This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2009-263806 filed Nov. 19, 2009.
The present invention relates to a feeding apparatus and an image forming apparatus.
According to an aspect of the present invention, there is provided a feeding apparatus including: an insulative feeding apparatus main body; plural first feeder lines used for supply of electric power; and a second feeder line used for supply of electric power at a voltage different from a voltage of the electric power respectively supplied with the plural first feeder lines, the feeding apparatus main body having: a first support member that supports the plural first feeder lines; and a second support member that supports the second feeder line, and the first support member having: a wall surface part having a wall surface; and at least one projection projected from the wall surface in a direction crossing the wall surface, the plural first feeder lines being provided in space formed between the first support member and the second support member, and mutually partitioned from each other with the at least one projection, and the second feeder line being provided on a side of a surface of the second support member opposite to a surface on a side opposite to the plural first feeder lines.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
Next, an exemplary embodiment of the present invention will be described based on the drawings.
As shown in
Further, e.g. a part of a recording medium feeding device 500 (see
As described above, the image forming apparatus main body 12 has the main body frame 30. In the main body frame 30, an opening/closing frame 32 is attached to a part on the front surface side of the main body frame 30 which is exposed upon opening of the opening/closing part 24, using hinges 34, so as to open/close with respect to the main body frame 30. The opening/closing frame 32 is used as a side plate provided on the side of attachment/removal of a transfer unit 100 (see
As described above, the image forming apparatus 10 has the image forming apparatus main body 12, and an image forming part 40 to form an image on a recording medium, the recording medium feeding device 500 to supply a recording medium to the image forming part 40 and a power source device 600 are provided in the image forming apparatus main body 12. As a recording medium, normal paper, an OHP sheet or the like can be used. Further, a yellow developer container 90Y, a magenta developer container 90M, a cyan developer container 90C and a black developer container 90K are attached respectively removably in the image forming apparatus main body 12.
Yellow developer, magenta developer, cyan developer and black developer are respectively contained in the yellow developer container 90Y, the magenta developer container 90M, the cyan developer container 90C and the black developer container 90K. The contained yellow developer, magenta developer, cyan developer and black developer are respectively supplied to a developing device 58Y (see
The image forming part 40 has a yellow image forming part 50Y, a magenta image forming part 50M, a cyan image forming part 50C, a black image forming part 50K, and the transfer unit 100. The yellow image forming part 50Y, the magenta image forming part 50M, the cyan image forming part 50C and the black image forming part 50K have photoreceptor drums 52Y, 52M, 52C and 52K respectively used as an image holder, and form a yellow developer image using yellow developer, a magenta developer image using magenta developer, a cyan developer image using cyan developer, and a black developer image using black developer. The details of the yellow image forming part 50Y, the magenta image forming part 50M, the cyan image forming part 50C and the black image forming part 50K will be described later.
The transfer unit 100, used as an attachable/removable structure attached/removed with respect to the image forming apparatus main body 12, is removed/attached with respect to the image forming apparatus main body 12 in a state where the opening/closing part 24 (see
The intermediate transfer belt 106 is used as a conveyance member to convey at least one of developer images transferred from the photoreceptor drums 52Y, 52M, 52C and 52K and recording media on which the developer images are transferred from the photoreceptor drums 52Y, 52M, 52C and 52K, and used as a transfer body on which the images (developer images) held on the photoreceptor drums 52Y, 52M, 52C and 52K are transferred. Further, the intermediate transfer belt 106, which is an endless belt, is put around support rollers 110, 112, 114 and 116 and a second transfer roller 124 rotatably in an arrow direction in
Further, the transfer unit 100 has first transfer rollers 122Y, 122M, 122C and 122K. The first transfer rollers 122Y, 122M, 122C and 122K are respectively used as a first device at least one of in image formation and recording medium conveyance, and respectively transfer a yellow developer image, a magenta developer image, a cyan developer image and a black developer image formed on the surfaces of the photoreceptor drums 52Y, 52M, 52C and 52K to the intermediate transfer belt 106. The second transfer roller 124, used as a second device at least in one of image formation and recording medium conveyance, further transfers the yellow developer image, the magenta developer image, the cyan developer image and the black developer image transferred on the intermediate transfer belt 106 to the recording medium. The transfer unit 100 will be described later.
Further, the image forming apparatus main body 12 includes a fixing device 80 to fix a developer image transferred on a recording medium with the second transfer roller 124 to the recording medium. The fixing device 80 has a heating roller 82 with a heat source and a pressure roller 86 pressed against the heating roller 82, and fixes the developer image to the transfer medium using heat and pressure.
Further, the recording medium feeding device 500 to supply a recording medium to the image forming part 40 is attached in the image forming apparatus main body 12. As described above, the recording medium feeding device 500 can be pulled out to a position in front of the image forming apparatus main body 12 (front side in
The recording medium feeding device 500 has a recording medium container 512 to contain the recording media in stacked state. Further, the recording medium feeding device 500 has a conveyance roller 514 to extract the top recording medium in the recording medium container 512 and feed the extracted recording medium toward the image forming part 40. Further, the recording medium feeding device 500 has a retard roller 516 to retard a recording medium so as to prevent conveyance of plural recording media in overlapped state to the image forming part 40 and a press-contact roller 518 in press-contact with the retard roller 516.
Further, the image forming apparatus main body 12 includes a conveyance passage 530 used in conveyance of a recording medium. The conveyance passage 530 is used for conveyance of a recording medium supplied from the recording medium feeding device 500 to the image forming part 40, and discharge of the recording medium on which an image is formed to the outside of the image forming apparatus main body 12. The above-described conveyance roller 514, the retard roller 516 and the press-contact roller 518, a conveyance roller 534, a registration roller 540, the second transfer roller 124, an opposed roller 542 opposed via the intermediate transfer belt 106, the above-described fixing device 80, and a discharge roller 544 are provided along the conveyance passage 530 sequentially from the upstream side in a direction of conveyance of recording medium.
The registration roller 540 temporarily stops an end of a recording medium conveyed from the recording medium feeding device 500 side, then sends the recording medium toward a position between the second transfer roller 124 and the opposed roller 542 in correspondence with timing of transfer of respective color toner images to the intermediate transfer belt 106. The discharge roller 544 discharges the recording medium on which the respective color toner images are fixed with the fixing device 80 to the discharge part 14.
As shown in
It may be arranged such that all or some of the photoreceptor drum 52Y, the charging device 54Y, the latent image forming device 56Y, the developing device 58Y and the cleaning device 62Y are integrated, and the yellow image forming part 50Y is an attachable/removable structure which can be attached/removed in the image forming apparatus main body 12.
Further, the feeding device 700, has a feeding device main body 710, and first feeding terminals 750Y, 750M, 750C and 750K, and a second feeding terminal 760 are attached in the feeding device main body 710 so as to be projected frontward (front side in
As shown in
Further, the transfer unit 100 has a gear 130 connected to the support roller 110. Upon attachment of the transfer unit 100 to the image forming apparatus main body 12 side, driving is transmitted from a motor 36 used as a driving source provided on the image forming apparatus main body 12 side to the gear 130.
Further, in the transfer unit 100, first feeding-receiving terminals 150Y, 150M, 150C and 150K and a second feeding-receiving terminal 160 are attached rearward to e.g. the rear side plate 104. The first feeding-receiving terminals 150Y, 150M, 150C and 150K are respectively electrically connected to the first transfer rollers 122Y, 122M, 122C and 122K (see
The power source device 600 is a high-voltage power source in which first power source terminals 610Y, 610M, 610C and 610K and a second power source terminal 620 are provided on the left surface side. The first power source terminals 610Y, 610M, 610C and 610K are electrically connected to the first feeder lines 730Y, 730M, 730C and 730K (see
As described above, the feeding device 700 has the feeding device main body 710.
The feeding device main body 710 is an insulative member formed of e.g. insulative material such as resin.
The first feeding terminals 750Y, 750M, 750C and 750K and the second feeding terminal 760 are attached to the feeding device main body 710 so as to be projected frontward from the feeding device main body 710. Further, first power-source side terminals 740Y, 740M, 740C and 740K and a second power-source side terminal 742 are attached to the right side surface of the feeding device main body 710 so as to be projected from the right side surface of the feeding device main body 710.
The first feeding terminal 750Y and the first power-source side terminal 740Y are attached to the first feeder line 730Y (see
As shown in
The first main body member 770 is used as a first support member to support the first feeder lines 730Y, 730M, 730C and 730K used as plural first feeder lines. The second main body member 780 is used as a second support member to support the second feeder line 732 used as a second feeder line.
The first main body member 770 is formed by using insulative material such as resin.
Further, the first main body member 770 has a wall surface part 770b having a wall surface 770a, and a projection 770d projected from the wall surface 770a in a direction crossing the wall surface 770a. The first main body member 770 has at least one projection 770d. In the present exemplary embodiment, the first main body member 770 has three projections 770d, fewer than the four first feeder lines 730Y, 730M, 730C and 730K.
Further, in the first main body member 770, four grooves 772Y, 772M, 772C and 772K are formed toward the front side in positions among the projections 770d and positions outside the projections 770d positioned on both sides. The first feeder line 730Y is held in the groove 772K; the first feeder line 730M, in the groove 772M; the first feeder line 730C, in the groove 772C; and the first feeder line 730K, in the groove 772K. In this manner, the grooves 772Y, 772M, 772C and 772K are respectively used as a first holding groove to hold the first feeder line. In other words, the first feeder lines 730Y, 730M, 730C and 730K are mutually partitioned with the projections 770d.
The second main body member 780 is formed by using insulative material such as resin.
The second main body member 780 has a wall surface part 780d having a wall surface 780a, and a surface of the wall surface part 780d on the rear side of the wall surface 780a is the wall surface 780b. Further, the second main body member 780 has, e.g., two projections 780e projected from the wall surface 780a in a direction crossing the wall surface 780a. A groove 782 is formed between the two projections 780e. The second feeder line 732 is held in the groove 782. In this manner, the groove 782 is used as a second holding groove to hold the second feeder line.
The third main body member 790 using an insulative member such as resin is attached to the second main body member 780 from the front side so as to cover the groove 782.
Note that using the second main body member 780 as a reference, the first feeder lines 730Y, 730M, 730C and 730K and the second feeder line 732 are provided on mutually opposite sides with respect to the wall surface part 780d of the second main body member 780. That is, the second feeder line 732 is provided on the side of the wall surface 780a as a surface opposite to the wall surface 780b as a surface opposite to the first feeder lines 730Y, 730M, 730C and 730K of the second main body member 780. Further, the first feeder lines 730Y, 730M, 730C and 730K are provided in space formed between the first main body member 770 and the second main body member 780.
The first feeder lines 730Y, 730M, 730C and 730K are respectively supported with the feeding device main body 710, and are used as first feeder lines to supply electric power to the first transfer rollers 122Y, 122M, 122C and 122K. Note that the voltage of the electric power supplied to the first transfer rollers 122Y, 122M, 122C and 122K using the first feeder lines 730Y, 730M, 730C and 730K is e.g. +3 kV.
The second feeder line 732 is supported with the feeding device main body 710, and used as a second feeder line to supply electric power to the second transfer roller 124. Note that the voltage of the electric power supplied to the second transfer roller 124 using the second feeder line 732 is e.g. −10 kV.
As shown in
As shown in
As shown in
As shown in
As described above, in the image forming apparatus 10 according to the present exemplary embodiment, both of the grooves 772Y, 772M, 772C and 772K to hold the first feeder lines 730Y, 730M, 730C and 730K, and the groove 782 to hold the second feeder line 732 are formed in the feeding device main body 710. However, since it is sufficient to form at least one of the grooves 772Y, 772M, 772C and 772K and the groove 782, it may be arranged such that only the grooves 772Y, 772M, 772C and 772K are formed or only the groove 782 is formed.
Further, as described above, in the image forming apparatus 10 according to the present exemplary embodiment, both of the convexes 786Y, 786M, 786C and 786K to suppress movement of the first feeder lines 730Y, 730M, 730C and 730K in a direction to move from the grooves 772Y, 772M, 772C and 772K and the convex 792 to suppress movement of the second feeder line 732 in a direction to move from the groove 782 are formed in the feeding device main body 710. However, since it is sufficient to form at least one of the convexes 786Y, 786M, 786C and 786K and the convex 792, it may be arranged such that only the convexes 786Y, 786M, 786C and 786K are formed or only the convex 792 is formed.
As shown in
As in the case of the end of the first feeder line 730Y to which the first feeding terminal 750Y is attached, where the first pressing part 736Y to press the first feeding terminal 750Y against the first feeding-receiving terminal 150Y (see
As in the case of the end of the first feeder line 730Y to which the first feeding terminal 750Y is attached, where the first pressing part 736Y to press the first feeding terminal 750Y against the first feeding-receiving terminal 150Y is provided, at the end of the second feeder line 732 to which the second feeding terminal 760 is attached, a second pressing part 738 used as a second terminal pressing part to press the second feeding terminal 760 against the second feeding-receiving terminal 160 is provided (see
Further, as described above, in the image forming apparatus 10 according to the present exemplary embodiment, both of the first pressing parts 736Y, 736M, 736C and 736K and the second pressing part 738 are formed. However, since it is sufficient to form at least one of the first pressing parts 736Y, 736M, 736C and 736K and the second pressing part 738, it may be arranged such that only the first pressing parts 736Y, 736M, 736C and 736K are formed or only the second pressing part 738 is formed.
As shown in
As shown in
Further, when the first pressing parts 736Y, 736M, 736C and 736K press the respective first feeding terminals 750Y, 750M, 750C and 750K against the first feeding-receiving terminals 150Y, 150M, 150C and 150K, the transfer unit 100 is pressed to the front side, and the transfer unit 100 is pressed against the opening/closing frame 32 (see
As described above, the first transfer rollers 122Y, 122M, 122C and 122K and the second transfer roller 124 are rotatably supported with the front side plate 102 and the rear side plate 104. At this time, the first transfer rollers 122Y, 122M, 122C and 122K are supported with the rear side plate 104 using bearings 140Y, 140M, 140C and 140K having conductivity. Further, the second transfer roller 124 is supported with the rear side plate 104 using a bearing 142 having conductivity.
The bearings 140Y, 140M, 140C and 140K are respectively electrically connected to the first feeding-receiving terminals 150Y, 150M, 150C and 150K using conductive parts 170Y, 170M, 170C and 170K. Further, the bearing 142 is electrically connected to the second feeding-receiving terminal 160 using a conductive part 190.
As shown in
The conductive part 170Y has a torsion spring 180Y of conductive material. One end side of the torsion spring 180Y is in contact with the first feeding-receiving terminal 150Y such that it is coiled around the first feeding-receiving terminal 150Y, and the other end side is pressed against a lower side of the bearing 140Y having conductivity. In this manner, the first feeding-receiving terminal 150Y and the first transfer roller 122Y are electrically connected with the torsion spring 180Y of conductive material and the bearing 140Y of conductive material. Note that in
Since the structure where the first transfer rollers 122M, 122C and 122K are supported with the rear side plate 104 is the same as the above-described structure where the first transfer roller 122Y is supported with the rear side plate 104, the explanation of the structure will be omitted. Further, since the structure of the conductive parts 170M, 170C and 170K is the same as that of the conductive part 170Y, the explanations of these conductive parts will be omitted.
As described above, the image forming apparatus 10 has the bearing support member 172 used as a moving member to bring one of the plural first transfer rollers 122Y, 122M, 122C and 122K into contact with or away from one of the photoreceptor drums 52Y, 52M, 52C and 52K. The bearing support member 172 rotates about the first feeding-receiving terminal 150 used as a shaft, thereby moves one of the plural first transfer rollers 122Y, 122M, 122C and 122K. Accordingly, the first transfer roller 122 is positioned with respect to the photoreceptor drum 52 with a simple structure, and electric power feeding to the first transfer roller 122 can be simply performed.
The conductive part 190 has a conductive member 192 of conductive material and a spring member 198 of conductive material. The second feeding-receiving terminal 160 is attached to one end side of the conductive member 192, and the spring member 198 is attached to the other end side of the conductive member 192, further, the side of the spring member 198 opposite to the side attached to the conductive member 192 is pressed against the bearing 142 of conductive material. In this manner, the second feeding-receiving terminal 160 and the second transfer roller 124 are electrically connected with the conductive member 192, the spring member 198 and the bearing 142.
In the image forming apparatus 10 described above, the first transfer roller 122Y and the like are used as first devices, and the second transfer roller 124 is used as a second member. The first feeder line 730Y and the like to feed electric power to the first transfer roller 122Y and the second feeder line 732 to feed electric power to the second transfer roller 124 at a voltage different from that fed with the first feeder line 730 are provided on mutually opposite sides with respect to the second main body member 780 used as a wall surface part having an insulative property. For example, the present invention may be applied to the image forming apparatus 10 such that the first feeder line to feed electric power to the charging roller 53 and the second feeder line 732 to feed electric power to the developing roller 60 at a voltage different from that fed with the first feeder line using the charging roller 53 as a first device and using the developing roller 60 as a second device are provided on mutually opposite sides with respect to the wall surface part having an insulative property.
In the feeding device 700 according to the above-described exemplary embodiment of the present invention (see
Accordingly, in the feeding device 700 according to the above-described exemplary embodiment of the present invention, in comparison with the feeding device 700 according to the comparative example shown in
As described above, the present invention is applicable to an image forming apparatus such as a copier, a facsimile apparatus and a printer, and a feeding device used in such image forming apparatus.
The foregoing description of the exemplary embodiment of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiment was chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2009-263806 | Nov 2009 | JP | national |