The present invention relates to an improved feeder element for use in metal casting operations utilising casting moulds, especially but not exclusively in high-pressure sand moulding systems.
In a typical casting process, molten metal is poured into a pre-formed mould cavity which defines the shape of the casting. However, as the metal solidifies it shrinks, resulting in shrinkage cavities which in turn result in unacceptable imperfections in the final casting. This is a well known problem in the casting industry and is addressed by the use of feeder sleeves or risers which are integrated into the mould during mould formation. Each feeder sleeve provides an additional (usually enclosed) volume or cavity which is in communication with the mould cavity, so that molten metal also enters into the feeder sleeve. During solidification, molten metal within the feeder sleeve flows back into the mould cavity to compensate for the shrinkage of the casting. It is important that metal in the feeder sleeve cavity remains molten longer than the metal in the mould cavity, so feeder sleeves are made to be highly insulating or more usually exothermic, so that upon contact with the molten metal additional heat is generated to delay solidification.
After solidification and removal of the mould material, unwanted residual metal from within the feeder sleeve cavity remains attached to the casting and must be removed. In order to facilitate removal of the residual metal, the feeder sleeve cavity may be tapered towards its base (i.e. the end of the feeder sleeve which will be closest to the mould cavity) in a design commonly referred to as a neck down sleeve. When a sharp blow is applied to the residual metal it separates at the weakest point which will be near to the mould (the process commonly known as “knock off”). A small footprint on the casting is also desirable to allow the positioning of feeder sleeves in areas of the casting where access may be restricted by adjacent features.
Although feeder sleeves may be applied directly onto the surface of the mould cavity, they are often used in conjunction with a breaker core. A breaker core is simply a disc of refractory material (typically a resin bonded sand core or a ceramic core or a core of feeder sleeve material) with a hole in its centre which sits between the mould cavity and the feeder sleeve. The diameter of the hole through the breaker core is designed to be smaller than the diameter of the interior cavity of the feeder sleeve (which need not necessarily be tapered) so that knock off occurs at the breaker core close to the mould.
Casting moulds are commonly formed using a moulding pattern which defines the mould cavity. Pins are provided on the pattern plate at predetermined locations as mounting points for the feeder sleeves. Once the required sleeves are mounted on the pattern plate, the mould is formed by pouring moulding sand onto the pattern plate and around the feeder sleeves until the feeder sleeves are covered. The mould must have sufficient strength to resist erosion during the pouring of molten metal, to withstand the ferrostatic pressure exerted on the mould when full and to resist the expansion/compression forces when the metal solidifies.
Moulding sand can be classified into two main categories. Chemical bonded (based on either organic or inorganic binders) or clay-bonded. Chemically bonded moulding binders are typically self-hardening systems where a binder and a chemical hardener are mixed with the sand and the binder and hardener start to react immediately, but sufficiently slowly enough to allow the sand to be shaped around the pattern plate and then allowed to harden enough for removal and casting.
Clay-bonded moulding uses clay and water as the binder and can be used in the “green” or undried state and is commonly referred to as greensand. Greensand mixtures do not flow readily or move easily under compression forces alone and therefore to compact the greensand around the pattern and give the mould sufficient strength properties as detailed previously, a variety of combinations of jolting, vibrating, squeezing and ramming are applied to produce uniform strength moulds at high productivity. The sand is typically compressed (compacted) at high pressure, usually using a hydraulic ram (the process being referred to as “ramming up”). With increasing casting complexity and productivity requirements, there is a need for more dimensionally stable moulds and the tendency is towards higher ramming pressures which can result in breakage of the feeder sleeve and/or breaker core when present, especially if the breaker core or the feeder sleeve is in direct contact with the pattern plate prior to ram up.
The above problem is partly alleviated by the use of spring pins. The feeder sleeve and optional locator core (similar in composition and overall dimensions to breaker cores) is initially spaced from the pattern plate and moves towards the pattern plate on ram up. The spring pin and feeder sleeve may be designed such that after ramming, the final position of the sleeve is such that it is not in direct contact with the pattern plate and may be typically 5 to 25 mm distant from the pattern surface. The knock off point is often unpredictable because it is dependent upon the dimensions and profile of the base of the spring pins and therefore results in additional cleaning costs. Other problems associated with spring pins are explained in EP-A-1184104. The solution offered in EP-A-1184104 is a two-part feeder sleeve. Under compression during mould formation, one mould (sleeve) part telescopes into the other. One of the mould (sleeve) parts is always in contact with the pattern plate and there is no requirement for a spring pin. However, there are problems associated with the telescoping arrangement of EP-A-1184104. For example, due to the telescoping action, the volume of the feeder sleeve after moulding is variable and dependent on a range of factors including moulding machine pressure, casting geometry and sand properties. This unpredictability can have a detrimental effect on feed performance. In addition, the arrangement is not ideally suited where exothermic sleeves are required. When exothermic sleeves are used, direct contact of exothermic material with the casting surface is undesirable and can result in poor surface finish, localised contamination of the casting surface and even sub-surface gas defects.
Yet a further disadvantage of the telescoping arrangement of EP-A-1184104 arises from the tabs or flanges which are required to maintain the initial spacing of the two mould (sleeve) parts. During moulding, these small tabs break off (thereby permitting the telescoping action to take place) and simply fall into the moulding sand. Over a period of time, these pieces will build up in the moulding sand. The problem is particularly acute when the pieces are made from exothermic material. Moisture from the sand can potentially react with the exothermic material (e.g. metallic aluminium) creating the potential for small explosive defects.
It is an object of the present invention in a first aspect to provide an improved feeder element which can be used in a cast moulding operation. In particular, it is an object of the present invention in its first aspect to provide a feeder element which offers one or more (and preferably all) of the following advantages:
A further object of the present invention is to obviate or mitigate one or more of the disadvantages associated with the two-part telescoping feeder sleeve disclosed in EP-A-1184104.
An object of a second aspect of the present invention is to provide an alternative feeder system to that proposed in EP-A-1184104.
According to a first aspect of the present invention, there is provided a feeder element for use in metal casting, said feeder element having a first end for mounting on a mould pattern (plate), an opposite second end for receiving a feeder sleeve and a bore between the first and second ends defined by a sidewall, said feeder element being compressible in use whereby to reduce the distance between said first and second ends.
It will be understood that the amount of compression and the force required to induce compression will be influenced by a number of factors including the material of manufacture of the feeder element and the shape and thickness of the sidewall. It will be equally understood that individual feeder elements will be designed according to the intended application, the anticipated pressures involved and the feeder size requirements. Although the invention has particular utility in high volume high-pressure moulding systems, it is also useful in lower pressure applications (when configured accordingly) such as hand rammed casting moulds.
Preferably, the initial crush strength (i.e. the force required to initiate compression and irreversibly deform the feeder element over and above the natural flexibility that it has in its unused and uncrushed state) is no more than 5000 N, and more preferably no more than 3000 N. If the initial crush strength is too high, then moulding pressure may cause the feeder sleeve to fail before compression is initiated. Preferably, the initial crush strength is at least 500 N. If the crush strength is too low, then compression of the element may be initiated accidentally, for example if a plurality of elements are stacked for storage or during transport.
The feeder element of the present invention may be regarded as a breaker core as this term suitably describes some of the functions of the element in use. Traditionally, breaker cores comprise resin bonded sand or are a ceramic material or a core of feeder sleeve material. However, the feeder element of the current invention can be manufactured from a variety of other suitable materials. In certain configurations it may be more appropriate to consider the feeder element to be a feeder neck.
As used herein, the term “compressible” is used in its broadest sense and is intended only to convey that the length of the feeder element between its first and second ends is shorter after compression than before compression. Preferably, said compression is non-reversible i.e. it is important that after removal of the compression inducing force the feeder element does not revert to its original shape. Compression may be achieved through the inherent compressibility of the material from which the feeder element is formed, e.g. rubber or other polymeric material. Thus, in a first embodiment, the feeder element is a rubber tube.
Alternatively, compression may be achieved through the deformation of a non-brittle material such as a metal (e.g. steel, aluminium, aluminium alloys, brass etc) or plastic. In a second embodiment, the sidewall of the feeder element is provided with one or more weak points which are designed to deform (or even shear) under a predetermined load (corresponding to the crush strength).
The sidewall may be provided with at least one region of reduced thickness which deforms under a predetermined load. Alternatively or in addition, the sidewall may have one or more kinks, bends, corrugations or other contours which cause the sidewall to deform under a predetermined load (corresponding to the crush strength).
In a third embodiment, the bore is frustoconical and bounded by a sidewall having at least one circumferential groove. Said at least one groove may be on an interior or (preferably) exterior surface of the sidewall and provides in use a weak point which deforms or shears predictably under an applied load (corresponding to the crush strength).
In a particularly preferred embodiment, the feeder element has a stepped sidewall which comprises a first series of sidewall regions in the form of rings (which are not necessarily planar) of increasing diameter interconnected and integrally formed with a second series of sidewall regions. Preferably, the sidewall regions are of substantially uniform thickness, so that the diameter of the bore of the feeder element increases from the first end to the second end of the feeder element. Conveniently, the second series of sidewall regions are annular (i.e. parallel to the bore axis), although they may be frustoconical (i.e. inclined to the bore axis). Both series of sidewall regions may be of non-circular shape (e.g. oval, square, rectangular, or star shaped).
The compression behaviour of the feeder element can be altered by adjusting the dimensions of each wall region. In one embodiment, all of the first series of sidewall regions have the same length and all of the second series of sidewall regions have the same length (which may be the same as or different to the first series of sidewall regions). In a preferred embodiment however, the length of the first series of sidewall regions varies, the wall regions towards the second end of the feeder element being longer than the sidewall regions towards the first end of the feeder element.
The feeder element may be defined by a single ring between a pair of sidewall regions of the second series. However, the feeder element may have as many as six or more of each of the first and the second series of sidewall regions.
Preferably, the angle defined between the bore axis and the first sidewall regions (especially when the second sidewall regions are parallel to the axis of the bore) is from about 55 to 90° and more preferably from about 70 to 90°. Preferably, the thickness of the sidewall regions is from about 4 to 24%, preferably from about 6 to 20%, more preferably from about 8 to 16% of the distance between the inner and outer diameters of the first sidewall regions (i.e. the annular thickness in the case of planar rings (annuli)).
Preferably, the distance between the inner and outer diameters of the first series of sidewall regions is 4 to 10 mm and most preferably 5 to 7.5 mm. Preferably, the thickness of the sidewall regions is 0.4 to 1.5 mm and most preferably 0.5 to 1.2 mm.
In general, each of the sidewalls within the first and second series will be parallel so that the angular relationships described above apply to all the sidewall regions. However, this is not necessarily the case and one (or more) of the sidewall regions may be inclined at a different angle to the bore axis to the others of the same series, especially where the sidewall region defines the first end (base) of the feeder element.
In a convenient embodiment, only an edge contact is formed between the feeder element and casting, the first end (base) of the feeder element being defined by a sidewall region of the first or second series which is non-perpendicular to the bore axis. It will be appreciated from the foregoing discussion that such an arrangement is advantageous in minimising the footprint and contact area of the feeder element. In such embodiments, the sidewall region which defines the first end of the feeder element may have a different length and/or orientation to the other sidewall regions of that series. For example, the sidewall region defining the base may be inclined to the bore axis at an angle of 5 to 30°, preferably 5 to 15°. Preferably, the free edge of the sidewall region defining the first end of the feeder element has an inwardly directed annular flange or bead.
Conveniently, a sidewall region of the first series defines the second end of the feeder element, said sidewall region preferably being perpendicular to the bore axis. Such an arrangement provides a suitable surface for mounting of a feeder sleeve in use.
It will be understood from the foregoing discussion that the feeder element is intended to be used in conjunction with a feeder sleeve. Thus, the invention provides in a second aspect a feeder system for metal casting comprising a feeder element in accordance with the first aspect and secured thereto a feeder sleeve.
The nature of the feeder sleeve is not particularly limited and it may be for example insulating, exothermic or a combination of both, for example one sold by Foseco under the trade name KALMIN, FEEDEX or KALMINEX. The feeder sleeve may be conveniently secured to the feeder element by adhesive but may also be push fit or have the sleeve moulded around part of the feeder element.
Embodiments of the invention will now be described by way of example only with reference to the accompanying drawings in which:
Referring to
Referring to
In use, the feeder sleeve assembly is covered with moulding sand (which sand also enters the volume around the breaker core 10 below the feeder sleeve 20) and the pattern plate 24 is “rammed up” whereby to compress the moulding sand. The compressive forces cause the sleeve 20 to move downwardly towards the pattern plate 24. The forces are partially absorbed by the pin 22 and partially by the deformation or collapse of the breaker core 10 which effectively acts as a crumple zone for the feeder sleeve 20. At the same time, the moulding medium (sand) trapped under the deforming breaker core 10 is also progressively compacted to give the required mould hardness and surface finish below the breaker core 10 (this feature is common to all embodiments in which the downwardly tapering shape of the feeder element permits moulding sand to be trapped directly below the feeder sleeve). In addition, compaction of the sand also helps to absorb some of the impact. It will be understood that since the base 16 of the breaker core 10 defines the narrowest region in communication with the mould cavity, there is no requirement for the feeder sleeve 20 to have a tapered cavity or excessively tapering sidewalls which might reduce its strength. The situation after the ram up is shown in
Advantageously, the feeder element of the present invention does not depend on the use of a spring pin.
Referring to
The knock off point is so close to the casting that in certain extreme circumstances it may be possible for the breaker core 30 to break off into the casting surface. Referring therefore to
Referring to
Referring to
Referring to
A yet further breaker core in accordance with the present invention is shown in
It will be understood that there are many possible breaker cores with different combinations of orientated sidewall regions. Referring to
Referring to
Testing was conducted on a commercial Kunkel-Wagner high-pressure moulding line No 09-2958, with a ram up pressure of 300 tonnes and moulding box dimensions of 1375×975×390/390 mm. The moulding medium was a clay-bonded greensand system. The castings were central gear housings in ductile cast iron (spheroidal graphite iron) for automotive use.
A FEEDEX HD-VS159 feeder sleeve (fast-igniting, highly exothermic and pressure resistant) attached to a suitable silica sand breaker core (10Q) was mounted directly on the pattern plate with a fixed pin to locate the breaker core/feeder sleeve arrangement on the pattern plate prior to moulding. Although the knock off point was repeatable and close to the casting surface, damage (primarily cracking) due to the moulding pressure was evident in a number of the breaker cores and the sleeves.
A FEEDEX HD-VS159 feeder sleeve (fast-igniting, highly exothermic and pressure resistant) attached to a suitable locator core (50HD) was used as in comparative example 1, but in this case a spring pin was used for mounting the locator core/feeder sleeve arrangement on and above the pattern plate prior to moulding. On moulding the pressure forced down the locator core/feeder sleeve arrangement and spring pin, and moulding sand flowed under and was compacted below the locator core. No visible damage was observed in the breaker core or sleeve after moulding. However, the knock off point was not repeatable (due to the dimensions and profile of the base of the spring pins) and in some cases hand dressing of the stubs would have been required adding to the manufacturing cost of the casting.
The breaker core of
A further trial was conducted with a breaker core of
A third trial was conducted with a breaker core of
Breaker cores were tested by sitting them between the two parallel plates of a Hounsfield compression strength tester. The bottom plate was fixed, whereas the top plate traversed downwards via a mechanical screw thread mechanism at a constant rate of 30 mm per minute and graphs of force applied against plate displacement were plotted.
The breaker cores tested had the basic configuration shown in
Referring to
The initial crush strengths, minimum force measurements and maximum crush strengths are plotted in
In order to investigate the effect of metal thickness on the crush strength parameters, further breaker cores were made and tested as for example 2. The breaker cores were identical to those used in Example 1b (axial length 33 mm, minimum diameter 20 mm, maximum diameter 82 mm corresponding to the outside diameter of the base of the sleeve). The steel thickness was 0.5, 0.6 or 0.8 mm (corresponding to 10, 12 and 16% of sidewall 12a annular thickness). The plots of force against displacement are shown in
It will be understood from a consideration of Examples 2 and 3, that by changing the geometry of the breaker core and the thickness of the breaker core material, the three key parameters (initial crush strength, minimum force and maximum crush strength) can be tailored to the particular application intended for the breaker core.
Number | Date | Country | Kind |
---|---|---|---|
0325134.5 | Oct 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/04451 | 10/21/2004 | WO | 1/14/2005 |