The following U.S. patents, patent applications and published patent applications are hereby incorporated by reference in their entireties: U.S. Pat. No. 9,124,209 issued Sep. 1, 2015 to Liu et al., entitled METHOD AND APPARATUS FOR CONTROLLING POWER CONVERTER WITH INVERTER OUTPUT FILTER; U.S. Patent Application Publication No. 2015/0123579 Al to Liu et al., entitled METHOD AND APPARATUS FOR CONTROLLING POWER CONVERTER WITH INVERTER OUTPUT FILTER, and filed as U.S. patent application Ser. No. 14/555,769 on Nov. 28, 2014; U.S. Pat. No. 9,054,621 issued Jun. 9, 2015 to Liu et al., entitled POSITION SENSORLESS OPEN LOOP CONTROL FOR MOTOR DRIVES WITH OUTPUT FILTER AND TRANSFORMER; U.S. Patent Application Publication No. 2015/0194901 A1 to Liu et al., entitled POSITION SENSORLESS OPEN LOOP CONTROL FOR MOTOR DRIVES WITH OUTPUT FILTER AND TRANSFORMER, and filed as U.S. patent application Ser. No. 14/666,894 on Mar. 24, 2015; U.S. Pat. No. 9,054,611 issued Jun. 9, 2015 to Liu et al., entitled METHOD AND APPARATUS FOR STABILITY CONTROL OF OPEN LOOP MOTOR DRIVE OPERATION; U.S. Patent Application Publication No. 2015/0002067 A1 to Nondahl et al., entitled METHOD AND APPARATUS FOR STABILITY CONTROL OF OPEN LOOP MOTOR DRIVE OPERATION, and filed as U.S. patent application Ser. No. 14/193,329 on Feb. 28, 2014; U.S. patent application Ser. No. 14/565,781 filed Dec. 10, 2014 to Nondahl et al., entitled TRANSITION SCHEME FOR POSITION SENSORLESS CONTROL OF AC MOTOR DRIVES; and U.S. patent application Ser. No. 15/351,989 filed Nov. 15, 2016 to Royak et al., entitled CURRENT CONTROL OF MOTOR DRIVES WITH OUTPUT SINEWAVE FILTER.
The subject matter disclosed herein relates to power conversion, and more specifically to feedforward control of a power converter.
Various aspects of the present disclosure are now summarized to facilitate a basic understanding of the disclosure, wherein this summary is not an extensive overview of the disclosure, and is intended neither to identify certain elements of the disclosure, nor to delineate the scope thereof. Rather, the primary purpose of this summary is to present various concepts of the disclosure in a simplified form prior to the more detailed description that is presented hereinafter. The present disclosure provides power conversion systems and methods to operate an inverter to drive a motor load through an intervening output filter, a transformer and a cable, including a current regulator to compute a command value according to a current reference value and a motor current feedback value, a cross-coupled feedforward component to compensate the command value by an estimated cross-coupled voltage value to compute a control output value, a cross-coupled object component to compute the motor current feedback value according to a voltage value using a plant transfer function representing the output filter, the transformer, the cable and the motor load, and a controller to provide the inverter switching control signals to control the inverter according to the control output value.
Referring now to the figures, several embodiments or implementations are hereinafter described in conjunction with the drawings, wherein like reference numerals are used to refer to like elements throughout, and wherein the various features are not necessarily drawn to scale.
Sensorless motor drives are used in a variety of applications, particularly where providing position and/or speed sensors directly at a motor load is difficult or impractical. In certain applications, a step-up transformer is used to boost the motor drive output voltage, allowing use of a low-voltage drive to power a medium voltage induction or permanent magnet synchronous motor, and/or to reduce FR losses and facilitate use of a smaller diameter cable wire for long cable runs between the motor drive and the driven motor. Certain applications also employ output filters between the motor drive inverter output and the transformer primary in order to suppress reflected wave voltage spikes associated with pulse width modulated (PWM) variable frequency drives. Use of sensorless voltage-frequency control techniques, however, may lead to problems, particularly where a transformer and/or sine wave filter is connected between the motor drive and the motor load. Conventional sensorless field-oriented-control (FOC) or other open loop speed control techniques have thus been found generally unsuitable for low-speed motor drive operation where output filters and transformers are used, such as in electric submersible pumps (ESPs), and these difficulties are particularly problematic in driving permanent magnet synchronous motors (PMSMs). Moreover, motors in sensorless speed control applications also suffer from oscillation in rotor velocity about the setpoint speed following load transitions or speed setpoint adjustments, particularly at low speeds. In certain situations, moreover, the driven motor may be unable to successfully start from a stopped condition due to unstable motor speed or motor current oscillations.
Disclosed embodiments provide power conversion systems 40 and inverter control methods and controller apparatus 100 to drive a motor load 20 through an intervening filter 30, which can also be used in combination with a transformer 50 and a potentially lengthy cable 60 coupled between the filter output and the driven motor load 20.
Referring to
In operation, the motor drive 40 receives single or multiphase AC input power from a power source 10 and converts this to a DC bus voltage using a rectifier 42 which provides a DC output voltage to a DC link circuit 44 having a capacitor C. The rectifier 42 can be a passive rectifier including one or more diode rectifier components, or may be an active front end (AFE) system with one or more rectifier switching devices (e.g., IGBTs, etc.) and an associated rectifier controller (not shown) for converting input AC electrical power to provide the DC bus voltage in the link circuit 44. Other configurations are possible in which the drive 40 receives input DC power from an external source (not shown) to provide an input to the inverter 46, in which case the rectifier 42 may be omitted. The DC link circuit 44 may include a single capacitor C or multiple capacitors connected in any suitable series, parallel and/or series/parallel configuration to provide a DC link capacitance across inverter input terminals 46A. In addition, while the illustrated motor drive 40 is a voltage source converter configuration including one or more capacitive storage elements in the DC link circuit 44, the various concepts of the present disclosure may be implemented in association with current source converter architectures in which a DC link circuit 44 includes one or more inductive storage elements, such as one or more series-connected inductors situated between the source of DC power (e.g., rectifier 42 or external DC source) and the input 46A of the inverter 46. In other possible implementations, the motor drive 40 includes a direct DC input to receive input power from an external source (not shown), and in certain embodiments the rectifier 42 and DC link circuit 44 may both be omitted.
The DC input 46A of the inverter 46 includes first and second (e.g., plus and minus) terminals connected to the DC link circuit 44, as well as a plurality of switching devices S1-S6 coupled between the DC input 46A and the motor drive AC output 46B. In operation, the inverter switching devices S1-S6 are actuated by the inverter switching control signals 101 provided by the controller 100 to convert DC electrical power received at the DC input 46A to provide AC electrical output power as inverter output voltages Vu, Vv, and Vw and inverter output currents iu, iv, and iw at the AC inverter output 46B. The filter circuit 30 receives the AC output from the inverter 46 of the motor drive 40. Although illustrated in
The inverter 46 of the motor drive 40 is connected to the load 20 through the intervening filter circuit 30. In the illustrated example of
The output of the filter circuit 30 provides motor phase currents im.1, im.2, im.3 to control the motor load 20, whereas the filter capacitor currents iC flow in the filter capacitors C1 and non-zero voltages vL (i.e., filter voltages) may develop across one or more of the filter inductors Lr, whereby simple closed-loop control based on measured inverter output current signals or values iu, iv, iw may result in less than optimal operation of the driven load 20. At the same time, however, directly measuring the motor currents im.1, im.2, im.3 and/or motor voltages would require additional hardware and cabling, which may not be economically feasible or technically possible in certain applications. Nevertheless, for those cases where motor currents and/or motor voltages, such as Vu, Vv, Vw, Vf_out_u, Vf_out_v, and Vf_out_w in
The controller 100 and the components thereof may be any suitable hardware, processor-executed software, processor-executed firmware, logic, or combinations thereof that are adapted, programmed, or otherwise configured to implement the functions illustrated and described herein. The controller 100 in certain embodiments may be implemented, in whole or in part, as software components executed using one or more processing elements, such as one or more processors 102, and may be implemented as a set of sub-components or objects including computer executable instructions stored in the electronic memory 104 for operation using computer readable data executing on one or more hardware platforms such as one or more computers including one or more processors, data stores, memory, etc. The components of the controller 100 may be executed on the same computer processor or in distributed fashion in two or more processing components that are operatively coupled with one another to provide the functionality and operation described herein.
Referring also to
At 308, the controller 100 computes a d, q inverter output current reference according to motor current reference values Iref.d and Iref.q using a closed loop current control with cross-coupled feedforward component 1114 and a cross-coupled object component 116 using a plant transfer function 1402 that represents the output filter 30, the transformer 50, cable 60 and the motor load 20. In one example, the first transfer function 1402 represents the output current to input voltage amplitude vs. frequency behavior, for example, to incorporate parameter values representing impedance components (e.g., resistances, inductances, and/or capacitance) of the output filter 30, the transformer 50, the cable 60 and the motor load 20. In certain embodiments, moreover, the parameter values of the transfer function 1402 are configurable to adapt the power conversion system 40 for different output filters, transformers, cables and different motor loads 20. For example, the motor drive 40 and the inverter controller 100 are programmable in certain implementations to accept programming values for the parameters of a given filter 30, transformer 50, cable 60 and/or motor load 20. This allows a user to adapt the motor drive 40 for use in combination with a variety of different filter and motor combinations.
At 310, the controller 100 provides the inverter switching control signals 102 to control the inverter 46 according to the inverter output current reference value(s) Iref.d,q, and the controller 100 computes or estimates the speed feedback value Speed.fbk according to any suitable measured or inferred value, such as inverter currents and voltages in one example. In another example, the controller uses sensor information for the speed feedback. In this manner, the current and voltage control of the driven motor 20 is compensated according to the transfer function 1402 that characterizes the components of the system including the filter 30, the transformer 50, the cable 60 and the driven motor load 20. Moreover, the controller 100 in certain embodiments implements sensorless speed control according to the estimated speed feedback value Speed.fbk without requiring speed feedback. Without wishing to be tied to any particular theory, the steady state current control implemented by the controller 100 can be advantageously employed to mitigate or avoid unwanted output oscillation in the motor speed and/or torque for sensorless ESP and other applications, thereby facilitating higher frequency operation of the driven motor load 20. This is particularly beneficial for deep well pumping applications where pumping speeds are important and the motor cable 60 may be quite lengthy, and a transformer 50 is beneficial to boost up the voltage of the output signal provided by the inverter 46 in order to drive a motor load 20 at the end of a lengthy cable 60.
In certain embodiments, the controller 100 implements closed loop current regulation by generating voltage commands for operating the inverter 46. Further details are described below in connection with two example embodiments shown in
Referring now to
The transformation of variables between two and three phase system is given by the following equations (5) and (6):
where Xl ∈{Vl,El,il,icl} l=α,β (Two-phase system variables) and Xk ∈{Vk,Ek,ik,ick} k=1,2,3 (Three-phase system variables). The above stationary reference frame variables can be transformed into a synchronous reference frame using the following equations (7) and (8):
where:
Using the synchronous reference frame transformation of equation (8) “α,β” can be expressed as a function of a “q, d” as per the following equation (13):
Using equation (13), equations (9)-(12) can be rewritten as follows:
The corresponding deferential can be rewritten according to the following equation (18):
Equations (14)-(17) can be rewritten by applying equation (18) as follows:
Or, after dividing left and right parts of equations (19)-(22) by ejω then:
After some manipulation, where p designates a time derivative d/dt, the following can be derived:
Or, finally:
Equation (31) can be rewritten in a scalar using equation (7) as follows:
Or:
Equation (32) can be rewritten in a scalar form using equation (7) as follows:
ic.q−jic.d=pCVm.q−jpCVm.q+jωCVm.q+ωCVm.d (38)
Or:
Equation (33) can be rewritten in a scalar form using equation (7) as follows:
Assuming “jEm.d=0”, the following applies:
Equation (34) can be rewritten in a scalar form using equation (7) as follows:
ic.q−jic.d=iinv.q−jiinv.d−im.q+jim.d. (46)
ic.q=iinv.q−im.q (47),
ic.q=iinv.d−im.d (48)
Where: “iq and id” are “d-q” representation of currents “i1, i2, and i3” (see
Based on equations (36), (37), (39)-(42), (44), (45), (47) and (48) the system can be represented as the dynamic block diagram 500 illustrated in
The object can be redrawn as shown in
According to equations (53)-(56), the object control block diagram can be redrawn as a second step of a transformation as seen in the diagram 900 of
According to equation (57), the object can be redrawn as shown in the diagram 100 of
According to equations (58) and (59), the object control block diagram can be redrawn as shown in the diagram 1100 of
According to equation (60), and the fact that output voltages (Vm.d, Vm.q) of the filter are independent variables (measurable variables), the object control block diagram can be redrawn as shown in the diagram 1200 of
According to
ΔVim.cc.d=[(Vinv.d+Vinv.q.cc)+Vm.q.cc+Vq.cc]−ΔVm.d (61)
ΔVim.cc.q=[(Vinv.q−Vinv.d.cc−Em.q)−Vm.d.cc−Vd.cc]−ΔVm.q (62)
According to equations (61) and (62) the object control block diagram can be redrawn as shown in the diagram 1300 of
After some manipulation the following can be derived:
where:
RΣ=Rsys+R (67)
LΣ=Lsys+Lr (68)
The transfer function can be further simplified according to the following equation (69):
The following assumptions can be made:
Using the assumptions of equations (70) and (71), the transfer function of equation (66) can be represented as follows:
For the “q” loop, the following can be written:
According to equations (72) and (73), the object control block diagram can be redrawn as shown in the diagram 1400 in
In an eighth transformation step, the object model block diagram can be redrawn as shown in a diagram 1500 of
iinv.d,q·ωe·Lr+im,d,q·ωe·Lsys=im.d,q·ωe·LΣ (74)
where:
LΣ=Lsys+Lr (75)
The above assumptions are generally valid in a variety of systems that employ an output filter 30, a transformer 50, and a lengthy cable 60 to drive a motor load 20, such as oil pump applications, particularly at quasi steady-state operation where voltage derivatives are not get really large values. Furthermore, practically the value of term “ωe·C·Lsys” is often less than 0.01 and so it will bring only 1% or less of the
value to the total cross-coupling terms. Accordingly, it is possible to remove some of the above derivative terms and use only study-state terms for cross-coupling in the object. The diagram 1700 in
Referring also to
In the examples of
In the preceding specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
This application is a continuation-in-part of, and claims priority to and the benefit of, U.S. patent application Ser. No. 15/053,135, filed on Feb. 25, 2016, entitled SENSORLESS MOTOR DRIVE VECTOR CONTROL WITH FEEDBACK COMPENSATION FOR FILTER CAPACITOR CURRENT, which claims, under 35 USC § 119, priority to, and the benefit of U.S. Provisional Application Ser. No. 62/212,063, filed on Aug. 31, 2015 and entitled CONTROL OF MOTOR DRIVES WITH OUTPUT SINE WAVE FILTER CAPACITOR CURRENT, and U.S. patent application Ser. No. 14/555,769 is a continuation-in-part of, and claims priority to and the benefit of, U.S. patent application Ser. No. 14/555,769, filed on Nov. 28, 2014, entitled METHOD AND APPARATUS FOR CONTROLLING POWER CONVERTER WITH INVERTER OUTPUT FILTER, and U.S. patent application Ser. No. 14/555,769 is a continuation of U.S. patent application Ser. No. 13/742,405, filed on Jan. 16, 2013, entitled METHOD AND APPARATUS FOR CONTROLLING POWER CONVERTER WITH INVERTER OUTPUT FILTER and granted on Sep. 1, 2015 as U.S. Pat. No. 9,124,209 to Liu et al., and U.S. patent application Ser. No. 15/053,135 is a continuation-in-part of, and claims priority to and the benefit of, U.S. patent application Ser. No. 14/666,894, filed on Mar. 24, 2015, entitled POSITION SENSORLESS OPEN LOOP CONTROL FOR MOTOR DRIVES WITH OUTPUT FILTER AND TRANSFORMER, and U.S. patent application Ser. No. 14/666,894 is a continuation of U.S. patent application Ser. No. 13/868,216, filed on Apr. 23, 2013, entitled POSITION SENSORLESS OPEN LOOP CONTROL FOR MOTOR DRIVES WITH OUTPUT FILTER AND TRANSFORMER and granted on Jun. 9, 2015 as U.S. Pat. No. 9,054,621 to Liu et al., and U.S. patent application Ser. No. 15/053,135 is a continuation-in-part of, and claims priority to and the benefit of, U.S. patent application Ser. No. 14/193,329, filed on Feb. 28, 2014, entitled METHOD AND APPARATUS FOR STABILITY CONTROL OF OPEN LOOP MOTOR DRIVE OPERATION, and U.S. patent application Ser. No. 14/193,329 is a continuation-in-part of U.S. patent application Ser. No. 13/931,839, filed on Jun. 29, 2013, entitled METHOD AND APPARATUS FOR STABILITY CONTROL OF OPEN LOOP MOTOR DRIVE OPERATION and granted on Jun. 9, 2015 as U.S. Pat. No. 9,054,611 to Liu et al. The entireties of all the above applications and granted patents are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3723840 | Opal et al. | Mar 1973 | A |
4823251 | Kawabata et al. | Apr 1989 | A |
5032771 | Kerkman | Jul 1991 | A |
5526252 | Erdman | Jun 1996 | A |
5703449 | Nagate | Dec 1997 | A |
5717305 | Seibel | Feb 1998 | A |
5744921 | Makaran | Apr 1998 | A |
5909098 | Konecny et al. | Jun 1999 | A |
5959431 | Xiang | Sep 1999 | A |
5990654 | Skibinski | Nov 1999 | A |
5994869 | Becerra | Nov 1999 | A |
6121736 | Narazaki et al. | Sep 2000 | A |
6124697 | Wilkerson | Sep 2000 | A |
6208537 | Skibinski et al. | Mar 2001 | B1 |
6222335 | Hiti et al. | Apr 2001 | B1 |
6329781 | Matsui et al. | Dec 2001 | B1 |
6600980 | Kraska et al. | Jul 2003 | B1 |
6940249 | Toyoda | Sep 2005 | B2 |
6965212 | Wang et al. | Nov 2005 | B1 |
7045988 | Ha et al. | May 2006 | B2 |
7049778 | Katanaya | May 2006 | B2 |
7084604 | Salomaki | Aug 2006 | B2 |
7102323 | Zhou et al. | Sep 2006 | B2 |
7468595 | Lee | Dec 2008 | B2 |
7679308 | Tomigashi | Mar 2010 | B2 |
7683568 | Pande et al. | Mar 2010 | B2 |
7724549 | Skibinski et al. | May 2010 | B2 |
7729146 | Hayami et al. | Jun 2010 | B2 |
7920393 | Bendre | Apr 2011 | B2 |
7932693 | Lee | Apr 2011 | B2 |
7979223 | Monti et al. | Jul 2011 | B2 |
7990097 | Cheng et al. | Aug 2011 | B2 |
8009450 | Royak et al. | Aug 2011 | B2 |
8143838 | Akiyama | Mar 2012 | B2 |
8217602 | Ikei | Jul 2012 | B2 |
8232760 | Lu et al. | Jul 2012 | B2 |
8288886 | Anwar et al. | Oct 2012 | B2 |
8299646 | Rockenfeller et al. | Oct 2012 | B2 |
8350507 | Ito | Jan 2013 | B2 |
8541971 | Sakai | Sep 2013 | B2 |
8736220 | Ogawa et al. | May 2014 | B2 |
8890450 | Maekawa | Nov 2014 | B2 |
8970154 | Ishikawa et al. | Mar 2015 | B2 |
8981702 | Katariya et al. | Mar 2015 | B2 |
9240733 | Royak et al. | Jan 2016 | B2 |
20040052097 | Morimoto | Mar 2004 | A1 |
20050012339 | Mikhail | Jan 2005 | A1 |
20060113952 | Zhou | Jun 2006 | A1 |
20070001635 | Ho | Jan 2007 | A1 |
20070007929 | Lee et al. | Jan 2007 | A1 |
20080001571 | Tomigashi | Jan 2008 | A1 |
20080074074 | Skibinski | Mar 2008 | A1 |
20080300820 | Hu | Dec 2008 | A1 |
20080312855 | Monti et al. | Dec 2008 | A1 |
20090146592 | Tobari et al. | Jun 2009 | A1 |
20090153083 | Rozman | Jun 2009 | A1 |
20090200980 | Ramu et al. | Aug 2009 | A1 |
20110062908 | Kitanaka | Mar 2011 | A1 |
20110084638 | Patel et al. | Apr 2011 | A1 |
20110109155 | Anwar et al. | May 2011 | A1 |
20110181232 | Krishnamoorthy et al. | Jul 2011 | A1 |
20120038300 | Kato et al. | Feb 2012 | A1 |
20120081061 | Zargari | Apr 2012 | A1 |
20120268056 | Liu | Oct 2012 | A1 |
20130063059 | Chi | Mar 2013 | A1 |
20130153180 | Montocchio et al. | Jun 2013 | A1 |
20130187579 | Rozman | Jul 2013 | A1 |
20140197774 | Liu et al. | Jul 2014 | A1 |
20140228980 | Ohta et al. | Aug 2014 | A1 |
20140265952 | Katariya et al. | Sep 2014 | A1 |
20140312811 | Liu et al. | Oct 2014 | A1 |
20150002059 | Liu et al. | Jan 2015 | A1 |
20150002067 | Rowan et al. | Jan 2015 | A1 |
20150123579 | Liu et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2513286 | Sep 2002 | CN |
101385385 | Mar 2009 | CN |
201504207 | Jun 2010 | CN |
101950983 | Jan 2011 | CN |
102045021 | May 2011 | CN |
102349230 | Feb 2012 | CN |
202872721 | Apr 2013 | CN |
103190068 | Jul 2013 | CN |
1635448 | Mar 2006 | EP |
1868288 | Dec 2007 | EP |
2390766 | Jan 2004 | GB |
2001-025282 | Jan 2001 | JP |
2002034289 | Jan 2002 | JP |
WO2009093214 | Jul 2009 | WO |
Entry |
---|
“Guidelines for the Use of 400-600 Volt AC Drives in Medium Voltage Applications,” Yaskawa Application Note, Jun. 7, 2005. |
Agarlita, Sorin-Cristian et al., “I-f Starting and Active Flux Based Sensorless Vector Control of Reluctance Synchronous Motors, with Experiments”, 12th Int'l Conf. on Optimization of Electrical and Electronic Equipment, OPTIM 2010, pp. 337-342. |
Andreescu, G., et al. “Stable V/f Control System with Unity Power Factor for PMSM Drives”, IEEE 13th Int'l Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), May 2012, pp. 432-438. |
Batzel, Todd D. et al., “Electric Propulsion With Sensorless Permanent Magnet Synchronous Motor: Implementation and Performance”, IEEE Transactions on Energy Conversion, vol. 20, No. 3, pp. 575-583, Sep. 2005. |
Carpaneto, et al., “A New Sensorless Permanent Magnet Synchronous Motor Algorithm Based on Algebraic Method”; 13th European Conf. on Power Electronics and Applications, 2009; EPE 2009; Sep. 8-10, 2009, Barcelona, Spain; IEEE, Piscataway, NJ, Sep. 8, 2009, pp. 1-10. |
Colby, Roy S., “An Efficiency-Optimizing Permanent-Magnet Synchronous Motor Drive”, IEEE Transactions on Industry Applications, vol. 24, No. 3, May/Jun. 1998, pp. 462-469. |
Fatu et al., I-F Starting Method With Smooth Transition to EMF Based Motion-Sensorless Vector Control of PM Synchronous Motor/Generator, 2008, IEEE, pp. 1481-1487. |
Halkassari, Optimal U/F-Control of High Speed Permanent Magnet Motors, 2006, IEEE, pp. 2302-2308. |
Iepure, Liviu Ioan et al., “Hybrid I-f Starting and Observer-Based Sensorless Control of Single-Phase BLDC-PM Motor Drives”, IEEE Transactions on Industrial Electronics, vol. 59, No. 9, Sep. 2012, pp. 3436-3444. |
J. Liu et al., “Rotor Position Estimation for Synchronous Machines Based on Equivalent EMF”, IEEE Transactions on Industry Applications, vol. 47, pp. 1310-1318, May-Jun. 2011. |
Jaitrong et al., “A Modify Technique to Actively Damp Oscillation in the Input LC Filter of Three-Phase PWM Rectifier”, Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008; Proceedings of ECTI-CON 2008; pp. 1017-1020. |
Kim et al., “PWM Switching Frequency Signal Injection Sensorless Methods in IPMSM”, IEEE, 2011, pp. 3021-3028. |
Kiuchi, M., et al., “V/f Control of Permanent Magnet Synchronous Motors Suitable for Home Appliances by DC-link Peak Current Control Method”, The Jun. 2010 Int'l Power Electronics Conference, IEEE 2010, pp. 567-573. |
Kobayashi et al., “Investigation of IPMSM's Position Estimation in Low Speed Region with DC Link Current Detection”, IEEE Jan. 2007, pp. 1411-1416. |
Kojima, Mari et al., “Novel Vector Control System Using Deadbeat-Controlled PWM Inverter With Output LC Filter”, IEEE Transactions on Industry Applications, vol. 40, No. 1, pp. 162-169, Jan./Feb. 2004. |
Kubota et al., “Sensorless Vector Control of Closed-Slot Induction Machines at Low Frequency”, IEEJ Journal of Industry Applications, vol. 2, No. 1, The Institute of Electrical Engineers of Japan, 2013, pp. 74-78. |
Kukrer, “Deadbeat Control of a Three-Phase Inverter with an Output LC Filter”, IEEE Transactions on Power Electronics, vol. 11, No. 1, Jan. 1996, 8 pgs. |
Laczynski et al., “Active Damping of LC-Filters for High Power Drives Using Synchronous Optimal Pulsewidth Modulation”, Power Electronics Specialists Conf., IEEE, Jun. 15, 2008, pp. 1033-1040. |
Loh, Poh Chiang et al., “Analysis of Multiloop Control Strategies for LC/CL/LCL-Filtered Voltage-Source and Current-Source Inverters”, IEEE Transactions on Industry Applications, vol. 41, No. 2, pp. 644-654, Mar./Apr. 2005. |
Makridenko, L.A. et al., “Sensorless Drive With Synchronous Machine and Submersible Inverter for Oil-Drowned Pump”, IEEE European Conf. on Power Electronics and Applications (EPE), pp. 1-10, Sep. 2009. |
Matsushita, M., et al., “Stabilization Control of Sensorless Sinusoidal Wave Drive for Control of Power Factor of PM Motor”, IEEE Int'l Conf. Electrical Machines and Systems (ICEMS), 2009, 5 pgs. |
Miranda et al., “Parameter and Speed Estimation for Implementing Low Speed Sensorless PMSM Drive System Based on an Algebraic Method”; Applied Power Electronics Conf.; APEC 2007, 22nd Annual IEEE; Feb. 1, 2007,;pp. 1406-1410. |
Miranda et al., “Sensorless Control of a PMSM Synchronous Motor at Low Speed”; IEEE Industrial, Electronics; IECON 2006; 32nd Annual Conf., IEEE; Piscataway, NJ; Nov. 1, 2006; pp. 5069-5074. |
Moldovan et al., “Active-Flux Based, V/f-With-Stabilizing-Loops Versus Sensorless Vector Control of IPMSM Drives”; Industrial Electronics (ISIE); 2011 IEEE Int'l Symposium; Jun. 27, 2011; pp. 514-519. |
Mukherjee et al., “Fast Control of Filter for Sensorless Vector Control SQIM Drive With Sinusoidal Motor Voltage”, IEEE Transactions on Industrial Electronics, vol. 54, No. 5, Oct. 2007, pp. 2435-2442. |
Nakamura, Yoshinobu et al., “High-Efficiency Drive Due to Power Factor Control of a Permanent Magnet Synchronous Motor”, IEEE Transactions on Power Electronics, vol. 10, No. 2, Mar. 1995, Manuscript rec'd Aug. 22, 1992, revised Sep. 13, 1994, pp. 247-253. |
Park et al., “Analysis and Reduction of Time Harmonic Rotor Loss in Solid-Rotor Synchronous Reluctance Drive”, IEEE Transactions on Power Electronics, vol. 23, No. 2, Mar. 1, 2008, pp. 985-992 |
Park et al., “Design and Control of High-Speed Solid-Rotor Synchronous Reluctance Drive With Three-Phase LC Filter”, Conference Record of the 2005 IEEE Industry Applications Conf. 40th IAS Annual Meeting, vol. 1, Oct. 2, 2005, pp. 715-722. |
Perera, P.D. Chandana, “A Sensorless, Stable V/f Control Method for Permanent-Magnet Synchronous Motor Drives”, IEEE Transactions on Industry Applications, vol. 39, No. 3, May/Jun. 2003, IEEE 2003, pp. 783-791. |
Ryvkin, S. et al., “Sensorless Oil Drowned Pump Drive”, IEEE ISIE 2005, Jun. 20-23, 2005, Dubrovnik, Croatia, pp. 963-968. |
Salomäki, J. et al., “Sensorless Control of Induction Motor Drives Equipped With Inverter Output Filter”, IEEE Transactions on Industrial Electronics, vol. 53, No. 4, pp. 1188-1197, Aug. 2006. |
Salomäki, J. et al., “Sensorless Vector Control of PMSM Drives Equipped With Inverter Output Filter”, in Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2006), Paris, France, pp. 1059-1064. |
Steinke et al., “Use of a LC Filter to Achieve a Motorfriendly Performance of the PWM Voltage Source Inverter”, Electric Machines and Drives Conference Record, 1997; IEEE, Milwaukee, WI, May 18, 1997, 3 pgs. |
Stirban et al., “Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer”; IEEE Transactions on Industry Applications; IEEE Service Center, Piscataway, NJ; vol. 48, No. 6; Nov. 1, 2012; pp. 1950-1958. |
Stirban et al., “Motion-Sensorless Control of BLDC-PM Motor With Offline FEM Information Assisted State Observer”; Optimization of Electrical and Electronic Equipment (OPTIM), 2010 12th International Conference, Ma 22, 2010, pp. 321-328. |
Yaskawa Technical Review, vol. 69, No. 2, AC Drive Drive, Sensorless Drive Technology for Permanent Magnet Synchronous Motor; http://www.yaskawa.co.jp/en/technology/tech_news/69-2/t10.htm, retrieved from the Internet 11-26-2-14, 1 pg. |
Yim et al., “A Predictive Current Control Associated to EKF for High Performance IPMSM Drives”; Applied Power Electronics Conf. and Exposition (APEC), 2011; 26th Annual IEEE, Mar. 6, 2011; pp. 1010-1016. |
Number | Date | Country | |
---|---|---|---|
20170141712 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62212063 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13742405 | Jan 2013 | US |
Child | 14555769 | US | |
Parent | 13868216 | Apr 2013 | US |
Child | 14666894 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15053135 | Feb 2016 | US |
Child | 15421576 | US | |
Parent | 14555769 | Nov 2014 | US |
Child | 15053135 | US | |
Parent | 14666894 | Mar 2015 | US |
Child | 15053135 | Feb 2016 | US |
Parent | 14193329 | Feb 2014 | US |
Child | 15053135 | Feb 2016 | US |
Parent | 13931839 | Jun 2013 | US |
Child | 14193329 | US |