1. Field of the Invention
The invention pertains to the field of keratoplasty and, more particularly, to thermokeratoplasty, especially electrically-induced thermokeratoplasty such as radio frequency or microwave thermokeratoplasty.
2. Description of the Related Art
The object of keratoplasty is to correct vision by reshaping of the cornea. For nearsighted persons, this reshaping involves flattening that ideally decreases the refractive power of the eye and causes the image to focus upon the retina, as opposed to focusing images in front of the retina. Invasive surgical procedures, such as laser-assisted in-situ keratonomileusis (LASIK) may be used, but there are associated complications, such as the dry eye syndrome associated with severing of corneal nerves, and the need for a healing period after surgery.
Thermokeratoplasty is a noninvasive procedure that may be used to correct the vision of near sighted persons by flattening the cornea. Generally, the cornea is heated to a point where collagen fibers in the cornea shrink, which results in stresses that tend to reshape the cornea. Thermokeratoplasty may be performed by the use or absorption of electrical energy, which is typically cycled in the microwave or radio frequency band for this purpose. Microwave thermokeratoplasty uses a near field microwave applicator to apply energy to the cornea, raising the corneal temperature. At about 60° C., the collagen fibers in the cornea shrink, and the onset of shrinkage is sudden. Resultant stresses from this shrinkage reshape the corneal surface. Application of energy in this manner may cause reshaping that flattens the central cornea when the energy is applied in circular or ring-shaped patterns around the pupil.
Devices and methodologies for microwave thermokeratoplasty are shown and described in U.S. Pat. No. 4,881,543 to Trembly et al., which is hereby incorporated by reference to the same extent as though fully replicated herein. The microwave applicator comprises an open-ended coaxial antenna driven at 915 MHz or 2540 MHz with an internal coolant system that drives flow of saline coolant transverse to the antenna axis. The '543 patent advances the art by providing applied electrical field theory for open-ended coaxial applicators and the related specific absorption rate, e.g., by using the Swicord and Davis technique in addition to heat transfer theory involving the Nusselt number, the Reynolds Number, and the dimensions of the gap between the antenna and the cornea.
Generally, these devices and methodologies are referred to as “microwave thermokeratoplasty” even though emissions at 915 MHz are slightly below the 1 GHz cutoff that many persons use to identify the microwave band. The term “radio frequency thermokeratonomy” may be used to describe energetic keratoplasty by excitation at lower frequencies. Microwave and radio frequency thermokeratoplasty may be used to achieve similar results, but the applied energy affects the tissue in different ways according to the various theories of operation where the radio frequency heating of tissue has a larger resistive heating component.
As shown in
A number of problems have arisen in use of prior microwave applicator devices. Chiefly, the amount of applied energy is unpredictably related in terms of a precise biological effect, such as by administering energy to produce a predetermined amount of vision correction. The thermal flux at depth in the cornea can be calculated according to theory with a high degree of precision; however, the thermal flux is not calibrated to a measurable biological effect in terms of an applied treatment modality. For example, it is undetermined what level of thermal flux is required to flatten a particular cornea to a desired level of diopter adjustment. This uncertainty is exacerbated by the characteristically sudden onset of thermally-induced shrinkage in the cornea. There is no clear way to determine in the course of treatment if, for example, the outermost layer of corneal cells known as the epithelium is undergoing thermal damage as a result of treatment, and this uncertainty can lead to a painful period of healing while the epithelium regenerates. Critical, small dimensions in the applicators may vary with machining errors, assembly or use, most notably in the dimensions of flow gap 114 for the coolant. Even small machining errors in these dimensions result in the applicator producing asymmetric treatment rings and associated astigmatic effects on the “corrected” vision resulting from use of these devices.
There is a need to improve the predictability of effectiveness of microwave thermokeratoplasty applicators and to reduce the unintended harm that such devices may produce.
The present invention overcomes the problems outlined above and advances the art by providing a microwave application device and system that is less likely to produce unintended harm, such as astigmatic effects and burning of epithelial or endothelial corneal tissues. The device and system is advantageously configurable for use in treatment modalities that are predictable or verifiable in their effects upon vision correction.
The thermokeratoplasty system may include an energy transmitter used for cornea-based vision correction modalities. According to the various instrumentalities and embodiments of this system, an improvement to prior systems may comprise a sensor that is configured to measure a physical variable in an eye as the eye is affected by a thermokeratoplasty operation and to provide a sensor signal representative of the physical variable. A feedback circuit may be adapted to receive the sensor signal and analyze the sensor signal to determine when a treatment modality has achieved an intended effect.
By way of example, the sensor may be configured to measure the physical variable as corneal temperature, either as a surface temperature or temperature at depth in the cornea. The sensor may also or alternatively be configured to measure the physical variable as heat flux in the cornea, mechanical stress of the cornea, mechanical strain of the cornea or an electrical property of the cornea, such as the phenomenon of conductivity or permittivity. The sensor may be configured to measure the physical variable as a mechanical property of the cornea, for example, mass density, modulus of elasticity, or a change in optical opacity associated with shrinkage of collagen in the cornea.
The sensor signal may derive from many forms of measurement. For example the sensor signal may embody information concerning a quantity of electrical current passing through the cornea, an electrical voltage applied to the cornea, and/or electromagnetic energy applied to the cornea, such as reflected energy, transmitted energy, and energy received from tissue. The electromagnetic energy may be measured as an optical birefringence phenomenon and/or a microwave radiometry phenomenon. Ultrasonic energy may also be applied to the cornea for use in measurements, for example, as measurements of reflected energy, transmitted energy, and/or energy received from tissue.
The sensor signal may embody information obtained from a mechanical transducer, such as a piezo-resistive or piezo-electric device that is oriented to quantify parameters including corneal elongation, corneal compression, corneal displacement, corneal velocity, corneal acceleration, local slope, local curvature, global slope, global curvature, corneal stress, or corneal pressure. These measurements may pertain to scalar, vector, or tensor variables measured at the surface of the cornea or at depth in the cornea. Alternatively, a thermal transducer may be used to determine, for example, temperature and heat flux at the surface of the cornea or at depth in the cornea. Useful types of thermal transducers may include, without limitation, a thermocouple, a thermistor, and a submillimeter-scale device.
The feedback circuitry may operate by using signals and signal processing circuits, such as by processing a sensor signal according to an empirical correlation that relates the sensor signal to a predetermined vision correction effect. The feedback circuitry may also operate by processing the sensor signal to determine when the physical variable has been adjusted to achieve a predetermined quantity of the physical variable, such as a predetermined level of birefringence.
According to various instrumentalities and embodiments herein, at least one additional sensor may be used to provide an additional sensor signal. The feedback circuitry may be configured to process the sensor signals in combination to determine when the treatment modality has achieved the intended effect as a function of the respective signals.
In one embodiment, the microwave or radio frequency applicator is configured for direct contact with the cornea without a coolant flow gap between the microwave or radio frequency applicator and the cornea. The microwave applicator may include a plurality of discrete sectors that are optionally actuated by control circuitry in a selective and independent manner for the emission of microwave or radio frequency energy according to the treatment modality. Program instructions for the control circuitry may, for example, provide a capability to change the actuation of one or more of the plurality of discrete sectors on the basis of the sensor signal. To compliment this functionality, the sensor may include an array of sensors each allocated to a corresponding one of the plurality of discrete sectors and linked to the feedback circuitry.
Other instrumentalities involve special features of a radio frequency or microwave thermokeratoplasty applicator. A plurality of concentric tubes each may have a top end and a bottom surface configured to apply electrical energy for keratoplasty operations. A dielectric material may separate the plurality of concentric tubes from one another. A cooling system may be configured to cool the applicator during keratoplasty operations without flowing coolant beneath the bottom surface 116. This type of cooling system eliminates systematic errors that are introduced by virtue of having a flow gap of varying dimensions, e.g., flow gap 114 (shown in
In use, the thermokeratoplasty system facilitates a thermokeratoplasty modality that employs an energy transmitter used for cornea-based vision correction modalities. The method of operation may, for example, include applying microwave or radiofrequency energy or other heat transmitting energy, sensing a physical variable in an eye as the eye is affected by a thermokeratoplasty operation to provide a sensor signal representative of the physical variable, receiving the sensor signal, and analyzing the sensor signal to determine when a treatment modality has achieved an intended effect.
In
A programmable controller 204 accepts program instructions that optionally access user input data or program selections from the interface device 202 and causes system 200 to implement a selected vision correction modality. Setup verification in step 206 may be a user-interactive process that verifies the modality and assures that system 200 is correctly positioned or configured for thermokeratoplasty operations. Once setup is verified, a generator, such as microwave generator 208, produces energy that is useful for thermokeratoplasty purposes and supplies this energy, e.g., in the form of microwave energy, to an applicator 210. A near-microwave emission of 915 MHz (approved by the FCC for medical use) is preferred to reduce system cost; however, the microwave generator 208 may be operated at other any frequencies, such as 2450 MHz, that are conventionally used and understood to have therapeutic benefits according to a desired modality. In turn, applicator 210 produces corresponding near-field effects 212 in cornea 214 of eye 216.
The cornea 212 and eye 216 inherently have one or more variable physical properties (i.e., physical variables) that may be affected by the microwave or radiofrequency near-field effects 212 and the consequent temperature elevation. These physical variables may be measured by a sensor 218 to provide a sensor signal 220 that embodies a direct or indirect measurement of the physical variables. Processing circuitry 222 may receive the signal 220 and analyze the same to determine if and when the modality has achieved a desired effect that is relevant to the intended or planned outcome of the modality. Processing circuitry 222 may generate a stop signal 224 that terminates treatment when the physical variable has been modified to within a predetermined range or value. Sensor 218 for use with the applicator 210 may be one or more of the sensors described above, such as:
a thin film or microelectronic thermal transducer; or
a mechanical transducer, such as a piezoresistive or piezoelectric device, or a force-sensitive quartz resonator that quantifies corneal elongation or internal pressure.
In one embodiment, a safety mechanism is built into program instructions for controller 204 as a clock-based maximum time override 226 that generates a stop signal 228 at the termination of a safe time interval for the selected modality. This feature may assure that operation of the microwave generator 206 does not exceed a specified amount of time at any given level of output and is intended to avoid thermal damage to the corneal epithelium, and especially the endothelium.
Most types of microwave thermokeratoplasty applicators 210 may be used generally in the aforementioned system 200, provided the applicator is fitted with the sensor 218.
In one embodiment, an outer insulated microwave-conductive tube 306 circumscribes an inner insulated tube 308 that is also microwave conductive. Tubes 306 and 308 are concentric. A dielectric material 310 may separate tube 306 from tube 308. The spacing between tubes 306 and 308 controls penetration depth of microwave energy according to established microwave field theory. In one embodiment, chambers 312, 314, and 316, are configured for bidirectional coolant flow providing a predetermined amount of cooling from coolant (e.g., coolant 112,
A bottom dielectric layer 318 may protect cornea 302 from deleterious temperature effects of electrical conduction current that, otherwise, would flow into cornea 302 from the tubes 306 and 308. The bottom dielectric layer 318 may separate bottom surface 304 from cornea 302. The dielectric layer 318 may be thin enough to minimize interference with microwave emissions and thick enough to prevent superficial deposition of electrical energy by flow of conduction current; superficial flow of a conduction current could interfere with the goal of achieving a mid-depth maximum temperature in cornea 302. By way of example, the dielectric layer 318 may be a biocompatible material, such as Teflon, deposited to a thickness of about 0.002 inches. Alternatively, the dielectric layer 318 may be a thermal conductor, such as hard-coat anodizing.
The sensor 218 (shown in
In one embodiment, vacuum passages 336 and 338 pass through the dielectric material 310, and connect to a vacuum source 340 for purposes of enhancing retention of applicator 300 in a fixed position relative to cornea 302 during treatment.
In alternative embodiments, a liquid coolant is not required. Chambers 312, 314, and 364 may be filled with a heat sink in thermal communication with an optional thermoelectric cooler device 342 that operates, for example, using a Peltier effect under the control of controller 204.
Section 504 may telescope axially over section 506, as shown by a double-headed arrow 530, to assure that material 526 is positioned in full contact with cornea 528. This sliding action may be facilitated by gravity or positive pressure exerted by coolant flowing in chamber 516. A vacuum pump 532 may also be used to exert a mild vacuum within chamber 516 to force this contact. Alternatively, a screw mechanism (not shown) may be positioned in air gap 520 to provide fixed and repeatable adjustments to the height of section 504.
Applicator 500 can include a sensor, e.g., sensor 218, which can, for example, include outside sensors 534 deployed outside of applicator 500 and/or embedded sensor devices not shown in
Since certain changes may be made in the above methods and systems without departing from the scope hereof, it is intended that all matter contained in the above description or shown in the accompanying drawing be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are to cover generic and specific features described herein, and all statements of the scope of the invention which, as a matter of language, might be said to fall there between.
Number | Name | Date | Kind |
---|---|---|---|
603815 | Duke | May 1898 | A |
1108686 | Bonis | Aug 1914 | A |
1364148 | Springer | Jan 1921 | A |
2126070 | Wappler | Aug 1938 | A |
2347915 | Landaüer | May 1944 | A |
2525381 | Tower | Oct 1950 | A |
3237623 | Gordon | Mar 1966 | A |
3307533 | Meredith et al. | Mar 1967 | A |
3948269 | Zimmer | Apr 1976 | A |
3978864 | Smith et al. | Sep 1976 | A |
3991770 | LeVeen | Nov 1976 | A |
4003383 | Bruck | Jan 1977 | A |
4014333 | McIntyre | Mar 1977 | A |
4030480 | Meyer | Jun 1977 | A |
4140130 | Storm, III | Feb 1979 | A |
4326529 | Doss et al. | Apr 1982 | A |
4381007 | Doss | Apr 1983 | A |
4528991 | Dittmar et al. | Jul 1985 | A |
4881543 | Trembly et al. | Nov 1989 | A |
5263951 | Spears et al. | Nov 1993 | A |
5368590 | Itoh | Nov 1994 | A |
5437658 | Muller et al. | Aug 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5749871 | Hood et al. | May 1998 | A |
5779696 | Berry et al. | Jul 1998 | A |
5948011 | Knowlton | Sep 1999 | A |
6024095 | Stanley, III | Feb 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6149643 | Herekar et al. | Nov 2000 | A |
6159205 | Herekar et al. | Dec 2000 | A |
6224593 | Ryan et al. | May 2001 | B1 |
6364875 | Stanley, III | Apr 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6491688 | Lin et al. | Dec 2002 | B1 |
6520956 | Huang | Feb 2003 | B1 |
6623454 | Eggers et al. | Sep 2003 | B1 |
6673069 | Hood | Jan 2004 | B1 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6890332 | Truckai et al. | May 2005 | B2 |
6939344 | Kreindel | Sep 2005 | B2 |
7044945 | Sand | May 2006 | B2 |
7192429 | Trembly | Mar 2007 | B2 |
20020002369 | Hood | Jan 2002 | A1 |
20020042612 | Hood et al. | Apr 2002 | A1 |
20020099363 | Woodward et al. | Jul 2002 | A1 |
20020143322 | Haghighi | Oct 2002 | A1 |
20020173777 | Sand | Nov 2002 | A1 |
20030028228 | Sand | Feb 2003 | A1 |
20030163178 | Davison et al. | Aug 2003 | A1 |
20030174281 | Herekar et al. | Sep 2003 | A1 |
20030181899 | Hood et al. | Sep 2003 | A1 |
20030181903 | Hood et al. | Sep 2003 | A1 |
20070161976 | Trembly | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
0 422 112 | Jul 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20040111086 A1 | Jun 2004 | US |