and forming process are completed prior to the onset of crystallization. In some embodiments of the RDHF process the time window of stability against crystallization is at least 10 ms, while in other embodiments the time window is at least 100 ms.
Both the viscosity and the time window of stability against crystallization may vary over many orders of magnitude against temperature in the undercooled liquid region. Specifically, the viscosity varies hyper-exponentially while the time window of stability against crystallization varies exponentially against temperature. As shown in
In conventional RDHF apparatuses where the source of electrical energy includes a capacitor, heating of the feedstock or feedstock sample to attain a certain process temperature may be controlled by adjusting the voltage of the capacitors. By setting a certain discharge voltage V in a capacitive discharge circuit of capacitance C, a certain electrical current I is discharged through the RDHF circuit, and an associated electrical energy is dissipated within the resistors in the RDHF circuit. The total dissipated electrical energy Et may be approximated by the relation Et≈0.5CV2. A part of the energy Et is dissipated within the feedstock, denoted as E. The fraction E/Et may be related to the ratio of the feedstock resistance, denoted as R, over the total resistance of the RDHF electrical circuit 300 (including the resistance of feedstock sample 302), denoted as Rt, i.e. E/Et≈R/Rt. Part of the energy E dissipated within the feedstock sample 302 is used to heat the feedstock sample 302 from an initial sample temperature Ti to a final sample temperature T, while another part is absorbed at the glass transition as recovery enthalpy. The energy dissipated within the feedstock E may be approximately related to the feedstock process temperature T according to E=Ω∫cpdT, where cp is the temperature dependent heat capacity of the feedstock in J/m3-K, Ω is the volume of the feedstock in m3, ΔH is the recovered enthalpy during the glass transition of the feedstock, and ∫cpdT is the temperature integral of cp from an initial feedstock temperature Ti to a final process temperature T. Substituting the approximate relations for E and E/Et and solving for V, one may arrive at the following approximate relation between V and T:
V=√[2(∫cpdT)ΩRt/RC] EQ. (1)
In theory, EQ. (1) above may be used to determine the voltage V in order to heat the feedstock from an initial temperature Ti to a final process temperature T provided that Ω, Rt, R, C, and cp as a function of temperature, i.e. cp(T), are known. In practice though, this equation is difficult to solve accurately, because cp(T) is a complicated function involving different temperature dependencies below and above the glass-transition temperature Tg (i.e. in the glass and liquid states), and a recovery enthalpy at Tg. The recovery enthalpy at Tg is actually a function of Tg, and Tg itself is a function of the heating rate through the glass transition. Approximations can be made for ∫cpdT, but these approximations are generally not completely accurate. As such, the accuracy and overall utility of EQ. (1) in predicting the voltage V to achieve a desired feedstock process temperature T is quite limited. Accordingly, EQ. (1) may only be useful as a guide, and precise heating to a desired feedstock temperature T may only be achieved iteratively by conducting several experiments to determine the corresponding V.
Hence an RDHF apparatus with a capability to accurately control the heating of the feedstock such that an appropriate feedstock process temperature T can be achieved is desirable. The disclosure is directed to an apparatus including feedback-assisted control of the heating process in rapid discharge heating and forming of metallic glass articles.
In some embodiments, the disclosure is directed to an RDHF apparatus including an electrical circuit that includes a feedback control loop.
In the context of the disclosure, a “temperature-monitoring device” means a device capable of real-time monitoring or measuring of the temperature of the feedstock. In various embodiments, a “temperature-monitoring device” can be a thermocouple, a pyrometer, thermographic camera, a resistance temperature detector, or combinations thereof. In some embodiments, the response time of the “temperature monitoring device” is less than 10 ms, while in other embodiments less than 1 ms, while in other embodiments less than 0.1 ms, while in yet other embodiments less than 0.01 ms.
In the context of the disclosure, a “computing device” means a device capable of being programmed to carry out a set of arithmetic or logical operations automatically.
In the context of the disclosure, a “current interrupting device” means a device electrically connected with the source of electrical energy capable of terminating or terminates (e.g., switches off) the electrical current passing through the RDHF circuit, including the feedstock, when activated by a signal. In some embodiments, the current interrupting device is a gate turn-off thyristor, a power MOSFET (metal oxide semiconductor field emission transistor), an integrated gate-commutated thyristor, an insulated gate bipolar transistor, or combinations thereof. In some embodiments, the response time of the “current interrupting device” is less than 1 ms, while in other embodiments less than 0.1 ms, while in other embodiments less than 0.01 ms, while in yet other embodiments less than 0.001 ms.
In some embodiments of the disclosure, “T substantially matches To” means the value of T is within 10% of To where T and To are in absolute “Kelvin” units. In one embodiment, “T substantially matches To” means the value of T is within 5% of To, where T and To are in absolute “Kelvin” units. In another embodiment, “T substantially matches To” means the value of T is within 3% of To where T and To are in absolute “Kelvin” units. In another embodiment “T substantially matches To” means the value of T is within 2% of To, where T and To are in absolute “Kelvin” units. In yet another embodiment “T substantially matches To” means the value of T is within 1% of To where T and To are in absolute “Kelvin” units.
In other embodiments of the disclosure, “T substantially matches To” means the absolute difference between T and To is not more than 20° C. In one embodiment, “T substantially matches To” means the absolute difference between T and To is not more than 10° C. In another embodiment, “T substantially matches To” means the absolute difference between T and To is not more than 5° C. In another embodiment “T substantially matches To” means the absolute difference between T and To is not more than 2° C. In yet another embodiment “T substantially matches To” means the absolute difference between T and To is not more than 1° C.
In other embodiments, the shaping tool of the RDHF apparatus may be an injection mold, and the temperature-monitoring device can monitor the sample temperature via a fiber-optic feedthrough across the feedstock barrel.
In other embodiment, the shaping tool of the RDHF apparatus may be a blow-molding die, a forging die, or an extrusion die. In other embodiments, any source of electrical energy suitable for supplying sufficient energy to rapidly and uniformly heat the sample 302 to a process temperature T. In one embodiment, the energy source 304 may include a capacitor having a discharge time constant of from 10 μs to 100 ms.
The electrodes 306 may be any electrically conducting electrodes suitable for providing uniform contact across the sample 302 and electrically connect the sample to the energy source 304. In one embodiment, the electrodes are formed of a an electrically conducting metal, such as, for example, Ni, Ag, Cu, or alloys made using at least 95 at % of Ni, Ag and Cu.
Turning to the shaping method itself, a schematic of an exemplary shaping tool representing an injection mold in accordance with the RDHF method of the disclosure is provided in
The RDHF method sets forth two criteria, which must be met to prevent the development of a temperature inhomogeneity thus ensuring uniform heating of the sample: uniformity of the current within the sample; and stability of the sample with respect to development of inhomogeneity in power dissipation during dynamic heating.
Although these criteria seem relatively straightforward, they place a number of physical and technical constraints on the electrical charge used during heating, the material used for the sample, the shape of the sample, and the interface between the electrode used to introduce the charge and the sample itself.
Uniformity of the current within the sample during capacity discharge requires that the electromagnetic skin depth of the dynamic electric field is large compared to relevant dimensional characteristics of the sample (radius, length, width or thickness). In the example of a cylindrical sample, the relevant characteristic dimensions would obviously be the radius and length of the sample, R and L. Hence, uniform heating within a cylindrical sample may be achieved when the electromagnetic skin depth of the dynamic electric field is greater than R and L.
A simple flow chart of the RDHF technique of the disclosure is provided in
The process begins with the discharge of electrical energy (in some embodiments in the range of 50 J to 100 KJ) stored in a source of electrical energy (in some embodiments the source of electrical energy may be a capacitor) into a metallic glass sample at operation 504. In accordance with the disclosure, the application of the electrical energy may be used to rapidly and uniformly heat the sample to a predefined “process temperature” To above the glass transition temperature of the alloy (in some embodiments To is within 50 degrees of the half-way point between the glass transition temperature of the metallic glass and the equilibrium melting point of the metallic glass forming alloy; in other embodiments, To is about 200-300 K above Tg), on a time scale of several microseconds (in some embodiments in the range of 1 ms to 100 ms), achieving heating rates sufficiently high to suppress crystallization of the alloy at that temperature (in some embodiment, the heating rates are at least 500 K/s). The predefined temperature To is determined to be a temperature where the viscous metallic glass alloy has a process viscosity conducive to thermoplastic shaping (in some embodiments in the range of 1 to 104 Pa-s).
Following the discharge of electrical energy, the RDHF process also includes monitoring the temperature of the sample Tat operation 506 by generating a signal indicative of T. The sample temperature monitoring may be performed by a temperature-monitoring device as described earlier. The RDHF process also includes comparing the temperature of the sample to a predefined temperature at operation 508.
The RDHF process further includes converting a signal from the temperature-monitoring device to a sample temperature T, comparing T to a predetermined temperature value To and generating a current terminating signal when T substantially matches the predefined process temperature To. The signal conversion and comparison processes can be performed by the computing device, as described herein.
The RDHF process further includes terminating (e.g., switching off) the electrical current generated by the source of electrical energy when a current terminating signal is received at operation 510. The current termination process can be performed by a current terminating device as described earlier.
Once the current is terminated after the sample reaches a uniform temperature that substantially matches the predefined process temperature To, the RDHF process may also include shaping of the viscous sample into an amorphous bulk article at operation 512.
Lastly, the RDHF process may also include cooling the article below the glass transition temperature of the metallic glass sample at operation 514. In some embodiments, the shaping and cooling steps are performed simultaneously.
In some embodiments, the present feedback control loop can be incorporated into the electrical circuit of any existing rapid capacitive discharging forming (RCDF) apparatus, such as disclosed in the following patents or patent applications: U.S. Pat. No. 8,613,813, entitled “Forming of metallic glass by rapid capacitor discharge;” U.S. Pat. No. 8,613,814, entitled “Forming of metallic glass by rapid capacitor discharge forging”; U.S. Pat. No. 8,613,815, entitled “Sheet forming of metallic glass by rapid capacitor discharge;” U.S. Pat. No. 8,613,816, entitled “Forming of ferromagnetic metallic glass by rapid capacitor discharge;” U.S. 9,297,058, entitled “Injection molding of metallic glass by rapid capacitor discharge;” each of which is incorporated by reference in its entirety.
The RDHF shaping techniques and alternative embodiments discussed above may be applied to the production of complex, net shape, high performance metal components such as casings for electronics, brackets, housings, fasteners, hinges, hardware, watch components, medical components, camera and optical parts, jewelry etc. The RDHF method can also be used to produce sheets, tubing, panels, etc., which could be shaped through various types of molds or dies used in concert with the RDHF apparatus.
The methods and apparatus herein can be valuable in the fabrication of electronic devices using bulk metallic glass articles. In various embodiments, the metallic glass may be used as housings or other parts of an electronic device, such as, for example, a part of the housing or casing of the device. Devices can include any consumer electronic device, such as cell phones, desktop computers, laptop computers, and/or portable music players. The device can be a part of a display, such as a digital display, a monitor, an electronic-book reader, a portable web-browser, and a computer monitor. The device can also be an entertainment device, including a portable DVD player, DVD player, Blue-Ray disk player, video game console, music player, such as a portable music player. The device can also be a part of a device that provides control, such as controlling the streaming of images, videos, sounds, or it can be a remote control for an electronic device. The alloys can be part of a computer or its accessories, such as the hard driver tower housing or casing, laptop housing, laptop keyboard, laptop track pad, desktop keyboard, mouse, and speaker. The metallic glass can also be applied to a device such as a watch or a clock.
Having described several embodiments, it will be recognized by those skilled in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the embodiments disclosed herein. Accordingly, the above description should not be taken as limiting the scope of the document.
Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and and system, which, as a matter of language, might be said to fall therebetween.
This patent application claims the benefit of U.S. patent application Ser. No. 62/278,781, entitled “FEEDBACK-ASSISTED RAPID DISCHARGE HEATING AND FORMING OF METALLIC GLASSES,” filed on Jan. 14, 2016 under 35 U.S.C.§ 119(e), which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2467782 | Schuman | Dec 1947 | A |
2816034 | Mittelmann | Dec 1957 | A |
3241956 | Inoue | Mar 1966 | A |
3250892 | Inoue | May 1966 | A |
3332747 | Bundy | Jul 1967 | A |
3537045 | Ichiro | Oct 1970 | A |
3863700 | Bedell et al. | Feb 1975 | A |
4115682 | Kavesh et al. | Sep 1978 | A |
4355221 | Lin | Oct 1982 | A |
4462092 | Kawabuchi et al. | Jul 1984 | A |
4523748 | Latter | Jun 1985 | A |
4571414 | Renlund et al. | Feb 1986 | A |
4715906 | Taub et al. | Dec 1987 | A |
4809411 | Lin et al. | Mar 1989 | A |
4950337 | Li et al. | Aug 1990 | A |
5005456 | Ballard et al. | Apr 1991 | A |
5069428 | Li et al. | Dec 1991 | A |
5075051 | Ito et al. | Dec 1991 | A |
5101186 | Durum | Mar 1992 | A |
5196264 | Tsuchiya et al. | Mar 1993 | A |
5220349 | Saita | Jun 1993 | A |
5278377 | Tsai | Jan 1994 | A |
5288344 | Peker et al. | Feb 1994 | A |
5324368 | Masumoto et al. | Jun 1994 | A |
5368659 | Peker et al. | Nov 1994 | A |
5427660 | Kamimura et al. | Jun 1995 | A |
5550857 | Richards | Aug 1996 | A |
5554838 | Berdich | Sep 1996 | A |
5618359 | Lin et al. | Apr 1997 | A |
5735975 | Lin et al. | Apr 1998 | A |
5896642 | Peker et al. | Apr 1999 | A |
6027586 | Masumoto et al. | Feb 2000 | A |
6235381 | Sanders et al. | May 2001 | B1 |
6258183 | Onuki et al. | Jul 2001 | B1 |
6279346 | Ribes et al. | Aug 2001 | B1 |
6293155 | Babiel | Sep 2001 | B1 |
6355361 | Ueno et al. | Mar 2002 | B1 |
6432350 | Seres et al. | Aug 2002 | B1 |
6631752 | McDonald | Oct 2003 | B2 |
6771490 | Peker et al. | Aug 2004 | B2 |
6875293 | Peker | Apr 2005 | B2 |
7120185 | Richards | Oct 2006 | B1 |
7347967 | Kim et al. | Mar 2008 | B2 |
7506566 | Decristofaro et al. | Mar 2009 | B2 |
7883592 | Hofmann et al. | Feb 2011 | B2 |
8099982 | Takagi et al. | Jan 2012 | B2 |
8276426 | Musat et al. | Oct 2012 | B2 |
8499598 | Johnson et al. | Aug 2013 | B2 |
8613813 | Johnson et al. | Dec 2013 | B2 |
8613814 | Kaltenboeck et al. | Dec 2013 | B2 |
8613815 | Johnson et al. | Dec 2013 | B2 |
8613816 | Kaltenboeck et al. | Dec 2013 | B2 |
8776566 | Johnson et al. | Jul 2014 | B2 |
8961716 | Demetriou et al. | Feb 2015 | B2 |
9044800 | Johnson et al. | Jun 2015 | B2 |
9067258 | Schramm et al. | Jun 2015 | B2 |
9297058 | Demetriou et al. | Mar 2016 | B2 |
9309580 | Schramm et al. | Apr 2016 | B2 |
9393612 | Schramm et al. | Jul 2016 | B2 |
9463498 | Johnson et al. | Oct 2016 | B2 |
9539628 | Poole et al. | Jan 2017 | B2 |
9845523 | Schramm et al. | Dec 2017 | B2 |
10213822 | Lee et al. | Feb 2019 | B2 |
10248004 | Dussauze et al. | Apr 2019 | B2 |
10273568 | Lee et al. | Apr 2019 | B2 |
20010033304 | Ishinaga et al. | Oct 2001 | A1 |
20020100573 | Inoue et al. | Aug 2002 | A1 |
20020122985 | Sato et al. | Sep 2002 | A1 |
20030056562 | Kamano | Mar 2003 | A1 |
20030183310 | McRae | Oct 2003 | A1 |
20030222122 | Johnson et al. | Dec 2003 | A1 |
20040035502 | Kang et al. | Feb 2004 | A1 |
20040067369 | Ott et al. | Apr 2004 | A1 |
20050034787 | Song et al. | Feb 2005 | A1 |
20050103271 | Watanabe et al. | May 2005 | A1 |
20050202656 | Ito et al. | Sep 2005 | A1 |
20050217333 | Daehn | Oct 2005 | A1 |
20050236071 | Koshiba et al. | Oct 2005 | A1 |
20050263216 | Chin et al. | Dec 2005 | A1 |
20060102315 | Lee et al. | May 2006 | A1 |
20060293162 | Ellison | Dec 2006 | A1 |
20070003782 | Collier | Jan 2007 | A1 |
20070023401 | Tsukamoto et al. | Feb 2007 | A1 |
20070034304 | Inoue et al. | Feb 2007 | A1 |
20080081213 | Ito et al. | Apr 2008 | A1 |
20080110864 | Oussalem | May 2008 | A1 |
20080135138 | Duan et al. | Jun 2008 | A1 |
20080302775 | Machrowicz | Dec 2008 | A1 |
20090236017 | Johnson et al. | Sep 2009 | A1 |
20090246070 | Tokuda et al. | Oct 2009 | A1 |
20100009212 | Utsunomiya et al. | Jan 2010 | A1 |
20100047376 | Imbeau et al. | Feb 2010 | A1 |
20100121471 | Higo et al. | May 2010 | A1 |
20100243618 | Shibagaki | Sep 2010 | A1 |
20100320195 | Fujita et al. | Dec 2010 | A1 |
20110048587 | Vecchio et al. | Mar 2011 | A1 |
20120006085 | Johnson et al. | Jan 2012 | A1 |
20120103478 | Johnson et al. | May 2012 | A1 |
20120132625 | Kaltenboeck et al. | May 2012 | A1 |
20120255338 | Johnson et al. | Oct 2012 | A1 |
20120268079 | Nakamura | Oct 2012 | A1 |
20130001222 | Kaltenboeck et al. | Jan 2013 | A1 |
20130025814 | Demetriou et al. | Jan 2013 | A1 |
20130048152 | Na et al. | Feb 2013 | A1 |
20130112321 | Poole et al. | May 2013 | A1 |
20130319062 | Johnson et al. | Dec 2013 | A1 |
20140033787 | Johnson et al. | Feb 2014 | A1 |
20140045680 | Nakayama et al. | Feb 2014 | A1 |
20140047888 | Johnson et al. | Feb 2014 | A1 |
20140083150 | Kaltenboeck et al. | Mar 2014 | A1 |
20140102163 | Kaltenboeck et al. | Apr 2014 | A1 |
20140130563 | Lee et al. | May 2014 | A1 |
20140283956 | Schramm et al. | Sep 2014 | A1 |
20150090375 | Lee et al. | Apr 2015 | A1 |
20150096967 | Lee et al. | Apr 2015 | A1 |
20150231675 | Johnson et al. | Aug 2015 | A1 |
20150299825 | Prest et al. | Oct 2015 | A1 |
20150367410 | Schramm et al. | Dec 2015 | A1 |
20160008870 | Schramm et al. | Jan 2016 | A1 |
20160298205 | Johnson et al. | Oct 2016 | A1 |
20180065173 | Crewdson et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
1552940 | Dec 2004 | CN |
1689733 | Nov 2005 | CN |
101053281 | Oct 2007 | CN |
201838352 | May 2011 | CN |
103320783 | Sep 2013 | CN |
0921880 | Jun 1999 | EP |
2556178 | Feb 2013 | EP |
2806019 | Sep 2001 | FR |
215522 | May 1924 | GB |
2148751 | Jun 1985 | GB |
48-008694 | Mar 1973 | JP |
63-220950 | Sep 1988 | JP |
H06-57309 | Mar 1994 | JP |
H06-277820 | Oct 1994 | JP |
H 08-024969 | Jan 1996 | JP |
08-300126 | Nov 1996 | JP |
10-263739 | Oct 1998 | JP |
10-296424 | Nov 1998 | JP |
11-001729 | Jan 1999 | JP |
11-104810 | Apr 1999 | JP |
11-123520 | Nov 1999 | JP |
11-354319 | Dec 1999 | JP |
2000-119826 | Apr 2000 | JP |
2000-169947 | Jun 2000 | JP |
2001-321847 | Nov 2001 | JP |
2001-347355 | Dec 2001 | JP |
2003-509221 | Mar 2003 | JP |
2005-209592 | Aug 2005 | JP |
2008-000783 | Jan 2008 | JP |
2011-517623 | Jun 2011 | JP |
2013-530045 | Jul 2013 | JP |
10-0271356 | Nov 2000 | KR |
WO 0121343 | Mar 2001 | WO |
WO 2009048865 | Apr 2009 | WO |
WO 11127414 | Oct 2011 | WO |
WO 12051443 | Apr 2012 | WO |
WO 12092208 | Jul 2012 | WO |
WO 12103552 | Aug 2012 | WO |
WO 12112656 | Aug 2012 | WO |
WO 2014078697 | May 2014 | WO |
Entry |
---|
Johnson et al., “A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence,” Physical Review Letter, (2005), PRL 95, pp. 195501-195501-4. |
Demetriou, Document cited and published during Applicant Interview Summary conducted on Jan. 29, 2013, entitled, “Rapid Discharge Heating & Forming of Metallic Glasses: Concepts, Principles, and Capabilities,” Marios Demetriou, 20 pages. |
De Oliveira et al., “Electromechanical engraving and writing on bulk metallic glasses”, Applied Physics Letters, Aug. 26, 2002, vol. 81, No. 9, pp. 1606-1608. |
Duan et al., “Bulk Metallic Glass with Benchmark Thermoplastic Processability”, Adv. Mater., 2007, vol. 19, pp. 4272-4275. |
Ehrt et al., “Electrical conductivity and viscosity of borosilicate glasses and melts,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, Jun. 2009, 50(3), pp. 165-171. |
Love, “Temperature dependence of electrical conductivity and the probability density function,” J. Phys. C: Solid State Phys., 16, 1983, pp. 5985-5993. |
Mattern et al., “Structural behavior and glass transition of bulk metallic glasses,” Journal of Non-Crystalline Solids, 345&346, 2004, pp. 758-761. |
Wiest et al., “Zi—Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability”, Acta Materialia, 2008, vol. 56, pp. 2625-2630. |
Yavari et al., “Electromechanical shaping, assembly and engraving of bulk metallic glasses”, Materials Science and Engineering A, 2004, vol. 375-377, pp. 227-234. |
Yavari et al., “Shaping of Bulk Metallic Glasses by Simultaneous Application of Electrical Current and Low Stress”, Mat. Res. Soc. Symp. Proc., 2001, vol. 644, pp. L12.20.1-L12.20.6. |
Saotome et al., “Characteristic behavior of Pt-based metallic glass under rapid heating and its application to microforming,” Materials Science and Engineering A, 2004, vol. 375-377, pp. 389-393. |
Kulik et al., “Effect of flash- and furnace annealing on the magnetic and mechanical properties of metallic glasses,” Materials Science and Engineering, A133 (1991), pp. 232-235. |
Masuhr et al., Time Scales for Viscous Flow, Atomic Transport, and Crystallization in the Liquid and Supercooled Liquid States of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,: Phys. Rev. Lett., vol. 82, (1999), pp. 2290-2293. |
Schroers et al., “Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid,” Phys. Rev. B, vol. 60, No. 17 (1999), pp. 11855-11858. |
Number | Date | Country | |
---|---|---|---|
20170203358 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62278781 | Jan 2016 | US |