This application claims priority from India Provisional Patent Application No. 4183/CHE/2013 filed on Sep. 18, 2013, which is hereby incorporated by reference in its entirety.
The disclosure relates to voltage regulators and more particularly to feedforward cancellation of power supply noise and enhancing power supply rejection ratio (PSRR) in voltage regulators.
A voltage regulator is placed between a power supply and a load circuit for providing a regulated voltage (constant voltage) to the load circuit regardless of fluctuations in the power supply. The voltage regulator can supply the regulated voltage to the load circuit as long as the output voltage of the power supply is greater than the regulated voltage supplied to the load circuit.
A measure of the effectiveness of the voltage regulator is its power supply rejection ratio (PSRR), which is a ratio of amount of noise present on the power supply that is provided to the voltage regulator and the amount of noise which is provided to the load circuit by the voltage regulator. A high PSRR is indicative of a low amount of transmission of noise in the regulated voltage, and a low PSRR is indicative of a high amount of noise transmission in the regulated voltage. A high PSRR, particularly across a wide range of operating frequencies of the devices being supplied by the voltage regulator, is difficult to achieve.
The enormous demand for portable electronic devices such as tablet computers, mobile phones, personal digital assistants (PDAs), and/or portable media players has pushed demand for SoCs (system-on-chip) in which large number of analog and digital circuit are fabricated on a same die. However, these SoCs suffer from noise which arises from sources such as switching of digital circuits, RF blocks and voltage converters.
This noise affects the power supplies through crosstalk and deteriorates the performance of the analog and digital circuits such as PLL, amplifiers and VCO. This in turn, deleteriously impacts critical system specifications like the selectivity of the receiver, spectral purity of the transmitter, and phase error tolerance of digital circuits. Therefore, the voltage regulators are required to safeguard noise-sensitive blocks (analog and digital) from high frequency fluctuations in the power supply. This makes the design of voltage regulators that have a high PSRR (power supply rejection ratio) over a wide frequency range extremely critical for high system performance.
This Summary is provided to comply with 37 C.F.R. § 1.73, requiring a summary of the invention briefly indicating the nature and substance of the invention. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
An embodiment provides a voltage regulator. The voltage regulator includes a process tracking circuit that receives a supply voltage and generates a proportional voltage. A tracking capacitor is coupled to the process tracking circuit and generates an injection voltage based on the proportional voltage. An Ahuja compensated regulator generates a regulated voltage. The injection voltage is provided on a feedback path of the Ahuja compensated regulator.
Other aspects and example embodiments are provided in the Drawings and the Detailed Description that follows.
The pass transistor 108 is associated with parasitic capacitances. A first parasitic capacitance CGS 110 is between the source terminal 108s and the gate terminal 108g of the pass transistor 108. A second parasitic capacitance CGD 112 is between the gate terminal 108g and the drain terminal 108d of the pass transistor 108. An output node 115 is coupled to the drain terminal 108d of the pass transistor 108. A regulated voltage Vout 117 is generated at the output node 115.
A voltage divider circuit 116 is coupled to the drain terminal 108d of the pass transistor 108. The voltage divider circuit 116 includes a first resistor R1 118 and a second resistor R2 120. A node 122, between the first resistor R1 118 and the second resistor R2 120, is coupled to the feedback node 103 of the error amplifier 102. One end of the second resistor R2 120 is coupled to a ground potential. The voltage divider circuit 116 and a path 124 form a feedback path of the Miller compensated regulator 100.
The operation of the miller compensated regulator 100 illustrated in
The miller compensated regulator 100 maintains a level of the regulated voltage Vout 117 when the supply voltage Vsupply 106 varies. When the supply voltage Vsupply 106 varies, it causes a change in the level of the regulated voltage Vout 117. The feedback voltage at node 122 varies because of the change in the supply voltage Vsupply 106. The feedback voltage is provided at the feedback node 103 which is compared with the reference voltage Vref 104. The amplified voltage generated by the error amplifier 102 varies to maintain the level of the regulated voltage Vout 117. The error between the reference voltage Vref 104 and the feedback voltage received at feedback node 103 modulates the amplified voltage at the gate terminal 108g of the pass transistor 108 to keep the regulated voltage Vout 117 fixed with respect to the reference voltage Vref 104 irrespective of changes in the supply voltage Vsupply 106 and a load current drawn at output node 115.
The compensation capacitor CCOMP 114 stabilizes a response of the feedback path and improves a phase margin of the feedback path. Power supply rejection ratio (PSRR) of the miller compensated regulator 100 is dependent on the compensation capacitor CCOMP 114 and the first parasitic capacitance CGS 110. Thus, the PSRR of the miller compensated regulator 100 degrades at high frequencies. A corner frequency for PSRR of 6 dB (decibels) is given as:
where gm is a transconductance of the error amplifier 102. Thus, the transconductance gm of the error amplifier 102 has to be increased to increase bandwidth of the miller compensated regulator 100 which entails increasing the power burned in the miller compensated regulator 100.
The pass transistor 208 is associated with parasitic capacitances. A first parasitic capacitance CGS 210 is between the source terminal 208s and the gate terminal 208g of the pass transistor 208. A second parasitic capacitance CGD 212 is between the gate terminal 208g and the drain terminal 208d of the pass transistor 208. An output node 215 is coupled to the drain terminal 208d of the pass transistor 208. A regulated voltage Vout 217 is generated at the output node 215.
A voltage divider circuit 216 is coupled to the drain terminal 208d of the pass transistor 208. The voltage divider circuit 216 includes a first resistor R1 218 and a second resistor R2 220. A node 222 between the first resistor R1 218 and the second resistor R2 220 is coupled to the feedback node 203 of the error amplifier 202. One end of the second resistor R2 220 is coupled to the ground potential. The voltage divider circuit 216 and a path 224 form the feedback path of the Ahuja compensated regulator 200.
The operation of the Ahuja compensated regulator 200 illustrated in
The Ahuja compensated regulator 200 maintains a level of the regulated voltage Vout 217 when the supply voltage Vsupply 206 varies. When the supply voltage Vsupply 206 varies, it causes a change in the level of the regulated voltage Vout 217. The feedback voltage at node 222 varies because of the change in the supply voltage Vsupply 206. The feedback voltage is provided at the feedback node 203 which is compared with the reference voltage Vref 204. The amplified voltage generated by the error amplifier 202 varies to maintain the level of the regulated voltage Vout 217.
The compensation capacitor CCOMP 214 stabilizes a response of the feedback path and improves a phase margin of the feedback path. However, the compensation capacitor CCOMP 214 is not in a direct path of the supply voltage Vsupply 206 and the regulated voltage Vout 217. Therefore, a power supply rejection ratio (PSRR) of the Ahuja compensated regulator 200 is not degraded by the compensation capacitor CCOMP 214. The PSRR of the Ahuja compensated regulator 200 is higher than the miller compensated regulator 100 illustrated in
where gm is a transconductance of the error amplifier 202. Therefore, the PSRR is limited by second parasitic capacitance CGD 212 which is much lesser than capacitance of the compensation capacitor CCOMP 214. The compensation capacitor CCOMP 214 also provides high frequency rejection through the NMOS transistor 226. A change in regulated voltage Vout 217 is fed back to modulate the amplified voltage at the gate terminal 208g of the pass transistor 208 providing high frequency negative feedback.
The pass transistor 308 is associated with parasitic capacitances. A first parasitic capacitance CGS 310 is between the source terminal 308s and the gate terminal 308g of the pass transistor 308. A second parasitic capacitance CGD 312 is between the gate terminal 308g and the drain terminal 308d of the pass transistor 308. An output node 315 is coupled to the drain terminal 308d of the pass transistor 308. A regulated voltage Vout 317 is generated at the output node 315.
A voltage divider circuit 316 is coupled to the drain terminal 308d of the pass transistor 308. The voltage divider circuit 316 includes a first resistor R1 318 and a second resistor R2 320. A node 322 between the first resistor R1 318 and the second resistor R2 320 is coupled to the feedback node 303 of the error amplifier 302. One end of the second resistor R2 320 is coupled to the ground potential. The voltage divider circuit 316 and a path 324 form the feedback path of the Ahuja compensated regulator 305.
The process tracking circuit 330 receives the supply voltage Vsupply 306. The tracking capacitor Ct 340 is coupled to the process tracking circuit 330. The feedback path of the Ahuja compensated regulator 305 is coupled to the tracking capacitor Ct 340. The process tracking circuit 330 includes a resistor Rt 332 coupled to the supply voltage Vsupply 306. A PMOS (p-metal oxide semiconductor) transistor 334 is coupled to the resistor Rt 332. A source terminal 334s of the PMOS transistor 334 is coupled to the resistor Rt 332. A gate terminal 334g of the PMOS transistor 334 receives the bias voltage Vbias.
A diode connected MOS (metal oxide semiconductor) transistor 336 is coupled to a drain terminal 334d of the PMOS transistor 334. A drain terminal 336d of the diode connected MOS transistor 336 and the drain terminal 334d of the PMOS transistor 334 are coupled to the tracking capacitor Ct 340. A source terminal 336s of the diode connected MOS transistor 336 is coupled to the ground potential.
The operation of the voltage regulator 300 illustrated in
The transconductance (Gmos) of the diode connected MOS transistor 336 is proportional to a transconductance (gm) of the error amplifier 302. Therefore, the proportional voltage is also defined as:
The tracking capacitor Ct 340 generates an injection voltage (Vi) based on the proportional voltage (Vp) received from the process tracking circuit 330. The injection voltage is defined as:
Vi=Vp*sCt(R1∥R2) (5)
The injection voltage (Vi) is provided on the feedback path of the Ahuja compensated regulator 305. The feedback node 303 of the error amplifier 302 receives the injection voltage (Vi) and a feedback voltage. The error amplifier 302 amplifies a voltage difference between the reference voltage Vref 304 and a sum of the injection voltage (Vi) and the feedback voltage. The error amplifier 302 on amplification of the voltage difference generates an amplified voltage.
The amplified voltage is provided to the pass transistor 308. The pass transistor 308 also receives a supply voltage Vsupply 306. The regulated voltage Vout 317 is generated at the drain terminal 308d of the pass transistor 308 and at the output node 315. The voltage divider circuit 316 receives the regulated voltage Vout 317 and generates the feedback voltage at node 322 which is provided to the error amplifier 302.
The voltage regulator 300 maintains a level of the regulated voltage Vout 317 when the supply voltage Vsupply 306 varies. When the supply voltage Vsupply 306 varies, it causes a change in the level of the regulated voltage Vout 317. The feedback voltage at node 322 varies because of the change in the supply voltage Vsupply 306. In addition, the proportional voltage (Vp) varies in proportion to a change in the supply voltage Vsupply 306. Hence the injection voltage (Vi) is proportional to the change in the supply voltage Vsupply 306. The process tracking circuit 330 mitigates process variations in the voltage regulator 300 arising due to non-ideal conditions during fabrication of the components used in the voltage regulator 300.
The feedback voltage and the injection voltage (Vi) are provided at the feedback node 303, the sum of which is compared with the reference voltage Vref 304. The amplified voltage generated by the error amplifier 302 varies to maintain the level of the regulated voltage Vout 317. The injection voltage (Vi) provides charge to the second parasitic capacitance CGD 312 for the gate terminal 308g to track a change in supply voltage Vsupply 306 thus effectively cancelling the second parasitic capacitance CGD 312. The error amplifier 302 then has to provide the residual charge required to move the gate terminal 308g to track change in supply voltage Vsupply 306. The process tracking circuit 330, the voltage divider circuit 316 and the tracking capacitor Ct 340 compensates the second parasitic capacitance CGD 312 associated with the pass transistor 308.
The compensation capacitor CCOMP 314 stabilizes a response of the feedback path and also improves a phase margin of the feedback path. However, the compensation capacitor CCOMP 314 is not in a direct path of the supply voltage Vsupply 306 and the regulated voltage Vout 317. Therefore, a power supply rejection ratio (PSRR) of the voltage regulator 300 is not dependent on the compensation capacitor CCOMP 314. As a result, the voltage regulator 300 is capable of high frequency rejection of PSRR. A gain provided by the process tracking circuit 330 is given as:
The gain is proportional to an inverse of a product of the transconductance (gm) of the error amplifier 302 and the impedance (Rt). This gain cancels the second parasitic capacitance CGD 312. The process tracking circuit 330 is a low power circuit. The value of the tracking capacitor Ct 340 is small compared to second parasitic capacitance CGD 312. In one embodiment, the tracking capacitor Ct 340 is given as:
Feedforward cancellation is thus being performed by the process tracking circuit 330, wherein a deterministic amount of supply noise (injection voltage (Vi)) is being injected from the supply voltage Vsupply 306 to the voltage regulator 300 to cancel a known amount of supply noise inside the voltage regulator 300. Thus, a feedforward cancellation of a deterministic error in the voltage regulator 300 is being performed by the process tracking circuit 330. The process tracking circuit 330 provides a known gain based on the process variation of components inside the voltage regulator 300 to make the feedforward cancellation effective despite process variations. The process tracking circuit 330 provides feedforward cancellation of noise in supply voltage Vsupply 306.
In an example, a corner frequency for PSRR of 6 dB (decibels) is given as:
where gm is a transconductance of the error amplifier 302 and Cresidual is the capacitance left after cancellation of second parasitic capacitance CGD 312 by the process tracking circuit 330. Cresidual is due to non-ideal cancellation of the second parasitic capacitance CGD 312. The voltage regulator 300 mitigates a variation in supply voltage Vsupply 306 through the process tracking circuit 330 such that a stability of the Ahuja compensated regulator 305 is unaffected by the process tracking circuit 330.
In voltage regulator 300, the tracking capacitor Ct 340 and the process tracking circuit 330 cancels the second parasitic capacitance CGD 312. The PSRR of the voltage regulator 300 is dependent on the residual capacitance after cancellation of the second parasitic capacitance CGD 312 by the tracking capacitor Ct 340. The residual capacitance is less than the second parasitic capacitance CGD 312. In one possible implementation, CGD is 5 pF while residual capacitance Cresidual is 500 fF. Thus, the voltage regulator 300 has better PSRR than the Ahuja compensated regulator 200 as illustrated by curve C.
In the foregoing discussion, the terms “connected” means at least either a direct electrical connection between the devices connected or an indirect connection through one or more passive intermediary devices. The term “circuit” means at least either a single component or a multiplicity of passive or active components, that are connected together to provide a desired function. The term “signal” means at least one current, voltage, charge, data, or other signal. Also, the terms “coupled to” or “couples with” (and the like) are intended to describe either an indirect or direct electrical connection. Thus, if a first device is coupled to a second device, that connection can be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
One having ordinary skill in the art will understand that the present disclosure, as discussed above, may be practiced with steps and/or operations in a different order, and/or with hardware elements in configurations which are different than those which are disclosed. Therefore, although the disclosure has been described based upon these preferred embodiments, it should be appreciated that certain modifications, variations, and alternative constructions are apparent and well within the spirit and scope of the disclosure. In order to determine the metes and bounds of the disclosure, therefore, reference should be made to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
4183/CHE/2013 | Sep 2013 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
4484148 | Wieser et al. | Nov 1984 | A |
5120996 | Mead | Jun 1992 | A |
6437628 | Davenport | Aug 2002 | B1 |
6448750 | Shor | Sep 2002 | B1 |
6977490 | Zhang | Dec 2005 | B1 |
7173402 | Chen | Feb 2007 | B2 |
7205827 | Leung | Apr 2007 | B2 |
8154263 | Shi | Apr 2012 | B1 |
20030011350 | Gregorius | Jan 2003 | A1 |
20060125456 | Wu | Jun 2006 | A1 |
20090128107 | Wang | May 2009 | A1 |
20110181258 | Ivanov | Jul 2011 | A1 |
20120262135 | Childs | Oct 2012 | A1 |
20130099764 | Zhang | Apr 2013 | A1 |
20130134788 | Noguchi | May 2013 | A1 |
20140103893 | Bhattad | Apr 2014 | A1 |
20140176098 | Fang | Jun 2014 | A1 |
20140266100 | Cavallini | Sep 2014 | A1 |
Entry |
---|
B.K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers”, IEEE Journal of Solid-State, vol. SC-18, No. 6, Dec. 1983, pp. 629-633. |
Number | Date | Country | |
---|---|---|---|
20150077070 A1 | Mar 2015 | US |