Health, “Brain Function in Epilepsy: Medbrain, Medullary, and Cerebellar Interaction with the Rostral Forebrain,” Journal of Neurology, Neurosurgery, and Psychiatry, 39:1037-1051 (1976). |
Hinman et al., “Depth Evoked Potential and Single Unit Correlates of Vertex Midlatency Auditory Evoked Responses,” Brain Research, 264:57-67 (1983). |
Mantyh, “Connections of Midbrain Periaqueductal Gray in the Monkey. I. Ascending Efferent Projections,” Journal of Neurophysiology, 49:567-581 (1983). |
Berson, “Cat Lateral Suprasylvian Cortex: Y-Cell Inputs and Corticotectal Projection,” Journal of Neurophysiology, 53:544-556 (1985). |
Infante et al., “Electrophysiological Projections of Pulvinar-Lateralis Posterior Complex (P-LP) Upon Superior Colliculus Units in the Cat,” Archives Italiennes de Biologie, 124:73-81 (1986). |
Velasco et al., “Neglect Induced by Thalamotomy in Humans: A Quantitative Appraisal of the Sensory and Motor Deficits,” Neurosurgery Neurosurgery, 19:744-751 (1986). |
Lo et al., “Control of Recurrent Inhibition of the Lateral Geniculate Nucleus by Afferents from the Superior Colliculus of the Rabbit: A Possible Mechanism of Saccadic Suppression,” Experimental Brain Research, 68:421-427 (1987). |
Segraves et al., “Functional Properties of Corticotectal Neurons in the Monkey's Frontal Eye Field,” Journal of Neurophysiology, 58:1387-1419 (1987). |
Stanton et al, “Frontal Eye Field Efferents in the Macaque Monkey: II. Topography of Terminal Fields in Midbrain and Pons,” The Journal of Comparative Neurology, 271:493-506 (1988). |
Lo, “A Study of Neuronal Circuitry Mediating the Saccadic Suppression in the Rabbit,” Experimental Brain Research, 71:618-622 (1988). |
Noda et al., “Saccadic Eye Movements Evoked by Microstimulation of the Fastigial Nucleus of Macaque Monkeys,” Journal of Neurophysiology, 60:1036-1052 (1988). |
Dossi et al., “Short-Lasting Nicotinic and Long-Lasting Muscarinic Depolarizing Responses of Thalamocortical Neurons to Stimulation of Mesopontine Cholinergic Nuclei,” Journal of Neurophysiology, 65:393-406 (1991). |
Katayama et al., “Characterization and Modification of Brain Activity with Deep Brain Stimulation in Patients in a Persistent Vegetative State: Pain-Related Late Positive Component of Cerebral Evoked Potential,” Pace, 14:116-121 (1991). |
Grunwerg et al., “Sensory Responses of Intralaminar Thalamic Neurons Activated By The Superior Colliculus,” Experimental Brain Research, 88:541-550 (1992). |
Gainotti, “The Role of Spontaneous Eye Movements in Orienting Attention and in Unilateral Neglect,” pp. 107-113, in Robertson et al., eds., Unilateral Neglect: Clinical and Experimental Studies, Hove, United Kingdom:Lawrence Erlbaum Associates, Publishers (1993). |
Velasco, “Effect of Chronic Electrical Stimulation of the Centromedian Thalamic Nuclei on Various Intractable Seizure Patterns: II. Psychological Performance and Background EEG Activity,” Epilepsia, 34:1065-1073 (1993). |
Posner, “Attention: The Mechanisms of Consciousness,” Proc. Natl. Acad. Sci. USA, 91:7398-7403 (1994). |
Bottini et al., “Modulation of Conscious Experience by Peripheral Sensory Stimuli,” Nature, 376:778-781 (1995). |
Bridgeman, “A Review of the Role of Efference Copy in Sensory and Oculomotor Control Systems,” Annals of Biomedical Engineering 23:409-422 (1995). |
Sayette et al., “Infarction in the Territory of the Right Choroidal Artery and Minor Hemisphere Syndrome: Case Report and Brain Glucose Utilisation Study,” Rev. Neurol. (Paris) 151:24-35 (1995). |
Shapalova et al., “Role of the Activation of the Intralaminar Nuclei of the Thalamus in Regulating the Participation of the Neostraital Cholinergic System in the Differentiation of Acoustic Signals in Dogs,” Neuroscience and Behavorial Physiology, 25:504-507 (1995). |
Zhu et al., “Time Course of Inhibition Induced by a Putative Saccadic Suppression Circuit in the Dorsal Lateral Geniculate Nucleus of the Rabbit,” Brain Research Bulletin, 41:281-291 (1996). |
Tasker et al., “The Role of the Thalamus in Functional Neurosurgery,” Functional Neurosurgery, 6:73-104 (1995). |
Barth et al., “Thalamic Modulation of High-Frequency Oscillating Potentials in Auditory Cortex,” Nature, 383:78-81 (1996). |
Benabid et al., “Chronic Electrical Stimulation of the Ventralis Intermedius Nucleus of the Thalamus as a Treatment of Movement Disorders,” J. Neurosurg., 84:203-214 (1996). |
Kinomura et al., “Activation by Attention of the Human Reticular Formation and Thalamic Intralaminar Nuclei,” Science, 271:512-515 (1996). |
Rinaldi et al., Cognitive Effects of Left Medial Thalamic Stimulation in Two Patients with Deep Brain Electrodes for Relief of Chronic Pain, Society of Neuroscience, 22:356.5 (1996) (abstract only). |
Steriade, “Awakening the Brain,” Nature, 383: 24-25 (1996). |
Mennemeier et al., “Tapping, Talking and the Thalamus: Possible Influence of the Intralaminar Nuclei on Basal Ganglia Function,” Neuropsychologia 35(2):183-193 (1997). |
Berg, “Screening Tests in Clinical Neuropsychology,” Chapter 10, pp. 331-363, in Horton et al., eds., The Neuropsychology Handbook, vol. 1, Foundations and Assessment, 2nd ed., New York:Springer Publishing Company (1997). |
Velasco et al., “Electrocortical and Behavioral Responses Produced by Acute Electrical Stimulation of th Human Centromedian Thalamic Nucleus,” Electroencephalography and Clinical Neurophysiology, 102:461-471 (1996). |
Purpura et al., “The Thalamic Intralaminar Nuclei: A Role in Visual Awareness,” The Neuroscientist, 3:8-15 (1997). |
Vallar et al., “Modulation of the Neglect Syndrome by Sensory Stimulation,” pp. 555-578, in Thier et al., eds., Parietal Lobe Contributions to Orientation in 3D Space, Heidelberg, Germany:Springer-Verlag (1997). |
Plum et al., “Coordinated Expression in Chronically Unconscious Persons,” Phil. Trans. R. Soc. Lond. B 353:1929-1933 (1998). |
Schiff et al., “Does Vestibular Stimulation Activate Thalamocortical Mechanisms that Reintegrate Impaired Cortical Regions?,” Proc. R. Soc. Lond. B 266:421-423 (1999). |
Shiroyama et al., “Projections of the Vestibular Nuclei to the Thalamus in the Rat: A Phaseolus vulgaris Leucoagglutinin Study,” The Journal of Comparative Neurology 407:318-332 (1999). |
Schiff et al., “Cortical Function in the Persistent Vegetative State,” Trends in Cognitive Sciences 3(2):43-46 (1999). |