The above objects and advantages of the present invention will become more apparent by describing in detail preferred exemplary embodiments thereof with reference to the accompanying drawings, wherein:
Hereinafter, according to an embodiment of the invention, a feeding apparatus and a recording apparatus as an example of a liquid ejecting apparatus employing the feeding apparatus will be described. First, an overall configuration of an ink jet printer as a best mode for carrying out the liquid ejecting apparatus and the recording apparatus as an example of the liquid ejecting apparatus is schematically described with reference to the drawings.
As shown in
A lower part of the hopper 220 is configured to pivot so as to he contacted with and separated from the feeding roller 231 about an upper part of a back surface of the ink jet printer 100. Specifically, the lower part of the hopper 220 is constantly urged toward the feeding roller by an urging force (not shown). Meanwhile, a spindle section 133 in which the feeding roller 231 is disposed is rotated by a power unit (not shown). A second cam unit 132 disposed in the spindle section 133 is rotated with rotation of the spindle section 133. The second cam unit 132 pivots the hopper 220 in contact with the lower part of the hopper 220.
Here, the sheet P is restricted by a pair of side edge restriction units 221 and 221 disposed in a main scanning direction X in the hopper 220. Reference numeral Y represents a sub scanning direction in which the sheet P is transported.
When the feeding roller 231 having the D shape as viewed from a side surface rotates once in a counterclockwise direction at the timing when the hopper 220 pivots in
A retard roller 233 requiring a constant load for rotation, as an example of separation means 232, is disposed at a position of a base section 210 opposed to the feeding roller 231. When a friction coefficient between the feeding roller 231 and the sheet P is denoted by μ1, a friction coefficient between the retard roller 233 and the sheet P is denoted by μ2, and a friction coefficient between the sheet P and the sheet P is denoted by μ3, the relations between the friction coefficients is satisfied by μ1>μ3 and μ2>μ3. Accordingly, even when a phenomenon in which a plurality of sheets is bitten into a frontage opening section 245 (see
Subsequently, when the hopper 220 returns to an original position deviated from the feeding roller 231, a first cam unit 131 disposed in the spindle section 133 is in contact with a cam follower 134. A sheet retracting lever (not shown) is disposed integrally with the cam follower 134 and the sheet retracting lever is rotated with rotation of the cam follower 134. The sheet retracting lever enables a sheet additionally fed when the sheet P is fed by the feeding roller 231 to be rolled back to the hopper 220. Accordingly, the sheet restricted by the retard roller 233 is retracted to the hopper 220 by the sheet retracting lever.
So-called removal of the skew is performed with respect to the sheet P transported to the pair of transporting rollers 240.
Here, “the removal of the skew” may be carried out by any method of a so-called “bite and discharge method” in which the sheet P is bent by reversely rotating the pair of transporting rollers 240 and discharging a leading edge of the sheet P after the leading edge of the sheet P is bitten into the pair of transporting rollers 240 and a so-called “knocking method” in which the sheet P is bent by knocking the leading edge of the sheet P against the pair of transporting rollers 240.
The pair of transporting rollers 240 includes a transport driving roller 241 driven by a power transmitted from the power unit and a transport driven roller 242 rotating in accordance with rotation of the transport driving roller 241. The transport driven roller 242 is rotatably held by a holder section 244 and is urged toward the transport driving roller.
The sheet P is transported to the recording section 120 by rotation of the transport driving roller 241 and recording is performed on the sheet P by the recording section 120.
The recording section 120 includes a recording head 123 discharging ink to the sheet P, a platen 124 which supports the sheet P from the downside in a vertical direction and which guides the sheet P to a position opposed to the recording head 123, a carriage 121 which has the recording head 123 and moves in the main scanning direction X, and a carriage guiding section 122 which is mounted on the base section 210 and which guides the carriage 121 in the main scanning direction X.
The sheet P is transported by rotation of the transport driving roller 241 and the recording head 123 discharges the ink by scanning the carriage 121 in the main scanning direction X, whereby the recording is performed.
A sheet guiding section 115 which supports the sheet P from the downside in the vertical direction and which guides the sheet P to the pair of transporting rollers 240 is disposed on a transport path 109 of the sheet P in the feeding apparatus 200. In the main scanning direction X of the sheet guiding section 115, a first guide section 112 is disposed on a 1-column side where the feeding roller 231 is disposed and a second guide section 111 retreating to the downside from the first guide section 112 is disposed on an 80-column side.
As shown in
In other words, the first guide section 112 has a first guide surface for guiding the sheet P and the second guide section 111 has a second guide surface. At least a part of the second guide surface is lower than the first guide surface in the vertical direction.
The feeding roller 231 is positioned substantially in the center of a part actually guiding the sheet in the first guide section 112 in the main scanning direction X. When a width of the part actually guiding the sheet in the first guide section 112 is set to ‘2 A’ in the main scanning direction X, a distance from the center of the feeding roller 231 to an edge of the part actually guiding the sheet in the first guide section 112 is set to ‘A’. When an overall width of the part actually guiding the sheet in the sheet guiding section 115, that is, the maximum width of a sheet to be recordable is set to ‘L’, the width of the part actually guiding the sheet in the second guide section is given by L-2A.
In the embodiment, the length 2A is approximately ⅓ to ⅔ shorter than the length L.
The second guide section 111 is positioned in a range where the sheet fed by the feeding roller 231 is not restricted by the feeding roller 231 and is lifted in the main scanning direction X. The range is changed depending on the size of the sheet, the kind of the sheet, and the like. In the embodiment, the second guide section 111 is disposed so as to cover all sizes and all kinds of sheets on which the recording apparatus 100 can perform recording.
The 80-column side of the spindle section 133 of the feeding roller 231 is supported by a bearing section (not shown) disposed on a back surface of the carriage guiding section 122.
As shown in
The hopper 220 in which the sheets P are stacked is disposed upstream of the feeding roller 231 and the leading edge of the sheet P is supported by a bank section 211 from the downside. When the feeding roller 231 picks up the sheet P by pivoting of the hopper 220 and rotation of the feeding roller 231, the sheet P is transported to a contact point 234 of the feeding roller 231 and the retard roller 233 through the frontage opening section 245 which is an entrance of the transport path 109 and which is constituted by the first guide section 112 and the feeding roller 231. As described above, the sheet additionally entering the frontage opening section 245 is separated by the retard roller 233 and the sheet additionally entering the frontage opening section 245 is retracted to the hopper 220 by the sheet retracting lever (not shown).
When the sheet P is fed, the leading edge of the sheet P is guided to the first guide section 112 and the upper guide section 113 and the leading edge of the sheet P reaches the nip point 243 of the pair of transporting rollers 240. When the leading edge of the sheet P reaches the nip point 243, the leading edge of the sheet P is pinched between the pair of transporting rollers 240 by driving of the transport driving roller 241 in the clockwise direction.
At this time, the removal of the skew is carried out by the so-called “bit and discharge method”. Specifically, the feeding roller 231 and the transport driving roller 241 stops to drive with the sheet P pinched between the pair of transporting rollers 240, that is, with the sheet P bitten into the pair of transporting rollers 240. The transport driving roller 241 is reversely driven in the counter clockwise direction with the feeding roller 231 stopped. Accordingly, the pair of transporting rollers 240 can discharge the leading edge of the sheet P upstream. At this time, the sheet P is bent between the contact point 234 and the nip point 243 and the leading edge of the sheet P imitates the main scanning direction X of the nip point 243, that is, a nip line. Accordingly, it is possible to remove the skew. Then, the sheet P in which the skew is removed is transported to the recording section 120 disposed downstream by normally rotating the feeding roller 231 in the counter clockwise direction and by normally rotating the transport feeding roller 241 in the counter clockwise direction.
The “bite and discharge method” is carried out to remove the skew, but the sheet P can be also bent when the so-called “knocking method” in which the leading edge of the sheet P is knocked against the pair of transporting rollers 240 being stopped is carried out similarly as when the “bite and discharge method” is carried out.
As described above, the 1-column side of the sheet on the first guide section is pressed by the feeding roller 231. Meanwhile, the pressing force of the feeding roller 231 is not imposed to the 80-column side of the sheet on the second guide section, whereby the “lifting phenomenon” occurs. The sheet path (track) of the 80-column side of the sheet in which the lifting occurs takes a shortcut by being lifted, whereby the sheet path (track) of the 80-column side of the sheet becomes shorter than the sheet path (track) of the 1-column side of the sheet. Accordingly, the sheet path on the 80-column side is shortened by taking the shortcut and thus, the 80-column side of the sheet is precedently fed to the pair of rollers 240, whereby there is a possibility that the skew will occur.
Therefore, as shown in
Reference numeral H represents an origin point upstream of the sheet path (track) F of the 1-column side of the sheet and the sheet path (track) G of the 80-column side of the sheet.
As shown in
As described above, a bending degree at the time when the lifting phenomenon occurs depends on the kind and the size of the sheet and humidity. The flat section 118 is disposed downstream of the retreat guiding section 117, whereby it is possible to cope with various bendings. That is to say, in the range of from the frontage opening section 245 to the pair of transporting rollers 240, the length of the sheet path (track) F of the 1-column side of the sheet on the first guide section can be the same as the length of the sheet path (track) G of the sheet of the 80-column side of the sheet on the second guide section by coping with the various bendings.
Here, positive values of the skew angle represent an inclination in a direction in which the 1-column side precedes the 80-column side and negative values of the skew angle represent an inclination in a direction in which the 80-column side precedes the 1-column side.
The graph shown in
Symbol ▴ indicates that the sheet is supported from the downside in the overall range which has the 80-column side of the sheet between the feeding roller and the pair of transporting rollers. That is to say, symbol ▴ is the data of the feeding apparatus in related art in which the retreat guiding section 117 is not disposed.
Meanwhile, Symbol ▪ indicates that the sheet is supported from the downside only in some locations without the 80-column side of the sheet in the vicinity of the pair of transporting rollers between the feeding roller and the pair of transporting rollers. That is to say, symbol ▪ is the data of the feeding apparatus according to the embodiment of the invention, which has the retreat guiding section 117.
As shown in
Unevenness in a friction resistance between sheet (reference numeral 509 shown in
Meanwhile, the feeding apparatus 200 of symbol ▪ according to the embodiment of the invention, the length of the sheet path (track) G of the 80-column side of the sheet can be the same as the length of the sheet path (track) F of the 1-column side of the sheet as described above. Accordingly, the overall level is substantially identical to 0 and the skew scarcely occurs.
A friction resistance between the sheet P and the transport path 109 scarcely occurs on the 80-column side of the sheet by the retreat guiding section 117. Accordingly, even when the skew occurs a little, unevenness in the degree of the skew can be remarkedly reduced.
The feeding apparatus 200 of the embodiment includes the feeding roller 231 picking up the sheet P as the stacked first medium and feeding the picked-up sheet P downstream, the sheet guiding section 115 as the medium guiding section guiding the fed sheet P to the pair of transporting rollers 240, and the pair of transporting rollers 240 transporting the guided sheet P to the recording section 120, wherein the feeding roller 231 is placed at a position deviated from the center of the medium guiding section 115(L) in the main scanning direction X which is a width wise direction of the fed sheet P, and the medium guiding section 115 has the first guide section 112 and the second guide section 111 which are arranged in the main scanning direction X, wherein the first guide section 112 is disposed on a side where the feeding roller 231 is deviated in the main scanning direction X and supports the sheet P from the downside in the vertical direction and guides the pair of transporting rollers 240 between the feeding roller 231 and the pair of transporting rollers 240, and the second guide section 111 is disposed on one side further deviated from the feeding roller 231 in the main scanning direction X and is disposed at the same position as the first guide section 112 in a sub scanning direction Y, and guides the sheet P to the pair of transporting rollers 240 at a position retreating to the downside from the first guide section 112.
The second guide section 111 of the embodiment retreats to the downside from the first guide section 112 so that the sheet path (track) F of the 1-column side of the sheet as a first path ranging from the feeding roller 231 to the pair of transporting rollers 240 in the sub scanning direction Y of the sheet P which is restricted by the feeding roller 231 and is not lifted in the first guide section 112 can be the same length as the sheet path (track) G of the 80-column side of the sheet as a second path ranging from the feeding roller 231 to the pair of transporting rollers 240 in the sub scanning direction of the sheet P which is not restricted by the feeding roller 231 and is lifted in the second guide section 111.
In the embodiment, the second guide section 111 is in the main scanning direction positioned in a range where the sheet fed by the feeding roller 231 is not restricted by the feeding roller 231 and is lifted in the main scanning direction X.
The feeding roller 231 according to the embodiment is disposed in the center of the first guide section 112(2A) in the main scanning direction X.
The recording apparatus 100 according to the embodiment includes the feeding section 110 picking up the stacked sheet P and feeding the sheet P to the recording section and a recording apparatus 120 performing recording by discharging ink to the sheet P, wherein the feeding section 110 has the feeding apparatus 200.
As shown in
A discharge section 320 for discharging the sheet P is disposed on a front surface (a front side in
As shown in
Since the CD-R and the CD-R tray Q are rigid bodies at the time of performing the recording on the recording surface (label) of the CD-R, the CD-R tray Q needs to be moved in the sub scanning direction Y lest the CD-R tray Q should be bent. That is to say, a transport path of the CD-R tray Q needs to extend in a straight line. Accordingly, the transport path of the CD-R tray Q needs to be different from the transport path of the sheet P stacked in the hopper 220. In this case, the feeding apparatus 200 of the recording apparatus 100 according to another embodiment of the invention needs to have the transport path of the CD-R tray Q by using the retreat guiding section 117 of the second guide section 111. That is to say, the second guide section 111 can guide the sheet P and the CD-R tray Q. Accordingly, it is possible to achieve compactification of the recording apparatus 100.
The second guide section 111 of another embodiment includes the flat section 318, wherein the flat section 318 retreat to the downside with respect to the first guide section 112 and guides the sheet P to the pair of transporting rollers 240 and guides the CD-R tray Q as the second medium, which is subjected to recording only in the range of the second guide section 111 in the main scanning direction X, wherein the CD-R tray Q is supported from the downside by the flat section 318 and is guided in the main scanning direction of the sheet guiding section 115 as the medium guiding section.
The recording apparatus 100 according to another embodiment includes the feeding section 110 picking up the stacked sheet P and feeding the sheet P to the recording section and the recording apparatus 120 performing the recording by discharging the ink to the sheet P and the CD-R (Q), wherein the feeding section 110 has the feeding apparatus 200.
The invention is not limited to the above-mentioned embodiments, but may be modified in various forms without departing from the scope of the invention described hi the claims. The modifications also belong to the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-166534 | Jun 2006 | JP | national |