The present invention relates generally to fastener driving tools employing magazines feeding fasteners to a nosepiece for receiving a driving force; and more specifically to such tools employing a fastener feeder mechanism powered with gas pressure generated during the fastener driving process.
Fastener driving tools, referred to here as tools or nailers, are known in the art and are powered by combustion, compressed gas (pneumatic), powder, and electricity. Portable fastener driving tools that drive collated fasteners disposed in a coil magazine are commercially available on the market and are manufactured by ITW Buildex, Itasca, Ill. The core operating principle of the tool and the respective fastener feeding mechanism is defined in ITW U.S. Pat. Nos. 5,558,264 and 7,040,521, both of which are incorporated by reference. In U.S. Pat. No. 5,558,264, a gas conduit is placed in fluid communication with the main drive cylinder of the power source.
Upon ignition and combustion, as the drive piston attached to the driver blade travels down the cylinder toward the fastener or nail to be driven, a supply of combustion gas is distributed into the gas conduit and is used to operate a spring-biased feeder mechanism. The gas pressure overcomes a biasing force provided by a spring, and causes movement of a feed piston located within a feed cylinder and connected to a feeding claw. Operationally associated with a strip of collated fasteners, the burst of compressed gas causes the feed piston and a linked feeding claw to retract and engage the next fastener in the strip. Next, upon dissipation of the combustion gas, the compressed spring expands, advances the feed piston and the next fastener toward the tool nosepiece for subsequent engagement with the driver blade.
In the '264 patent, the gas conduit is located in a wall of the drive cylinder and positioned between the drive piston's uppermost location (pre-firing position) and exhaust port openings located closer to an opposite end of the drive cylinder. The position of the conduit is such that a designated timing relationship is established during the drive cycle between the relative displacement of the drive piston and that of the feeder mechanism's feed piston. Such timing is an important design parameter for obtaining effective nail control and preventing nail jams within the nosepiece or the magazine. Optimally, the drive piston shears the nail from the collation media before the feed piston begins retraction, otherwise the nail will be driven with less control and an unsatisfactory nail drive can result.
Once the nail driving process is complete, a subsequent timing relationship between the return of the drive piston and advancement of the feeder mechanism is also important to obtain reliable piston return and nail feeding. The preferred timing scenario is for the drive piston to return to the pre-firing position before the feeder mechanism advances the nail into the tool nosepiece or nose (the terms are considered interchangeable). Currently, the feeder mechanism attempts to advance the nail into the nose while the drive piston and driver blade is returning to the pre-firing position. More specifically, the feed piston urges the next fastener toward the nosepiece prior to full retraction of the drive piston. This results in the nail being biased against the driver blade during the return cycle. See
The feeder mechanism includes a biasing spring that indirectly acts on the next nail to be driven, thereby exerting a transverse load component on the blade. The resulting friction prolongs the return of the driver blade, or even worse, prevents the driver blade from returning to the pre-firing position. When this occurs, the next fastener drive cycle does not result in a fastener being driven. This problem can be exacerbated by the amount of dirt, debris or collation media in the nose area of the tool.
Thus, there is a need for an improved fastener driver tool employing a method of establishing a preferred timing relationship between the drive piston and the advancement of the feeder mechanism during the return cycle of the drive piston.
The above-listed needs are met or exceeded by the present feeder mechanism retention device for a fastener driving tool, which, in the preferred embodiment, features an electromechanical retention device and a control module that accommodates complete drive piston return before the feeder mechanism advances a nail into the tool nose. The present fastener driving tool uses a gas conduit that receives a supply of gas pressure from the power source, typically generated by combustion, and transmits the gas to the feed cylinder to overcome the feed piston return spring, thus retracting the feed piston, and uses an electromagnet for retaining the feed piston in the retracted position until the drive piston has returned to its pre-firing position or soon thereafter.
Advantages of the present tool include reduced nail or collation malfunction due to interference with the driver blade during piston return, improved piston return speed and reliability due to reduced frictional load on the drive piston assembly, and increased operational life for the drive piston and the retention device due to low wear. Also, the retention device is lightweight and operates with increased energy efficiency compared to conventional fastener feeder mechanisms. The present device is relatively uncomplicated with few parts to produce, install and maintain, and it is substantially enclosed, resulting in a dirt and debris-tolerant assembly, as opposed to prior art designs, which use small gas passages that are prone to dirt problems and complex mechanisms that can be damaged, require lubricant, are susceptible to corrosion, and can be affected by debris. In the present tool, the control module provides electronically controlled automatic operation of the retention device, and end-user input variability is avoided. Lastly, by providing a relatively simple mechanism which is operable independently of the normal tool functions, the tool actuation force required to be applied by the user prior to driving a fastener is maintained as in conventional tools and is not increased.
More specifically, a fastener driver tool includes a power source including a reciprocating driver blade, a tool nose associated with the power source for receiving the driver blade for driving fasteners fed into the nose, a magazine constructed and arranged to house a supply of the fasteners, a magazine feeder mechanism associated with the magazine for sequentially feeding fasteners into the nose, the feeder mechanism including a reciprocating feed piston, and an electromechanical retention device that is operationally associated with the feeder mechanism and configured for retaining the feed piston in a retracted position until the driver blade is positioned to allow fastener advancement into the nose.
Referring now to
A housing 12 of the tool 10 encloses a self-contained internal power source 14 (shown hidden) within a housing main chamber 16 (shown hidden). As in conventional combustion tools, the power source 14 is powered by internal combustion and includes a combustion chamber 18 (shown hidden) that communicates with a drive cylinder 20. A drive piston 22 reciprocally disposed within the drive cylinder 20 is connected to the upper end of a driver blade 24 (cylinder, piston and driver blade all shown hidden). An upper limit of the reciprocal travel of the drive piston 22 is referred to as a pre-firing position, which occurs just prior to firing, or the ignition of the combustion gases that initiates the downward driving of the driver blade 24 to impact a fastener 26 to drive it into a workpiece.
Through depression of a trigger 28, an operator induces combustion within the combustion chamber 18, causing the driver blade 24 to be forcefully driven downward through a nose or nosepiece 30. The nosepiece 30 guides the driver blade 24 to strike the forward-most fastener 26 that had been delivered into the nosepiece via a fastener magazine 32. While a variety of magazines are contemplated as are known in the art, in the present tool 10 the magazine 32 is preferably a coil magazine in which the fasteners 26 are secured in a strip 34 using collating materials, typically metal, paper or plastic.
In proximity to the nosepiece 30 is a workpiece contact element 36, which is connected, through a linkage or upper probe (not shown) to a reciprocating valve sleeve (not shown), which partially defines the combustion chamber 18. Depression of the tool housing 12 against the workpiece (not shown) in a downward direction in relation to the depiction in
Upon a pulling of the trigger 28, a spark plug is energized, igniting the fuel and gas mixture in the combustion chamber 18 and sending the drive piston 22 and the driver blade 24 downward toward the waiting fastener 26 for entry into the workpiece. A conduit 44 has an inlet end 46 connected to a wall of the drive cylinder 20 via a suitable fitting 48 for diverting combusted gases at a location between the uppermost position of the drive piston 22 and the position of the driving piston when combusted gases are exhausted from the drive cylinder 20, via exhaust ports (not shown). It will be appreciated that other locations on the power source for the inlet end 46 of the conduit 44 are contemplated, such as, but not restricted to the combustion chamber as described in U.S. Pat. No. 7,040,521 which is incorporated by reference, as well as utilization of the compressed gas generated in front of the drive piston 22. Such gases are collectively referred to as power source gases.
As shown in
More specifically, and referring to
Referring now to
Inside the feed cylinder 56 is provided a return spring 84 which is seated against the end 76 as will be described in greater detail below, and which biases the feed piston 58 toward the advanced position. An O-ring 86 is seated in a peripheral groove 88 of the feed piston 58 and seals against the cylindrical wall 54 as the feed piston 58 reciprocates.
Also included in the feeder mechanism 50 is the feed claw 62, which is pivotably mounted to the piston rod 60 via a pivot pin 90, to be commonly movable with the piston rod and the feed piston 58 between the retracted and advanced positions but also to be pivotable on the pivot pin between an operative position and an inoperative position. In
The feed claw 62 has notched end fingers 94, which are configured for engaging one of the fasteners 26 of the strip 34 when the feed claw is in the operative position and to advance the strip when the feed piston 58, the piston rod 60, and the feed claw 62 are moved by spring pressure from the return spring 84 from the retracted position (
Also included in the feeder mechanism 50 is a holding claw 98, which is mounted pivotably to the arm 70 via a pivot pin 100 to be pivotable between an engaging position and a disengaging position. The holding claw 98 is shown in the engaging position in
Referring again to
Also, it is preferred that the electromagnet 112 is disposed within the feed cylinder 56 and is secured therein by a flange 114 engaging a corresponding shoulder of the feed cylinder and fastener preferred embodiment the fastener hardware 116 is a disc 118, with a vent hole 120, and a spring clip 122 secured in the feed cylinder 56. The vent hole 120 allows the escape of air from the feed cylinder 54 when the feed piston 58 is retracted. It is understood that other fastening technologies are contemplated for securing the electromagnet 112 in place, including but not limited to threaded engagement, chemical fasteners, welding and the like. The electromagnet 112 is secured in place to withstand the spring force generated by the return spring 84 when compressed, and the energization of the electromagnet is sufficient to overcome the biasing force of the return spring acting on the feed piston 58.
The control program 38 controls the energization of the electromagnet 112, which holds the feed piston 58 for a sufficient period of time, until the drive piston 22, and the driver blade 24 are clear of the tool nose 30. The time varies with the tool and the application, but is sufficiently long for the drive piston 24 returning to the pre-firing position. In one application, the designated energization time of the electromagnet 112 is approximately 100 msec; however other times are contemplated, depending on the tool and the situation.
As an alternate configuration, the drive piston 22 and or the cylinder 20 can be monitored with at least one piston position sensor 124 (shown schematically and hidden in
Referring now to
Referring now to
However, unlike the operation of the prior art tool in
While a particular embodiment of the present feeder mechanism retention device for a fastener driving tool has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.