Feeding Apparatuses and Methods for Plants

Information

  • Patent Application
  • 20180160630
  • Publication Number
    20180160630
  • Date Filed
    December 13, 2017
    7 years ago
  • Date Published
    June 14, 2018
    6 years ago
Abstract
The invention provides components, structures, methods, and assemblies for applying feeding materials to plants. The invention may include a permeable structure constructed of a woven material incorporating nutrient-rich material (such as compost, fertilizers, soil amendments, soil supplements, or other material). The structure may be substantially closed around the edges and allow for the flow of water and other material therethrough to plants and surrounding vegetation.
Description
FIELD OF THE INVENTION

The present invention relates to components, apparatuses, and methods that are useful in the application of compost, fertilizers, soil amendments, soil supplements, and other materials to soil and plant systems to help condition the media and improve plant growth.


BACKGROUND OF THE INVENTION

A wide variety of beneficial materials may be applied to the soil to facilitate the growth of trees, shrubs, flowers, vegetation, and other plants. Compost is an organic material that can be added to the soil to help plants grow and condition the land. Typical materials used in compost may include decomposed and recycled matter, such as leaves, branches, twigs, along with grass clippings, and food waste. Compost is known to be rich in nutrients and may be used to enhance plant growth in a wide variety of settings, such as in gardens, landscaping, horticulture, and agriculture. It may be beneficial for the land and surrounding soil, for example, as a soil conditioner or fertilizer. It also may be useful for erosion control and to help reduce sediment run-off. Fertilizers, alone or in combination with compost, may be applied to soils to supply one or more plant nutrients to promote the growth of plants. Other soil supplements and plant nutrients may be used to help deliver nutrients to plants and soil and to help improve plant and soil conditions.


Typically, landscape contractors and other users of these materials apply them by shoveling the loose material around plants. The application process may be labor-intensive. The material may be difficult to haul, transport, store, and handle, particularly onsite (e.g., at a planting, landscape, construction, or other site). Moreover, the area in which the material is applied may become untidy as a result of the disbursement of the loose material around the plant and to other areas. Loss of material can also occur when the loose material disburses around the plant; for example, during water or rain events.


In addition, the plant material is often the same or similar in color to the underlying soil. It can visually blend in with the setting around which the material is applied. As a result, a user may not easily recognize that the material has been applied to a particular plant.


Once the material is applied, it is often difficult to remove, or change, or re-use. At least some plants may benefit from the use of different materials during different growth periods. A user may desire, for instance, to use certain types of fertilizers to achieve particular results during one period (e.g., initial plant growth) and other types of fertilizers to achieve different results during another period (e.g., to promote blooming). It may also be desirable to reuse the material for different plants. For example, landscape contractors may wish to move the material from plant to plant as a construction project develops. Once the loose material is applied to the soil, however, it may settle onto the ground and blend with the top layer of the soil. It then may be difficult to remove or separate the material from the underlying soil after it has been applied to a particular plant.


Accordingly, there exists a need for a delivery system that addresses many or all of the foregoing problems, including a delivery system that can effectively apply soil and plant enhancing materials, such as compost, fertilizers, soil amendments, soil supplements, and other materials, to the soil and plants.


BRIEF SUMMARY OF THE INVENTION

Among its features, the present invention describes improved assemblies and methods for applying soil and plant enhancing materials, such as compost, fertilizers, soil amendments, soil supplements, soil conditioners, and other matter, to soils, plants, planting containers, and other types of planting areas.


In one embodiment, an apparatus comprises a substantially permeable woven enclosure comprising an interior cavity and an inner edge. The inner edge defines an inner opening that is adapted to fit around the base of a plant. The apparatus also may comprise plant material disposed within the interior cavity. The plant material may comprise at least one of the following: compost, fertilizer, and soil amendment. The woven enclosure may be filled to approximately 80% of its capacity by volume. The woven enclosure may be filled to at least 80% of its capacity by volume. In a preferred embodiment, the woven enclosure may comprise a substantially circular ring, and the inner edge defines a substantially circular inner space within the ring. The woven enclosure may comprise end segments that are separable along radial portions of the ring. The woven enclosure may comprise a biodegradable material. In addition, in some embodiments, the woven enclosure may further comprise an outer edge and a skirt descending from the outer edge. The skirt may comprise complementary fastening mechanisms adapted to secure the skirt around a planter.


In other embodiments, an apparatus comprises a substantially permeable enclosure comprising a ring-shape with an interior cavity and two substantially sealed ends aligned along a radial length of the ring-shape to form a radial separation. The apparatus also comprises plant material disposed within the interior cavity of the enclosure.


In yet other embodiments, a method for introducing material around the base of a plant comprises the steps of fitting a substantially permeable woven enclosure around a base of the plant and aligning the ends of the woven enclosure to position the enclosure around the base of the plant. The woven enclosure comprises a ring with an interior cavity and an inner opening defined by an inner edge of the ring, two substantially sealed ends aligned along a radial length of the ring to form a radial split in the ring, and plant material disposed within the interior cavity of the woven enclosure.


Also described is a substantially permeable woven enclosure comprising an interior cavity and two substantially aligned ends. An inner edge of the woven enclosure defines an inner opening and is dimensioned to wrap around the base of a plant. In some embodiments, the woven enclosure may include plant material within the interior cavity.


In addition, an apparatus may comprise a substantially permeable woven enclosure that defines a ring-shape with an interior cavity and plant material disposed within the interior cavity of the woven enclosure. The woven enclosure may comprise an inner opening and two substantially sealed ends aligned along a radial length of the ring-shape to form a radial split. The woven enclosure may be dimensioned to fit around the base of one or more plants. The plant material may comprise at least one of the following: compost, fertilizer, and soil amendment. In some embodiments, the ring-shape comprises a substantially curved peripheral edge. The ring-shape may comprise at least one substantially straight peripheral edge. The woven enclosure may comprise a biodegradable material, such as burlap material. The ends of the ring-shape may be detachably sealed. The woven enclosure may be filled to approximately 80% of its storage capacity by volume. In some embodiments, the woven enclosure may be filled to at least 80% of its storage capacity by volume.


Also disclosed is a method for introducing material around the base of a plant. The method comprises the steps of fitting a substantially permeable woven enclosure around a base of the plant; placing the base of a plant through the inner opening of the woven enclosure; and aligning the ends of the woven enclosure around the base of the plant. In some embodiments, the step of aligning the ends of the woven enclosure comprises overlapping the two sealed ends. In another embodiment, the step of aligning the ends of the woven enclosure comprises placing one sealed end adjacent to the other sealed end. In yet another embodiment, the step of aligning the ends of the woven enclosure comprises positioning the sealed ends to allow for a gap between the sealed ends.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention may be described with reference to the accompanying drawings.



FIG. 1 illustrates an angled top view of a feeding device fitted around the base of a tree in accordance with an embodiment of the present invention.



FIG. 2 illustrates a top view of a feeding device in accordance with an embodiment of the present invention. The ends of the feeding device are positioned so that they are separated by a space.



FIG. 3 illustrates a top view of a feeding device in accordance with an embodiment of the present invention. The ends of the feeding device are positioned so that they overlap, and the feeding device forms a substantially closed ring-shape.



FIG. 4 illustrates an angled side view of the feeding device shown in FIG. 3.



FIG. 5 illustrates an angled top view of a feeding device fitted around the base of a tree in accordance with an embodiment of the present invention.



FIG. 6 illustrates an array of feeding devices of different sizes in accordance with different embodiments of the present invention.



FIG. 7 illustrates schematically feeding devices used for different plant pot sizes in accordance with different embodiments of the present invention.



FIG. 8 illustrates an angled side view of a feeding device with a skirt. The feeding device is placed over a planter in accordance with an embodiment of the present invention.



FIG. 9 illustrates an angled side view of a feeding device with a skirt in accordance with an embodiment of the present invention. The feeding device is placed over a planter, and the skirt includes a plurality of ties to wrap opposite sides of the skirt around a planter.



FIG. 10 illustrates an angled top view of a feeding device with a skirt fitted over a planter in accordance with an embodiment of the present invention. A watering hose is used to deliver water through the feeding device and to the plant.





DETAILED DESCRIPTION OF THE INVENTION

As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


Also, use of the terms “a” or “an” are employed to describe elements and components of the invention. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one, and the singular also includes the plural unless it is obvious that it is meant otherwise.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


In the following description, numerous specific details are provided, such as the identification of various system components, to provide an understanding of embodiments of the invention. One skilled in the art will recognize, however, that embodiments of the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In still other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the invention.


Feeding devices that may be placed at the base of one or more trees, shrubs, vegetation, flowers, potted plants, or other plant life are described. The feeding device may allow the application and removal of soil and plant enhancing materials, such as compost, fertilizers, soil amendments, soil supplements, or other materials to the plant or soil. Among its potential advantages, the feeding device may facilitate the application of the materials to the soil, topsoil, and/or underlying plant structures. It may also help to retain moisture at the base of the plant. The feeding device may help to reduce or eliminate erosion of materials at the base of the plant. In addition, the placement of the feeding device at the base of one or more plants may offer visible evidence of feeding. In preferred embodiments, the device may be made, entirely or in part, of biodegradable materials to allow the feeding device to be left in place, if desired, at a landscape site.


The feeding device may be useful for the application of soil and plant enhancing materials, feeding, and maintenance of a wide variety of plant life in a wide variety of settings. The feeding device may help in the application of a wide variety of different composts, fertilizers, soil, amendments, soil supplements, and/or other matter to enhance the growth of plants and improve the condition of the land or the surrounding soils (e.g., in a pot or other growing container) in a wide variety of settings. For example, the feeding device may be useful during the course of site construction to enhance new plant growth and then moved from plant to plant as the project develops. The device may be useful in commercial or personal gardens for vegetation and/or flowering plants. The feeding device also may be useful to allow for feeding, including the targeted feeding, of potted plants in nursery or at home settings.


In one embodiment, the device may be placed at the base of a tree around its trunk. Referring to FIG. 1, a substantially ring-shaped bag 1 has a substantially hollow interior. The interior of the bag may be filled with material, e.g., fertilizer or compost material, and positioned around the base of a tree trunk 2. As shown in FIG. 2, the bag 100 may comprise a substantially circular ring shape that includes a substantially circular central opening 101 and end segments. An opening 102 that extends along a radial direction of the ring is formed from two closed ends of the bag 103 and 104. The radial opening provides for an adjustable separation that allows for the insertion and positioning of the bag around a plant. The bag may be removed after the initial placement of the bag around the plant by sliding the plant or a portion of the plant through the radial opening of the bag.


An amount of compost, fertilizer or other material may be placed in the bag, and the ends of the bag may be fully or at least partially sealed to reduce loss of material at the ends. The bag may be fabricated in any multitude ways known in the art for constructing fabric devices. For example, pieces of material may be sewn together along its edges. Moreover, it will be appreciated that the ends of the feeding bag may be sealed using one or more of any closure structures and/or methods known in the art for securing material within woven fabric, including, without limitation: sewing, stitching, stapling (e.g., with mild steel staples), Velcro, hooks, snaps, glue, interconnecting parts, ties, string, twine, hook and loop fasteners, other fasteners, elastic, tensioners, locks, latches, complementary grooves and notches, protrusions, pegs, adhesives, glues, pins, buttons, snaps, snap-in connectors, twist-on fittings, hooks, screws, mechanical fittings, other mechanical connections, and/or other connecting structures and connecting methods. In a preferred embodiment, the ends of the feeding bag may be re-sealable to facilitate the removal of the filler media and the subsequent refilling and reuse of the bag.


In a preferred embodiment, the bags are vacuum-sealed to reduce the air content inside and to help retain moisture after the filler media is placed inside. The vacuum sealing may help to extend the shelf life of the filler media. It may also help to remove oxygen to reduce degradation of the bag material and preserve the bag material (for instance, burlap or other organic fabric) so that it may be used for longer periods of time.


When using the feeding bag for a tree or other plant, the user may position the bag around the base of the tree or plant. The ends of the bag are pulled apart. The ends of the bag are moved past the tree trunk (or stem or base of the plant) along the radial opening until the tree trunk (or stem or base of the plant) is substantially positioned in the central opening. The ends of the bag are then pulled together so they are substantially aligned to allow the bag to form a loop or band that is has a substantially ring shape.


During watering events, water flows through the bag, carrying the nutrients and other feeding material from the bag to the plant roots, soil, and/or other underlying structures. The bag may be removed from the plant and re-installed, to allow for changing of seasonal fertilizers and/or use with other plants. It may also help to retain moisture at the base of the plant, thereby allowing for water conservation. The bag may also offer visible evidence of feeding, to allow users to identify those plants to which the feeding material has already been applied. If desired, the used bag may be cut open and the feeding material spread along a landscaped area to enhance the landscape.


In some embodiments, the feeding device may be positioned so that the internal contents of the device are not in direct contact with the underlying soil. As a non-limiting example, the feeding device may be set on top of the soil such that the filler media is not in direct contact with the soil. As another example, the feeding device may be set on a gravel bed or other raised bed. These configurations may allow water, as it percolates through the filler material (e.g., compost, fertilizer, soil amendment, or other material) to mix with the ambient air. The introduction of the air, including the oxygen contained in the air, may help to enhance the performance of the filler material.



FIGS. 3 and 4 illustrate a feeding device in accordance with an embodiment of the present invention. A woven enclosure 200 forms a substantially circular shape that may be fitted around the base of a tree trunk. The enclosure has a central opening 201 and end segments 202 and 203 that may be pulled apart to form an opening 204 along a portion of its radius, and fitted together again. As shown in FIG. 4, the end segments of the bag may be overlapped such that a portion of one end segment 202 may hang over a portion of the other end segment 203. This overlapping configuration may help to secure the woven enclosure around the tree trunk or base of other plants.


It will be appreciated that the end segments may be fitted so they are in contact with each other. The end segments may be overlapped (as shown in the woven bag of FIG. 4) or placed such that the edges are adjacent to each other. Alternatively, the end segments of the feeding device may be fitted so they are at least partially wrapped around the base of the desired plant but not in direct contact with each other.


In some embodiments, the end segments of the feeding device may be fitted around the base of a plant using optional connecting apparatuses that are known in the art to connect woven materials (not shown), including without limitation: mechanical connections, interconnecting parts, ties, string, twine, hook and loop fasteners, other fasteners, Velcro, elastic, tensioners, locks, latches, complementary grooves and notches, protrusions, pegs, adhesives, glues, pins, buttons, snaps, snap-in connectors, twist-on fittings, hooks, screws, mechanical fittings, or other connecting structures and connecting materials.


Another embodiment of the feeding device is shown in FIG. 5. The feeding device includes a substantially circular ring along an upper portion 300. It also includes fabric extending from the edges of the ring and descending along a lower portion of the device to form a skirt 301. The device may be placed over a planter, for example, a standard industry cylindrical plastic planter, for the purpose of the improving the planter appearance and adding water retention and fertilization capabilities. The ring may incorporate compost, fertilizers, soil amendments, soil supplements, or other material known to enhance plant growth. In other embodiments, such as in applications where only water retention and/or erosion control is desired, the ring may be used without planting material in the interior of the device.


The skirt includes one or more flaps of fabric that can be wrapped around a planter using mechanisms known in the art for securing ends of fabric together. In the embodiment of FIG. 6, the feeding device has a substantially circular ring along an upper portion 302 with skirt segments 303 and 304. The skirt is positioned around a planter and the skirt segments are secured around the planter using a set of complementary ties positioned vertically along a side of the device. As shown in FIG. 7, water can be delivered to the plant through the top of feeding device. The ring and skirt portions of the device may be constructed of a unitary piece of fabric; for example, a permeable woven material. In other embodiments, the ring and skirt portions of the device may be constructed of multiple, separate pieces of fabric that are connected together and fitted around a plant or plant-housing structure.


It will be appreciated that in some embodiments the ring of the feeding devices described above may be formed from a substantially closed ring that may be fitted around a plant, including a potted plant or vegetation or other plant-life that is planted in the ground. For example, for a potted plant, the ring section of the device may be formed from a substantially continuous ring and fitted around the lip of the pot. An optional skirt may extend from the outer edges of the ring to cover the sides of the pot. The skirt may include open-end segments that are placed around the sides of the pot, and the open-end segments may be secured together (e.g., by securing complementary ties or other connection mechanisms). In other embodiments, the skirt may form a continuous bag that wraps around the sides of the pot. In yet other embodiments, a ring-shaped feeding device may include a continuous ring with a central opening that is used for vegetation planted in the ground. The ring is positioned around the base of the plant in the ground by lowering the ring to the ground with the base of the plant fitting within the central opening of the ring. In other embodiments, a feeding device may include a ring with multiple separations that may be positioned around one or more plants.


Materials Used for Construction

The feeding device may be constructed of any material having openings sized to allow for water flow through the material, while retaining all or at least most of the compost, fertilizer, soil amendments, soil supplements, or other feeding matter within the device. It also may be desired that the feeding device material have sufficient strength, as may be determined by a variety of different indicators, including without limitation tear strength and bursting strength (e.g., as measured by Mullen Burst, puncture, or other testing). For example, the feeding device may be constructed of one or more woven geotextile materials. In some embodiments, the feeding device may be constructed of a material with natural fibers that are biodegradable.


In a preferred embodiment, the feeding device may be constructed of a biodegradable woven fabric, such as burlap, also known as jute or Hessian. The burlap material may comprise, for example, a 10-ounce burlap fabric. Because of its tendency to absorb water, this type of burlap material may help to retain moisture at the base of the tree. In some applications, the feeding device alternatively may be constructed of non-biodegradable materials, which may be desirable in applications that allow for extended use, and/or maintenance, or those that call for extended re-use of the feeding device.


The ordinary artisan will recognize that other materials commonly used in applications involving plant maintenance, soil enhancement, and erosion control can be employed in the present invention. Other types of material include, without limitation: 7-ounce burlap, other types of burlap, cotton, cotton blends, cheesecloth material, hemp, other woven fabrics, plastic netting, mesh, polypropylene material, high density polyethylene material, or other materials known in the art for retaining compost, fertilizer, soil amendments, or other feeding matter. Generally any other materials that can allow water flow and retention of at least some of the soil and plant enhancing material may be used. The selection of the material may vary depending on factors such as, without limitation: the desired weave count, mesh size, strength, longevity, permeability, volume of anticipated filter material, storage capacity, the anticipated application, and/or the desired size of the feeding device.


The feeding device may be fabricated, and the material formed into the desired shape, using one or more of any methods and connecting structures known in the art for connecting woven fabrics and materials. These include, without limitation: sewing, stitching, weaving, stapling (e.g., with mild steel staples), gluing, using fasteners, hooks, snaps, glue, other mechanical connections, interconnecting parts, ties, string, twine, hook and loop fasteners, elastic, tensioners, locks, latches, complementary grooves and notches, protrusions, pegs, adhesives, glues, pins, buttons, snaps, snap-in connectors, twist-on fittings, hooks, screws, mechanical fittings, or other connecting structures and connecting methods.


Filler Media

It will be appreciated that the feeding devices of the present invention may be designed to incorporate a wide variety of filler media useful in the feeding, maintenance, growth, and care of soil and plants. In some embodiments, the feeding devices may include compost, for example, general use composts, one of many available compost materials that have been approved by government and regulatory agencies for use in landscape projects, or custom-designed compost blends.


In other embodiments, the feeding device may include fertilizers that target plant growth and/or bloom growth, for example organic fertilizers or non-organic fertilizers. In preferred embodiments, different feeding devices (or the same feeding devices filled with different filler media) may be used to apply material to the same plant and staged, depending on the season or desired plant growth. For example, a feeding device with fertilizer material directed to plant growth may be applied to promote plant growth during one or more early growth periods (e.g., as a “growth ring”). A feeding device with fertilizer targeting bloom growth may be applied to promote flowering (e.g., as a “bloom ring”).


Other materials useful in the care of plants may be used as well. As a non-limiting example, the feeding devices of the present invention may be treated with or otherwise include repellant or insecticides. A feeding device treated in this way may be used to deter deer, other wildlife, or insects from consuming plants. In some embodiments, the feeding device may include planting soil, engineered soil blends, or other types materials to help the growth of plants. In yet other embodiments, the feeding device may include bioretention media to help with erosion control.


[51] The amount of filler material used in the feeding device may depend on factors such as: the desired flexibility of the feeding device, the ability to conform to the ground, pliability, permeability, anticipated water flow rates, and/or the overall desired weight. In some embodiments, the feeding device may be filled loosely to allow it to flexibly conform to the ground and be capable of being shaped around the base of a tree. As a non-limiting example, the feeding device may be filled to approximately 80% of its storage capacity by volume. The feeding device may be filled to at least 80% or more of its storage capacity by volume. In other embodiments, the feeding device may be loosely filled (as depicted in FIG. 8) to allow for more flexibility.


Shapes and Sizes

It also will be appreciated that the feeding device may be constructed in a variety of sizes, shapes, and configurations, depending on the desired applications. Referring to FIG. 8, an embodiment of the present invention is shown. A feeding bag includes a disc-shaped woven pillow within which feeding material may be contained. The pillow defines a substantially circular disc shape with adjustable end segments. The pillow includes a substantially round outer circumference and an inner opening. Adjoining end segments may be separated to form a gap that extends along a portion of the radius of the circle.


In one embodiment, the substantially circular feeding device may have a diameter of approximately 30″ to accommodate plants that are grown in 30-gallon pots. This size may be useful for large trees and plants, for example, in industrial applications. The feeding device of the present invention may alternatively be sized to allow for use with smaller trees, flowers, shrubs, or other plants. In another embodiments, the feeding pillow may have a diameter of approximately 8″ for use with plants that are grown in 1-gallon pots. This size may be useful for residential use or use with smaller plants. A non-limiting chart showing sizes for circular feeding devices and common plant sizes is shown below (and in FIGS. 9 and 10).
















Size of Potted Plant
Size of Circular Feeding Device









30-gallon
30″ diameter



25-gallon
24″ diameter



 5-gallon
12″ diameter



 1-gallon
 8″ diameter










These sizes and shapes and plant types (e.g., potted plants) are provided for illustrative purposes only. The feeding devices of the present invention may be constructed of any size and shape to accommodate numerous types of trees, flowers, vegetation, potted plants, other plants, and landscape features. The sizes and dimensions of the feeding devices of the present invention can vary depending on factors, such as, without limitation: the desired storage volume, the anticipated water flow rates, the filler media used in the devices, materials used for construction, and the plants and landscape features with which the devices are used. The feeding devices of the present invention may also be used with other types of plants, including without limitation, trees, shrubs, blooming plants, plants that have been established and are growing the ground, and newly planted trees, shrubs, or other plant-life.


The feeding devices of the present invention may be constructed in a range of customizable shapes and configurations. As a non-limiting example, the feeding device may be substantially rectangular, square, hexagonal, or irregular in shape. Alternatively, the feeding device may have curved or rounded edges that form a substantially circular, substantially rounded, or substantially oval shape. In some embodiments, the feeding device may have one or more substantially inner and/or outer straight edges to accommodate different types of planter shapes or landscape features (e.g., substantially square, substantially rectangular, substantially hexagonal, substantially octagonal, irregular shapes, or other shapes); or a combination of straight and curved edges. It is also contemplated that the ring-shapes described above may define a substantially square, substantially rectangular shape, or other polygonal shape. The feeding device may include more than one inner opening to accommodate multiple plants. The shapes and sizes of the inner openings may also be customized to fit around different plants and landscape features.


The above disclosures are sufficient to enable one of ordinary skill in the art to practice the invention, and provide the best mode of practicing the invention presently contemplated by the inventor. While there is provided herein a full and complete disclosure of specific embodiments of this invention, it is not desired to limit the invention to the exact construction, dimensional relationships, and operation shown and described. Various modifications, alternative constructions, design options, changes and equivalents will readily occur to those skilled in the art and may be employed, as suitable, without departing from the true spirit and scope of the invention. Such changes might involve alternative materials, components, structural arrangements, sizes, shapes, forms, functions, operational features or the like.

Claims
  • 1-31. (canceled)
  • 32. An apparatus, comprising: a substantially permeable woven enclosure comprising an interior cavity and an inner edge, wherein the inner edge defines an inner opening that is adapted to fit around the base of a plant.
  • 33. The apparatus of claim 32, further comprising plant material disposed within the interior cavity.
  • 34. The apparatus of claim 33, wherein the plant material comprises at least one of the following: compost, fertilizer, and soil amendment.
  • 35. The apparatus of claim 33, wherein the woven enclosure is filled to approximately 80% of its capacity by volume.
  • 36. The apparatus of claim 33, wherein the woven enclosure is filled to at least 80% of its capacity by volume.
  • 37. The apparatus of claim 32, wherein the woven enclosure comprises a substantially circular ring, and the inner edge defines a substantially circular inner space within the ring.
  • 38. The apparatus of claim 37, wherein the woven enclosure further comprises end segments that are separable along radial portions of the ring.
  • 39. The apparatus of claim 32, wherein the woven enclosure comprises a biodegradable material.
  • 40. The apparatus of claim 32, wherein the substantially permeable woven enclosure further comprises an outer edge and a skirt descending from the outer edge.
  • 41. The apparatus of claim 40, wherein the skirt comprises complementary fastening mechanisms adapted to secure the skirt around a planter.
  • 42. An apparatus, comprising: (a) a substantially permeable enclosure comprising a ring-shape with an interior cavity and two substantially sealed end segments aligned along a radial length of the ring-shape to form a radial separation; and(b) plant material disposed within the interior cavity of the enclosure.
  • 43. The apparatus of claim 42, wherein the substantially permeable enclosure is adapted to fit around the base of one or more plants.
  • 44. The apparatus of claim 42, wherein the plant material comprises at least one of the following: compost, fertilizer, and soil amendment.
  • 45. The apparatus of claim 42, wherein the substantially permeable enclosure comprises a biodegradable material.
  • 46. The apparatus of claim 42, wherein the substantially permeable enclosure is filled to approximately 80% of its capacity by volume.
  • 47. The apparatus of claim 42, wherein the substantially permeable enclosure is filled to at least 80% of its capacity by volume.
  • 48. The apparatus of claim 42, wherein the substantially permeable enclosure further comprises a skirt descending from a peripheral edge of the ring-shape, and the skirt is adapted to fit around a planter.
  • 49. The apparatus of claim 48, wherein the skirt comprises complementary fastening mechanisms adapted to secure the skirt around the planter.
  • 50. A method for introducing material around the base of a plant, comprising: (a) fitting a substantially permeable woven enclosure around a base of the plant, the woven enclosure comprising: (i) a ring with an interior cavity and an inner opening defined by an inner edge of the ring;(ii) two substantially sealed ends aligned along a radial length of the ring to form a radial split in the ring; and(iii) plant material disposed within the interior cavity of the woven enclosure; and(b) aligning the ends of the woven enclosure to position the enclosure around the base of the plant.
  • 51. The method of claim 50, wherein the step of aligning the ends of the woven enclosure comprises overlapping the two substantially sealed ends.
  • 52. The method of claim 50, wherein the step of aligning the ends of the woven enclosure comprises placing one substantially sealed end adjacent to the other substantially sealed end.
  • 53. The method of claim 50, wherein the step of aligning the ends of the woven enclosure comprises positioning the substantially sealed ends to allow for a gap between the sealed ends.
  • 54. The method of claim 50, wherein the plant material comprises at least one of the following: compost, fertilizer, and soil amendment.
  • 55. The method of claim 50, wherein the woven enclosure further comprises a skirt descending from a peripheral edge of the ring, and the step of aligning the ends of the woven enclosure to position the enclosure around the base of the plant comprises fitting the skirt around the sides of a planter.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/433,604 filed on Dec. 13, 2016, the subject matter of which is herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
62433604 Dec 2016 US