The present application is national phase of PCT/IB2008/002454, filed Sep. 19, 2008, and claims priority from, German Application Number 10 2007 049 219.9, filed Oct. 13, 2007, the disclosures of which are hereby incorporated by reference herein in their entirety.
The present invention relates to a feeding device for powder spray coating devices, and to a powder feed apparatus containing a dense phase powder pump fitted with at least one, preferably two feed chambers.
Dense phase powder pumps comprise at least one feed chamber fitted with a powder intake valve and a powder outlet valve. The feed chamber is alternatingly connected to a vacuum source during a suction stage and to a source of compressed conveying air during a discharge stage. The vacuum from said vacuum source aspirates powder through the open powder intake valve into the feed chamber while the powder outlet valve is closed. The compressed conveying air from the source of compressed conveying air discharges powder from within the feed chamber through the open outlet valve while the intake valve is closed. Most dense phase powder pumps comprise two feed chambers operating in time-staggered manner in order that alternatingly coating powder shall be aspirated into one feed chamber while the pertinent other feed chamber discharges coating powder.
Different kinds of coating powder feed apparatus containing a dense phase powder pump are known for instance from the following documents which are incorporated by reference herein: JP 09/071325 A;DE 196 11 533 B4; US 2005/012476 A1; US 2006/0193704 A1 (=EP 1 644 131 A2); U.S. Pat. No. 7,150,585 B2 (=WO 2004/087331 A1) and US 2005/0178325 A1 (=EP 1 566 352 A2). A vacuum intake of at least one of the two feed chambers and in some embodiment modes also the compressed air intake of the feed chamber is/are fitted with a filter permeable to air but not to coating powder. The preferred filter material is sintered. Predominantly the powder intake and outlet valves are pinch valves.
The powder rate fed by a dense phase powder pump in particular depends on the size (volume) of the feed chamber, on the frequency at which coating powder is aspirated into the feed chamber and then discharged from it, on the magnitude of the vacuum, on the time the powder intake valve is open during suction and on the flow impedances in the powder conduits upstream of the dense phase powder pump and especially downstream of it. The flow impedances depend in particular on the length and the inside cross-section of the powder conduits, mostly powder hoses. The compressed conveying air mixes only little with the coating powder which it pushes through the powder outlet valve out of the feed chamber.
The said document US 2005/0126476 A1 discloses a powder feed apparatus containing two blocks fitted with ducts aligned with each other at the interfaces of the said blocks affixed to each other in sealed manner. The dense phase powder pump's feed chambers are configured in one block. Control valves are affixed on the other block's side facing away from the first block and are connected to said ducts. As a result there are two interfaces that may incur sealing problems, namely in one case between the two blocks and in the other case between the other block and the control valves affixed to it. The ducts constituted in the other block bearing the control valves subtend large volumes requiring selective air evacuation or pressurization with compressed air during the operation of the dense phase powder pump. As a result there re operational delay times. These also limit the frequency at which the dense phase powder pump can deliver coating powder.
The objective of the present invention is reducing said sealing difficulties. Also the invention creates the possibility to shorten said delay times and hence raising operational speed.
The invention is elucidated below by means of illustrative embodiment modes and in relation to the appended drawings.
A pneumatic circuit of a powder feed apparatus is described below as an example implying no restriction on the invention and is shown in
The spray tool 26 may be a manually operated spray gun or a controlled, automated one. Preferably it contains at least one high voltage (hv) electrode 28 to which a hv source 30 applies hv to electrostatically charge the coating powder 17 sprayed by the spray tool 26. The hv source 30 may be integrated into the spray tool 26. Said spray tool may comprise a spray aperture 29 or a rotary atomizer.
The dense phase powder pump 10 contains at least one, preferably two feed chambers 12 respectively 14 each configured within a pump part or cylinder A and B. A powder intake valve Q1 respectively Q2 is configured at a powder intake 12.1 and 14.1 of the feed chamber 12 and 14. Powder outlet valves Q3 and Q4 each are configured at a powder outlet 12.2 and 14.2. The powder intake valves Q1 and Q2 and the powder outlet valves Q3 and Q4 are respectively directly connected to the powder intake 12.1 and 14.1 and the powder outlet 12.2 and 14.2. For clarity only, they are shown in
Powder feed conduits 16.1 and 16.2 are connected to the intake side of the powder intake valves Q1 and Q2 and may run separately to one or two powder bins 18 or, as shown in
The powder output side of the powder outlet valves Q3 and Q4 is connected by means of the powder discharge conduits 22.1 respectively 22.2 and the conduit branch element 24 to a common powder discharge conduit 22 in turn connected to the spray tool 26.
Preferably the conduit branch elements 20 and 24 are Y-shaped branches.
Each feed chamber 12 respectively 14 is alternatingly connectable during a suction stage to a vacuum source 44 or during a discharge stage to a source 44 of compressed conveying air. Coating powder is aspirated on account of a partial vacuum from the vacuum source 44 through the open powder intake valve Q1 and Q2 into the feed chamber 12 and 14 while the powder outlet valve Q3 or Q4 is closed.
The powder present in the feed chamber 12 respectively 14 is discharged through the open outlook valve Q3 respectively Q4 by means of the compressed conveying air from the compressed air source 48 while the powder intake valve Q1 or Q2 is closed. The two feed chambers 12 and 14 operate in mutually time-staggered manner whereby, alternatingly, coating powder is aspirated each time in either of the feed chamber 12 and 14 while the other feed chamber 14 or 12 is discharging coating powder.
The powder intake valves Q1 and Q2 and the powder outlet valves Q3 and Q4 may be controlled, arbitrary valves driven by the control unit 42. Preferably however they shall be pinch valves fitted with a flexible hose 32 which subtends a coating powder valve duct 34 and which can be squeezed together by compressed air present in the pressurized drive chamber 36 enclosing the hose 32 for the purpose of closing the valve duct 34. The hose 32 offers such resilience or intrinsic stress that after the pressure exerted by the compressed air is eliminated from the said pressurized drive chamber 36, said hose shall automatically straighten out and thereby open the valve duct 34.
The powder intake valves Q1 and Q2 may be alternatingly fed by means of control valves 1.1 and 1.2 with compressed air from the compressed air source 48 or be vented into the external atmosphere (or be connected to the vacuum source). The powder outlet valves Q3 and Q4 alternatingly can be loaded with compressed air by means of control valves 1.3 and 1.4 from the compressed air source 48 or be vented (or connected to the vacuum source). Preferably a pressure regulator 2.2 shall be configured between the control valves 1.1, 1.2, 1.3 and 1.4 and the compressed air source 48. In the preferred embodiment mode of
An air exchange aperture 12.3 respectively 14.3 is fitted into a housing 12.6 and 14.6 to alternatingly apply a vacuum or compressed air to the feed chamber 12 or 14, said aperture communicating by means of an annular chamber 12.5 or 14.5 and a filter 12.4 or 14.4 with the feed chamber 12 or 14. The filter 12.4 respectively 14.4 is permeable to gases, in particular compressed air, but not to coating powder particles. The filter 12.4 respectively 14.4 advantageously constitutes the peripheral/circumferential wall of the feed chambers 12 and 14.
The air exchange apertures 12.3 and 14.3 can be alternatingly connected by control valves 1.5 and 1.6 and the control unit 42 with the compressed air source 48 or the vacuum source 44.
The present invention moreover may include a control valve 1.8 in order to directly connect the air exchange apertures/hookups 12.3 and 14. 3 to the compressed air source 48 instead of through a pressure regulator in the control unit 42.
A compressed air conduit 52 connects the control unit 42 to the control valves 1.5 and 1.6. Compressed air conduits 46 connect the compressed air source 48 to the pressure regulators 2.1 and 2.2.
Illustratively the vacuum source 44 may be fitted with an injector wherein a flow of compressed air creates a (partial) vacuum at a vacuum port 50. The compressed air illustratively may be fed by a pressure regulator 2.3 and a control valve 1.7 to the vacuum injector 44. The pressure regulator 2.3 is connected through the compressed air conduit 46 to the compressed air source 48. All control valves 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 are driven by the control unit 42.
The electrical control unit 42 contains at least one computer driving the dense phase powder pump 10 by means of the control valves 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, and, to the extent being resorted to, also the control valves 1.7, 1.8 and 1.9.
In a lower part 62 said block contains the feed chambers 12 and 14 and in an upper part it is fitted with a plurality of boreholes 66 which issue from the external surface of the upper part 64 and which constitute the pneumatic conduits described below of the circuit for instance of
Two threaded boreholes 68.1 respectively 68.2 are fitted in the lower block part 62 in both end faces and serve to affix the Y conduit branch elements 20 and 24 by means of by spacer tubes 70.1 and 70.2 (
The powder feed apparatus of the invention shown in
All first control valves 1.5 and 1.6, which are connected in fluid communication to the feed chambers 12 and 14 to implement the application of compressed conveying air and of vacuum, are configured at the integral structural block 60 and communicate directly by means of several of the ducts 66 constituted in the integral structural block 60 with the feed chambers 12 respectively 14.
The first control valves 1.5 and 1.6 may be downstream of the second control valve 1.8, where, in the present invention, the second control valve 1.8 is mounted on the structural block 60 and is connected, by means of the ducts 66 in said block and in fluid communication, directly with said control valves 1.5 and 1.6 as shown in the circuit of
The powder intake valves Q1 and Q2 and the powder outlet valves Q3 and Q4 are configured at the opposite end faces of the structural block 60. The third control valves 1.1, 1.2, 1.3 and 1.4 are directly in fluid communication with the circuit of
Referring to
In a preferred embodiment mode of the present invention, an axially parallel feedthrough 12.8, 14.8 respectively 12.9, 14.9 for the drive air of the powder valves Q1, Q2, Q3 and Q4 is configured between the end faces of the said powder intake valves Q1 and Q2 on one hand and the structural block 60 on the other and also between the powder outlet valves Q3 and Q4 on one hand and the structural block 60 on the other, those ducts 66 of the metal block 60 issuing into said feedthrough(s) which is/are directly in fluid communication with the third control valves 1.1, 1.2, 1.3, 1.4 to drive the powder valves Q1, Q2, Q3 and Q4.
Advantageously the feedthrough 12.8, 12.9, 14.8, 14.9 each time runs through a radial gap between two concentrically configured sealing annuli 72 and 74 each configured between the powder intake valves Q1 and Q2 and the structural block 60 and enclosing the powder path between the powder valves Q1 through Q4 and the structural block 60.
In an especially advantageous embodiment mode of the present invention, a drive air filter 80 is configured at the structural block 60 at the feedthrough 12.8, 12.9, 14.8, 14.9 and is permeable to said drive air but not to the coating powder and thereby prevents coating powder from entering the ducts 66 of the structural block 60 when the powder intake valves Q1 and Q2 and/or the powder outlet valves Q3 and Q4 are separated from the structural block 60, for instance for maintenance or replacement.
The powder intake valves Q1 and Q2 and/or the powder outlet valves Q3 and Q4 are each configured between the structural block 60 and either of the two conduit branch elements 20 respectively 24, and preferably are mounted in exchangeable manner.
In a special embodiment mode of the present invention, the Y shaped conduit branch elements 20 and 24 are detachably affixed to the structural block 60, the powder intake valves Q1 and Q2 are configured between the conduit branch element 20 and the structural block 60, the powder outlet valves Q3 and Q4 are configured between the other Y shaped conduit branch element 24 and the structural block 60, each in the longitudinal direction of the particular feed chamber 12 respectively 14, and clamped in sealed manner. This design allows rapid assembly and disassembly for instance in order to clean the Y conduit branch elements 20 respectively 24 and/or the powder valves Q1, Q2, Q3 and/or Q4, or to replace them. Merely two fastening screws 82 respectively 84 need be loosened for that purpose, or be tightened. The screws 82 and 84 may be screwed into spacer tubes 70.1 respectively 70.2 that are used to position the Y conduit branch elements 20 and 24.
Preferably further ducts are fitted into the structural block 60 that run from the side of the first control valves 1.5 and 1.6 away from the feed chambers 12 and 14 to an outside of the structural block 60 to allow connecting—at the outside of said block—said ducts to the vacuum port 50 of the vacuum source 44.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 049 219 | Oct 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/002454 | 9/19/2008 | WO | 00 | 3/31/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/047602 | 4/16/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4268005 | Raftis et al. | May 1981 | A |
4630635 | Bernstein et al. | Dec 1986 | A |
4682755 | Bernstein et al. | Jul 1987 | A |
4830055 | Kolibas | May 1989 | A |
5702209 | Mauchle | Dec 1997 | A |
RE36036 | Engle | Jan 1999 | E |
7150585 | Kleineidam et al. | Dec 2006 | B2 |
7241080 | Klobucar et al. | Jul 2007 | B2 |
7287964 | Sanwald | Oct 2007 | B2 |
7452166 | von Keudell et al. | Nov 2008 | B2 |
7731456 | Fulkerson et al. | Jun 2010 | B2 |
20050012476 | Yamasaki et al. | Jan 2005 | A1 |
20050095071 | Kleineidam et al. | May 2005 | A1 |
20050126476 | Shutic et al. | Jun 2005 | A1 |
20050178325 | Herre et al. | Aug 2005 | A1 |
20060193704 | Simontacchi | Aug 2006 | A1 |
20070092380 | Fulkerson et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
19611533 | Nov 2005 | DE |
1752399 | Feb 2007 | EP |
1772195 | Apr 2007 | EP |
9071325 | Mar 1997 | JP |
Entry |
---|
ISR for PCT/IB2008/002454 dated Feb. 18, 2009. |
Number | Date | Country | |
---|---|---|---|
20100213281 A1 | Aug 2010 | US |