The present application relates to a feeding apparatus.
Milk bottles are used to contain liquid state food such as milk and beverage for feeding infants. However, there is no suitable feeding apparatus to hold small pieces of cut fruit such as pear, apple and vegetable for feeding infants. There is a need to provide a feeding apparatus that can be used to feed infants with food such as fruit, jelly, yoghurt, fish, meat, etc.
In one aspect, a feeding apparatus includes a food container, and the food container includes an open end and a closed end. The food container is provided on a surface thereof with a plurality of apertures and a plurality of protrusions. The food container is made of a resilient material for use with foodstuff.
The protrusions may be formed on an outer surface and/or an inner surface of the food container.
The apertures may be circular in shape with a diameter of about 1 mm to about 5 mm.
The food container may include a plurality of apertures closer to the closed end and a plurality of apertures farther from the closed end. The dimension of the apertures closer to the closed end is smaller than the dimension of the apertures farther from the closed end.
The distance between two adjacent apertures may be about 2 mm to about 10 mm.
The protrusions may be formed between two adjacent apertures.
The resilient material for use with foodstuff may be selected from the group consisting of silicone, latex, and rubber.
The food container may be generally in the shape of a nipple of a milk-feeding bottle.
The shape of the food container may generally conform to the shape of the mouth of an infant.
The food container may taper into a rounded end in cross section.
The thickness of the food container may be about 1 mm to about 6 mm
In another aspect, a feeding apparatus includes: a food container having an open end and a closed end; a first coupling member having an opening in communication with the open end of the container, the food container being coupled to the first coupling member; and a second coupling member cooperating with the first coupling member and movable between an open configuration allowing food to pass through the opening and into the food container, and a closed configuration where the second coupling member covers the opening of the first coupling member thereby sealing the open end of the food container. The food container is provided on a surface thereof with a plurality of apertures and a plurality of protrusions, the food container being made of a resilient material for use with foodstuff.
The second coupling member may include a food-squeezing unit, the food-squeezing unit is employed to squeeze the food inside the food-squeezing unit towards and into the food container.
The food-squeezing unit may include a squeezable container.
The food-squeezing unit may include a hollow barrel and a push member. The second opening is provided at one end of barrel and a third opening is provided at the other end of the barrel, and the push member is slidably movable inside the barrel.
The feeding apparatus may further include an intermediate member disposed between the second coupling member and the first coupling member for preventing the food inside the food container from moving back into the food-squeezing unit.
The intermediate member may include a casing with at least one blocking plate, the casing defines a central space in which the at least one blocking plate is mounted.
The intermediate member may include one blocking plate extending across a center of the casing.
The intermediate member may include two blocking plates formed into the shape of a cross.
The intermediate member may include three blocking plates formed into the shape of an asterisk.
Specific embodiments of the feeding apparatus disclosed in the present application will now be described by way of example with reference to the accompanying drawings wherein:
a is a top view of an annular projection provided on the feeding apparatus;
b is a cross sectional view taken along line X-X of the annular projection in
a is a perspective view of a food container of the eleventh embodiment of the feeding apparatus;
b is a top plan view of a projection provided on the food container in
c is a cross sectional view taken along line Y-Y of the projection in
a is a top view of a thirteenth embodiment of the food-dispensing member of the feeding apparatus;
b is a cross sectional view taken along line A-A of the food-dispensing member of
c is a front view of a thirteenth embodiment of the food-dispensing member of the feeding apparatus;
a is a top view of a fourteenth embodiment of the food-dispensing member of the feeding apparatus;
b is a cross sectional view taken along line A-A of the food-dispensing member of
c is a front view of a fourteenth embodiment of the food-dispensing member of the feeding apparatus.
Reference will now be made in detail to a preferred embodiment of the feeding apparatus disclosed in the present application, examples of which are also provided in the following description. Exemplary embodiments of the feeding apparatus disclosed in the present application are described in detail, although it will be apparent to those skilled in the relevant art that some features that are not particularly important to an understanding of the feeding apparatus may not be shown for the sake of clarity.
Furthermore, it should be understood that the feeding apparatus disclosed in the present application is not limited to the precise embodiments described below and that various changes and modifications thereof may be effected by one skilled in the art without departing from the spirit or scope of the appended claims. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
It should be noted that throughout the specification and claims herein, when one element is said to be “coupled” or “connected” to another, this does not necessarily mean that one element is fastened, secured, or otherwise attached to another element. Instead, the term “coupled” or “connected” means that one element is either connected directly or indirectly to another element, or is in mechanical or electrical communication with another element.
The food container 7 is provided with a plurality of apertures 8. According to the illustrated embodiment, the food container 7 has a plurality of apertures 8 arranged 360 degrees around the food container 7. The size and shape of the apertures 8 can be so designed that food coming out from the apertures 8 would not choke a person consuming the food. According to the illustrated embodiments, the apertures 8 are circular in shape and can have a diameter of about 1 mm to about 5 mm. The size, number and arrangement of the apertures 8 may vary according to different designs and requirements.
The food container 7 may be made of a soft resilient material suitable for use with foodstuff. This soft resilient material for foodstuff use may include silicone or latex, or rubber or polyvinyl chloride (PVC) for foodstuff use. Silicone material is non-toxic, environmental-friendly, wear resistant, resistant to high and low temperatures, and aging resistant. Products made of silicone are more environmental-friendly, more safe and more durable. It is appreciated that the food container 7 can be made of a transparent soft resilient material allowing a person to readily see through the food container 7 and know whether the container 7 is full or empty.
Normally, the food container 7 stays in its original shape and the food stays inside the food container 7. When the food container 7 is put inside a person's mouth and a person chews, bites or sucks on the food container 7, the food container 7 collapses by the external force that forces the food (such as small pieces of crushed food, fruit puree, marc, juice, etc.) to seep and pass through the apertures 8. The food container 7 returns to its original shape upon release of the force due to the resiliency of the food container 7.
The food container 7 may be sized and shaped to hold small pieces of fruit or other food such as jelly, yoghurt, vegetable, meat or fish, etc. The food container 7 can be put inside the mouth of a person for biting, sucking or chewing. For a fruit having juice and marc, fruit juice and small pieces of marc can be sucked through the apertures 8 and into a person's mouth, whilst larger pieces of marc remain inside the food container 7. Since the apertures 8 are smaller than the esophagus of a person eating the food, the person will not be choked by the food coming out from the apertures 8. This can protect the safety of the person eating food out of the feeding apparatus. For fruit having puree but without marc, the fruit puree can be dispensed through the apertures 8 and into the person's mouth. Therefore, one can use the feeding apparatus to feed an infant or baby with food such a fruit, and teach an infant or baby to chew and swallow without the risk of being choked by the fruit. The feeding apparatus is safe to an infant or baby and is convenient to use because it is not necessary for a caretaker to squeeze juice from the fruit before feeding. Using the feeding apparatus, an infant or baby can readily eat fresh fruit (such as strawberry, apple and pear), vegetable, fish, meat, etc.
When the food container 7 contains a mixture of food in solid state and liquid state, the liquid can form a sealing membrane over the apertures 8 under the influence of surface tension. Therefore, food inside the container 7 cannot be easily escaped through the apertures 8. An infant or baby needs to perform a suck action to suck the food through the apertures 8. This can train the muscles around the mouth as well as train the lung capacity of an infant or baby. Also, it can prevent leakage of liquid through the apertures 8 and spoilage of the clothing of the person eating the food out of the feeding apparatus. If the food container 7 is made of a mesh, the apertures on the mesh are not resilient and therefore it is difficult to form a sealing membrane over the apertures of the mesh. As the apertures on the mesh are close to each other, it becomes more difficult to form a sealing membrane over the mesh's apertures. The distance between two apertures 8 in the present application can be about 2 mm to about 10 mm.
As shown in
As shown in
The feeding apparatus may also include a cap 9 for covering the food container 7. The cap 9 serves to separate the food from the outer environment. The cap 9 can prevent any dust and dirt from contaminating the food while a person is not eating. The cap 9 may be removably attached to the first coupling member 5. As shown in the illustrated embodiment, the cap 9 can be attached to the first coupling member 5 by a simple snap-fitting mechanism. It is understood that the cap 9 may be attached to the first coupling member 5 by any other appropriate mechanism such as screw threads. The closed end of the cap 9 may be provided with a plurality of supporting elements 91. The supporting elements 91 allow the cap 9 to steadily stand on a flat surface such as a desk. To fill the food container 7 with food, one can attach the cap 9 to the first coupling member 5, and then place the cap 9 on a desk in a stand-up position by the supporting elements 9. This facilitates the filling of the food container 7 with food even with one hand. The cap 9 may also be transparent and allow one to see the food inside the food container 7.
As illustrated in
The food container 7 may be formed into the shape of a nipple of a milk-feeding bottle. It serves as a pacifier to comfort an infant or baby and induces the infant or baby to eat the food. The closed end of the food container 7 may be formed into a shape substantially conforming to the shape of the mouth of an infant or baby. This facilitates the infant in holding the food container 7 inside the mouth, and sucking fruit juice, puree or marc out of the food container 7 without choking.
According to the illustrated embodiment, the open end 71 of the food container 7, the outer surfaces of the first coupling member 5 and the second coupling member 3 are generally circular in shape. This prevents the trapping of dirt on the feeding apparatus and facilitates cleaning of the feeding apparatus.
The feeding apparatus may also be provided with a fastening mechanism for fastening the first and second coupling members 5, 3 of the feeding apparatus in the sealed configuration. The fastening mechanism can strengthen the sealing between the first and second coupling members 5, 3, and prevent accidentally detaching the first coupling member 5 from the second coupling member 3 and therefore dropping the food.
According to the illustrated embodiment in
According to another embodiment illustrated in
As depicted in
The feed apparatus of the present application may include one handle assembly or two handle assemblies. As shown in
As shown in
As shown in the embodiment in
As shown in
As depicted in
Although it has been shown and described that the annular protrusions 81 are formed around the apertures 8, it is understood by one skilled in the art that further protrusions can be formed elsewhere on the outer surface of the food container 7.
Although it has been shown and described that the apertures 8 are circular in shape, it is understood that the apertures 8 may in any other appropriate shapes.
As shown in
The food container 7 is provided with a plurality of apertures 8. According to the illustrated embodiment, the food container 7 has a plurality of apertures 8 arranged around the food container 7.
The second coupling member 3 may include a body 36 and a food-squeezing unit 35. The body 36 can be coupled to the first coupling member 5. The body 36 defines a passage 361. The food-squeezing unit 35 may be mounted to the body 36. The food-squeezing unit 35 has a second opening 351 at one end thereof. The food-squeezing unit 35 is employed to squeeze the food therein towards and into the food container 7 through the second opening 351, the passage 361 on the body 36, the opening 51 of the first coupling member 5, and the open end 71 of the food container 7.
Since the second coupling member 3 can be separated into body 36 and food-squeezing unit 35, one can manufacture a larger food-squeezing unit 35. When the food in the food container 7 is consumed, the user (including a parent or an infant) can squeeze the food out of the food-squeezing unit 35 and towards and into the food container 7, and continue the feeding process. This facilitates outdoor feeding and enhances the joy of food taking.
The food-squeezing unit 35 may be in the form of a squeezable container for squeezing out the food therefrom when the external surface of the food-squeezing unit 35 is pressed. When the food-squeezing unit 35 is pressed, the food inside passes through the second opening 351 of the food-squeezing unit 35, the passage 361 of the body 36, the opening 51 of the first coupling member 5, the open end 71 of the food container 7 and into the food container 7. The food-squeezing unit 35 may be made of a resilient material for use with foodstuff. The resilient material may comprise silicone, latex or rubber for use with foodstuff.
One side of the body 36 can be connected to the first coupling member 5 by a hinge 17, and the other side of the body 36 can be detachably connected to the first coupling member 5 by fastener 18. The open end 71 of the food container 7, the first coupling member 5, the body 36 of the second coupling member 3, the second opening 351 of the food-squeezing unit 35 can have a circular outer configuration so that the feeding apparatus is easy to clean because it has no unhygienic dead corners.
As illustrated in
It is understood that the number of blocking plates 63 may vary according to the requirements.
For example, in
As depicted in a further embodiment in
According to the illustrated embodiments in
As depicted in another embodiment in
As shown in
According to the requirements, the protrusions 81 can be located at any positions on the outer surface of the food container 7. As shown in
The intermediate member 6 is not a necessary feature of the feeding apparatus disclosed in the present application. According to the requirements, the intermediate member 6 may or may not be provided on the feeding apparatus. Also, the position-fixing mechanism is not a necessary feature of the feeding apparatus. According to the requirements, the position-fixing mechanism may or may not be provided on the feeding apparatus. There may be three kinds of food container 7 that can be provided on a feeding apparatus, namely (i) food container 7 without protrusions; (ii) food container 7 with protrusions formed on the outer surface; and (iii) food container 7 with protrusions formed between adjacent first apertures.
As shown in
In
A radially outwardly extending annular flange 73 is provided at the open end 71 of the food container 7. In the sealed configuration, the annular flange 73 rests on a radially inwardly extending annular shoulder or platform 54 of the first coupling member 5, and can be clamped between the annular platform 54 and the second coupling member 3. In the open configuration, the annular flange 73 can be removed from the annular platform 54 of the first coupling member 5.
The food container 7 may be made of resilient material. The outer and/or the inner surface of the food container 7 may be provided with protrusions 81. The protrusions 81 may be formed around the first apertures. The protrusions may be formed between two adjacent first apertures. The apertures 8 may be circular in shape with a diameter of about 1 mm to 5 mm. There may be at least two apertures 8. The dimension of the first aperture closer to the closed end may be smaller than the dimension of the first aperture farther from the closed end. The distance between two apertures 8 is about 2 mm to about 10 mm.
The food-dispensing member of the feeding apparatus (which is the food container in the above embodiments) will now be described in detail. As shown in
The protrusions 81 can be used to massage the gum, relief discomfort during teething, benefit the growth and development of gum and teeth of an infant or baby. The protrusions 81 can also strengthen the gum and enhance chewing capability. During the feeding process, the saliva of the infant or baby can enter the food container 7 through the apertures 8 thereby (digesting) the food to promote feeding and digestion. One can put an infant or baby's favorite food inside the food container 7. Infant or baby would like to eat the food and have the gum massaged while eating the food. The feeding apparatus with protrusions 81 can therefore serve as a more effective teether compared to conventional tasteless teething apparatus.
The food-dispensing member in the present application can be formed into a chewing container that can fully provide the necessary condition and environment (saliva, etc.) for chewing activities. Babies are able to actively eat the food thereby leading to early development of their brains. Since the food container 7 is made of a resilient material, it can maintain its original shape and softness thereby maintaining its original food-carrying space and providing a chewing space that would benefit the chewing of the food inside the food container. The existing food-dispensing member of feeding apparatus (such as a mesh) can only make a baby swallow passively. It cannot make a baby actively eat the food or even induce a baby to chew.
The shape of the apertures 8 may vary according to the need. For example, the apertures 8 may have the shape of a circle, square or triangle, etc. The dimension of the apertures 8 may vary according to the need so as to control the amount and rate of the flow of the food. When the first aperture 8 is circular in shape, its diameter may be about 1 mm to about 5 mm.
The number of apertures 8 can be adjusted depending on the need and the rate of food consumption. A food container 7 usually has at least two first apertures. For example, the food container 7 may have 10 apertures or 20 first apertures. At the same time, the distance between the apertures 8 can be adjusted depending on the need and the rate of food consumption. Usually, the distance between two apertures 8 is about 2 mm to about 10 mm. For example, the distance between two apertures 8 can be 2 mm, 4 mm, 6 mm or 10 mm.
The thickness of the food container 7 can be adjusted according to the need of the chewing force of a baby or infant. For example, the thickness of the food container can be about 1 mm to about 6 mm. This is quite suitable for babies that are learning to eat.
As shown in
The food container 7 may be made of durable material such that it can be repeatedly used. The food container 7 may be made of colored material such that it can attract the curiosity of babies and infants and induce them to consume the food. The food container 7 may be made of transparent material allowing a person to readily see through the food container 7 and know whether the container 7 is full or empty.
The food container 7 may be made of a soft resilient material suitable for use with foodstuff. This soft resilient material for foodstuff use may include silicone or latex, or rubber or polyvinyl chloride (PVC) for foodstuff use. Silicone material is non-toxic, environmental-friendly, wear resistant, resistant to high and low temperatures, and aging resistant. Products made of silicone are more environmental-friendly, more safe and more durable.
The protrusions 81 can be formed at any location of the food container 7 so long as babies and infants can touch and feel them during feeding. For example, in
As shown in
The dimension of the apertures 8 may vary. For example, the dimension of the apertures closer to the closed end is smaller than the dimension of the apertures farther from the closed end. For example, when the apertures are circular in shape, the apertures closer to the closed end may have a diameter of 1 mm and the apertures farther to the closed end may have a diameter larger than 1 mm. This can prevent the liquid inside the food container 7 from leaking out so as to facilitate the placing of food with juice inside the food container 7.
The dimension of the food container 7 can be adjusted according to the need. In one embodiment, for example, the thickness of the food container 7 can be about 1.2 mm. The annular flange 73 at the open end 71 may have an inner diameter of 20.6 mm and an outer diameter of 33.5 mm. The annular flange 73 may have a thickness of 2 mm. The notch 75 on the annular flange 73 may have a width of 3 mm. The distance between the two opposite notches 75 can be 27.25 mm. The food container 7 may have a height of 38.75 mm and a width of 32.96 mm. The diameter of the apertures 8 is 2 mm. As shown in the embodiment in
The feeding apparatus of the present application can facilitate the feeding of food by the food container. The rate of flowing of the food can be controlled by the apertures so that it is not easy for the food to leak out from the food container. Comparing to conventional feeding apparatus, the feeding apparatus of the present application is more clean, hygienic and easy to use. Other utensils such as fork, knife and spoon are not required for feeding. The feeding apparatus can be used not only by babies and infants but also by handicapped people, elderly people and people having illness. The feeding apparatus of the present application can even be used in weightless space environment. Food can stay in the food container and ensure cleanliness during food taking.
It is understood by one skilled in the art that different food containers can be used in cooperation with different feeding apparatuses
While the feeding apparatus disclosed in the present application has been shown and described with particular references to a number of preferred embodiments thereof, it should be noted that various other changes or modifications may be made without departing from the scope of the appending claims.
Number | Date | Country | Kind |
---|---|---|---|
200920135477.5 | Mar 2009 | CN | national |
200920306690.8 | Jul 2009 | CN | national |
200920314008.X | Nov 2009 | CN | national |
This patent application is a continuation-in-part application of U.S. patent application Ser. No. 12/713,179, filed on Feb. 26, 2010, which claims priorities of Chinese Patent Application No. 200920135477.5, filed on Mar. 10, 2009, Chinese Patent Application No. 200920306690.8, filed on Jul. 22, 2009, and Chinese Patent Application No. 200920314008.X, filed on Nov. 4, 2009, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12713179 | Feb 2010 | US |
Child | 12782723 | US |