The present application claims priority under 35 U.S.C. § 119 of Japanese Patent Application No. 2017-053096 filed on Mar. 17, 2017, and Japanese Patent Application No. 2017-098871 filed on May 18, 2017, the disclosures of which are expressly incorporated by reference herein in their entireties.
The invention relates to a female connector and a connection structure of a female connector and a male connector.
Japanese Unexamined Patent Publication No. 2015-195126 discloses a conventional connection structure of a female connector and a male connector. The female connector has a tubular female body with a connection hole, and a projection is provided on the outer face of the upper wall of the female body. The male connector has a male body to be removably received into the connection hole of the female connector, and a lock arm is provided in the male body. As used herein the term “receiving direction” means a direction in which the male connector is inserted into the connection hole of the female connector, and the term “removing direction” means a direction in which the male connector is removed from the connection hole of the female connector. The removing direction is opposite to the receiving direction.
The lock arm includes a base, a plate spring, and an operation lever. The base upwardly stands on an end in the removing direction of the male body. The spring extends from the base in the receiving direction and faces the male body with a clearance therebetween. The spring has a free end with lock hole. When the male connector is received in the connection hole of the female connector, the upper wall and the projection of the female connector are received in the clearance between the spring and the male body, and the projection fits in the lock hole. The operation lever is generally U-shaped in plain view, with its two leading portions fixed to respective widthwise ends of the free end of the spring. The operating lever extends in the removing direction, at an upward inclination, from the free end of the spring. When the top of the operation lever is pressed downward, the lock arm elastically deforms such that the free end of the spring is displaced upward with the base as a fulcrum, and the projection of the female connector is disengaged from the lock hole of the spring. When the top of the operating lever is released, the lock arm is restored to its initial form, and the free end of the spring is displaced downward.
The plate spring of the lock arm of the male connector extends in the receiving direction, and the lock hole is provided in the free end of the plate spring, which is displaceable upward and downward. As such, when the male connector is pulled in the removing direction, the projection of the female connector presses the edge on the receiving direction side of the lock hole of the plate spring of the male connector, so that the free end of the plate spring is prone to be pressed up, which may result in unintentional disengagement of the projection of the female connector from the lock hole of the male connector.
The invention is made in view of the above circumstances to provide a female connector with a locking mechanism less susceptible to unintentional unlocking. The invention also provides a connection structure of such female connector and a male connector.
A female connector of an aspect of the invention is provided with a body including a main body, a base, and a lock arm. The main body includes a connection hole for removably receiving a male connector and a slot. The slot extends in a receiving direction of the male connector and communicates with the connection hole. The base is located on a removing direction side of the male connector relative to the slot of the main body. The removing direction is opposite to the receiving direction. The lock arm includes a first arm, a middle portion, a second arm, and a lock projection. The first arm extends in the receiving direction from the base inside the slot such as to be adjacent to the connection hole and includes a first free end. The middle portion extends from the first free end of the first arm in a direction away from the connection hole. The second arm extends from the middle portion in the removing direction and is spaced from the first arm. The lock projection extends from the first free end of the first arm toward and into the connection hole. The lock projection is configured to fit in a lock hole of the male connector or abut a protrusion of the male connector from the removing direction side. At least the first arm, the middle portion, and the second arm are configured to be compressed by and between the base and an edge on the receiving direction side of the lock hole of the male connector, or by and between the base and the protrusion of the male connector, when the lock projection is subjected to load in the removing direction from the edge or the protrusion of the male connector.
In the female connector of this aspect, the lock arm includes the first arm extending in the receiving direction from the base, the middle portion extending from the first free end of the first arm in a direction away from the connection hole, and the second arm extending in the removing direction from the middle portion. In short, the first arm, the middle portion, and the second arm collectively form a generally lateral U-shape. This generally lateral U-shaped portion of the lock arm will be hereinafter referred to as a lock arm body. When the lock projection is subjected to load in the removing direction, at least the lock arm body of the lock arm is compressed by and between the base and the edge or the protrusion of the male connector, so that the load is absorbed. The load, thus absorbed, hardly acts in such a manner as to displace the lock projection of the lock arm in a direction away from the connection hole. Consequently, the lock projection of the lock arm securely fits in the lock hole or securely abuts the projection of the male connector. The lock projection of the lock arm thus securely locked is resistant to unintentional release of the locking.
The lock arm may further include a leading face on the receiving direction side. The leading face may be provided at the lock projection and include a leading end, a far end, and an inclined face. The leading end may be an edge constituted by an end face on the receiving direction side and an end face on the connection hole side of the lock projection. The far end may be located farther away from the connection hole than the leading end. The inclined face may slope down in the receiving direction from the far end to the leading end. At least the first arm, the middle portion, and the second arm may be configured to be compressed by and between the base and the edge or protrusion of the male connector such that the inclined face of the lock projection is displaced in the removing direction when the inclined face is subjected to load in the removing direction from the edge or protrusion of the male connector.
In the female connector of this aspect, the lock projection of the lock arm in the locked state is further resistant to unintentional release of the locking with the lock hole or the projection of the male connector (resistant to unintentional release of the fitting to the lock hole or of the abutment on the protrusion of the male connector). This is because at least the lock arm body of the lock arm is compressed by and between the base and the edge or the protrusion of the male connector such that the inclined face is displaced in the removing direction when the inclined face is subjected to load in the removing direction.
The leading face may be provided at the lock projection and the first free end, in which case the far end of the leading face may be provided in the first free end. The leading face may alternatively be provided at the lock projection, the first free end, and the middle portion, in which case the far end of the leading face may be provided in the middle portion. In either case, the inclined face of the leading face may include a contact portion being an end face on the receiving direction side of the lock projection. At least the first arm, the middle portion, and the second arm may be configured to be compressed by and between the base and the edge or protrusion of the male connector such that the inclined face is displaced in the removing direction when the contact portion of the lock projection is subjected to load in the removing direction from the edge of the lock hole of the male connector or the protrusion of the male connector.
In the female connector of this aspect, the lock projection of the lock arm in the locked state is further resistant to unintentional release of the locking with the lock hole or the projection of the male connector. The inclined face is provided at the lock projection and the first free end, or provided at the lock projection, the first free end, and the middle portion. Consequently, when the contact portion of the inclined face of the lock projection is subjected to load in the removing direction, at least the lock arm body of the lock arm is readily compressed by and between the base and the edge or the protrusion of the male connector.
The second arm may include a second free end opposed to and spaced from the first arm or the base. In this case, when the second free end is pressed toward the connection hole, the second arm may elastically deform until the second free end abuts at least one of the first arm and the base, and the first arm may elastically deform with the base as a fulcrum such that the first free end and the lock projection are displaced in a direction away from the connection hole.
In the female connector of this aspect, the second free end abuts at least one of the first arm and the base, thereby preventing the second arm from elastically deforming further toward the at least one of the first arm side and the base side.
A female connector according to another aspect of the invention includes a body and a seal. The body has a connection hole for removably receiving a male connector along a first direction. One side of the first direction is the receiving direction, and the other side of the first direction is the removing direction. The body includes a first body and a second body. The first body includes a first chamber and a second chamber. The first chamber forms part of the connection hole and accommodates the seal such that the seal is in close contact, from a direction orthogonal to the first direction, with the male connector as received in the connection hole. The second chamber is a space on the other side in the first direction relative to the first chamber of the first body. The second body is received in the second chamber from one side in a second direction and fixed in the first direction by the first body. The second direction crosses the first direction. The second body includes a through-hole and a stop abutment. The through-hole forms part of the connection hole and extends through the second body in the first direction. The through-hole is located on the other side in the first direction relative to the first chamber. The stop abutment is located on the other side in the first direction relative to the seal.
The female connector of this aspect has a reduced possibility that the second body becomes detached in the other side of the first direction (in the removing direction). The reasons are as follows. The stop abutment of the second body is located on the other side of the first direction relative to the seal. The second body is received in the second chamber from the one side of the second direction and fixed in the first direction by the first body. As such, even if the male connector as connected to the connection hole is moved to the other side of the first direction such that the seal is subjected to load to the other side of the first direction, the first body restricts the movement of the seal and the second body to the other side of the first direction (in the removing direction).
The seal may be a loop-shaped body configured to receive therein the male connector. Alternatively, a plurality of the seals may be provided in a loop-shaped arrangement, and the seals may be accommodated in the first chamber and define a space to receive therein the male connector. The second body may further include a circumferential wall of the through-hole. The stop abutment may be provided on the circumferential wall of the second body.
The female connector of this aspect is configured such as to facilitate placement of the stop abutment of the second body on the other side of the first direction relative to the at least one seal. This is because the stop abutment is provided on the circumferential wall of the through-hole of the second body. The stop abutment of the second body can be disposed on the other side of the first direction relative to the at least one seal simply by inserting the second body into the second chamber of the first body from the one side of the second direction.
The first body may further include a first abutment located on the other side of the first direction relative to the second chamber. The first abutment may abut, from the other side in the first direction, the second body accommodated in the second chamber. The female connector of this aspect has a reduced possibility that the second body becomes detached to the other side of the first direction because the first abutment abuts the second body from the other side in the first direction.
The first body may further include a second abutment located on the one side of the first direction relative to the second chamber. The second abutment may abut, from the one side of the first direction, the second body accommodated in the second chamber.
The second abutment may be configured to hold, on the one side of the first direction relative to the second body, the male connector as received in the connection hole. The first abutment may be configured to hold, on the other side of the first direction relative to the second body, the male connector as received in the connection hole.
For the female connector of this aspect, when the male connector as received in the connection hole is twisted or pried (when the male connector is operated so as to be moved in a direction crossing the first direction), the movement of the male connector causes application of load to the first and second bodies. However, the first abutment and the second abutment of the first body hold the male connector on the opposite sides in the first direction of the second body, so that the applied load is dispersed to the first and second abutments, and reducing the load applied to the second body.
The second body may include an engagement portion. The engagement portion may be adjacent to the through-hole and engageable with the male connector as received in the connection hole.
The female connector of this aspect has improved tensile strength to the other side of the first direction. This is because the engagement portion is provided in the second body fixed to the first body in the first direction.
The first body may include an engagement portion. The engagement portion of the first body may be engageable with the male connector as received in the connection hole.
In the female connector of this aspect, because of the engagement portion provided in the first body, the second body will not be subjected to load generated by the movement of the male connector to the other side of the first direction. The engagement portion of any aspect described above may or may not be the lock projection of the lock arm.
The circumferential wall of the through-hole may be provided with a guide extending in the first direction. The guide may be a guide projection configured to be received in a guide groove of the male connector or may be a guide groove configured to receive a guide projection of the male connector.
The female connector of this aspect, because of the guide provided in the second body, it is only necessary to replace the second body in order to make the female connector compatible with a male connector with a guide projection or a guide groove of different type.
A connection structure of the female connector and the male connector of an aspect of the invention may include a female connector of any of the above aspects and a male connector. The male connector may include a lock hole or a protrusion. In a state where the male connector is received in the connection hole of the female connector, the lock projection of the female connector may fit in the lock hole of the male connector, or alternatively may abut the protrusion of the male connector from the removing direction side. At least the first arm, the middle portion, and the second arm of the lock arm of the female connector may be configured to be compressed by and between the base and the edge on the receiving direction side of the lock hole of the male connector, or by and between the base and the protrusion of the male connector, when the lock projection of the female connector is subjected to load in the removing direction from the edge or the protrusion of the male connector.
The lock arm of the female connector may be pivotable with the base as a fulcrum when the second free end of the second arm of the lock arm is pressed toward the connection hole, such that the first free end of the first arm of the lock arm and the lock projection are displaced in a direction away from the connection hole, thereby releasing the fitting of the lock projection of the female connector in the lock hole of the male connector or releasing the abutment of the lock projection of the female connector on the protrusion of the male connector.
The present invention can be even more fully understood with the reference to the accompanying drawings which are intended to illustrate, not limit, the present invention.
In the brief description of the drawings above and the description of embodiments which follows, relative spatial terms such as “upper”, “lower”, “top”, “bottom”, “left”, “right”, “front”, “rear”, etc., are used for the convenience of the skilled reader and refer to the orientation of the female connector and the connection structure and their constituent parts as depicted in the drawings. No limitation is intended by use of these terms, either in use of the invention, during its manufacture, shipment, custody, or sale, or during assembly of its constituent parts or when incorporated into or combined with other apparatus.
The following discussion is directed to various embodiments of the invention.
A female connector C1 according to a plurality of embodiments including the first embodiment of the invention will now be described with reference to
The female connector C1 includes a body 100. The body 100 includes the connection hole 101 for receiving and removing the male connector C2 in the Y-Y′ direction. The body 100 includes a first body 100a and a second body 100b, which are made of an insulating resin.
The first body 100a includes a first chamber 110a, a first abutment 120a, and a second abutment 130a. The first chamber 110a is defined by the first abutment 120a and the second abutment 130a. For example, as illustrated in
The first abutment 120a is located on the Y′-direction side relative to the first chamber 110a and abuts, from the Y′-direction side, the second body 100b as accommodated in the first chamber 110a. The first abutment 120a restricts movement of the second body 100b in the Y′ direction. The second abutment 130a is located on the Y-direction side relative to the first chamber 110a and abuts, from the Y-direction side, the second body 100b as accommodated in the first chamber 110a. The second abutment 130a restricts movement of the second body 100b in the Y direction. The first abutment 120a and the second abutment 130a may have any configurations abuttable on the second body 100b in the above manners. For example, the first abutment 120a and the second abutment 130a may each be a wall (see
The second body 100b includes a main body 110b. The main body 110b includes a main hole 111b. The main hole 111b is a hole forming at least part of the connection hole 101 and extends through the main body 110b in the Y-Y′ direction. The first abutment 120a, if being a wall, may have an opening 121a extending through the first abutment 120a in the Y-Y′ direction and communicating with the main hole 111b on the Y′-direction side of the main hole 111b of the second body 100b. The first abutment 120a, if having no opening 121a, may preferably be not a wall but a projection, a lug, or the like. The second abutment 130a, if being a wall, may have a first hole 131a opening in the Y′ direction and communicating with the main hole 111b on the Y-direction side of the main hole 111b of the second body 100b. The second abutment 130a may further have a second hole 132a communicating with the first hole 131a on the Y-direction side of the first hole 131a.
The connection hole 101 may have any one of the following configurations A) to F), for example:
A) The connection hole 101 is constituted only by the main hole 111b. In this case, the opening 121a, the first hole 131a, and the second hole 132a are not provided.
B) The connection hole 101 is constituted by the main hole 111b and the opening 121a. In this case, the first hole 131a and the second hole 132a are not provided.
C) The connection hole 101 is constituted by the main hole 111b and the first hole 131a. In this case, the opening 121a and the second hole 132a are not provided.
D) The connection hole 101 is constituted by the main hole 111b, the opening 121a, and the first hole 131a. In this case, the second hole 132a is not provided.
E) The connection hole 101 is constituted by the main hole 111b, the first hole 131a, and the second hole 132a. In this case, the opening 121a is not provided.
F) The connection hole 101 is constituted by the main hole 111b, the opening 121a, the first hole 131a, and the second hole 132a (see
The connection hole 101 may have any inner shape adapted to removably receive the male connector C2 therein along the Y-Y′ direction. Particularly, at least part in the Y-Y′ direction of the connection hole 101 may have an inner size corresponding to the outer size of at least part in the Y-Y′ direction of the male connector C2, so that the connection hole 101 can hold therein the at least part of the male connector C2. For example, the inner size of the main hole 111b may correspond to the outer size of the male connector C2 so that the main hole 111b can hold therein the male connector C2. If the second abutment 130a is provided with the second hole 132a, the inner size of the second hole 132a may correspond to the outer size of a leading portion C21 of the male connector C2 so that the second hole 132a can hold therein the leading portion C21 of the male connector C2. If the first abutment 120a is provided with the opening 121a, the inner size of the opening 121a may correspond to the outer size of a far portion C22 of the male connector C2 so that the opening 121a can hold therein the far portion C22 of the male connector C2. It should be appreciated that the far portion C22 is the farther side of the male connector C2 with respect to the female connector C1, i.e. located on the Y′-direction side relative to the leading portion C21 of the male connector C2.
The main body 110b further includes a slot 112b. The slot 112b is an elongated hole extending in the Y direction in the circumferential wall of the main hole 111b of the main body 110b. The circumferential wall is a tuboid wall extending in the Y-Y′ direction. The slot 112b communicates with, and is located on the Z-direction side relative to, the main hole 111b.
The second body 100b further includes a base 120b. The base 120b is a portion of the circumferential wall of the main hole 111b, located on the Y′-direction side relative to the slot 112b in the main body 110b, and serves as an edge on the Y′-direction side of the slot 112b.
The second body 100b further includes a lock arm 130b. The lock arm 130b includes a lock arm body, and the lock arm body includes a first arm 131b, a middle portion 132b, and a second arm 133b. The lock arm body of the lock arm 130b may be made of an insulating resin or a metal plate. Alternatively, at least one of the first arm 131b, the middle portion 132b, and the second arm 133b of the lock arm 130b may be made of an insulating resin and the remaining may be made of metal. In either case, the lock arm body of the lock arm 130b, in cross-section cut along the Z-Z′ direction, generally has a lateral U-shape opening in the Y′ direction. As used herein the term “lateral U-shape in cross-section” includes a lateral V-shape in cross-section and a lateral square U-shape in cross-section.
The first arm 131b extends from the base 120b in the Y direction inside the slot 112b such as to be adjacent to the main hole 111b. A clearance is provided between the first arm 131b and each of the edges in the X-X′ direction of the slot 112b of the main body 110b. The first arm 131b includes a first fixed end 131b1 and a first free end 131b2. The first fixed end 131b1 is integrally contiguous with or fixed to the base 120b. The first arm 131b is elastically deformable, with the base 120b as a fulcrum, such that the first free end 131b2 is displaced in a direction away from the main hole 111b (displaced in the Z direction).
The middle portion 132b extends from the first free end 131b2 of the first arm 131b in a direction away from the main hole 111b, i.e. in the Z direction. If formed of a metal plate, the middle portion 132b may preferably folded back to the Z- and Y′-direction sides.
The second arm 133b extends in the Y′ direction from the middle portion 132b and is spaced from the first arm 131b in the Z-Z′ direction. The second arm 133b includes a second fixed end 133b1 and a second free end 133b2. The second fixed end 133b1 is integrally contiguous with or fixed to the middle portion 132b. The lock arm 130b is pivotable substantially in the Z-Z′ direction, with the base 120b as the fulcrum, by pressing the second free end 133b2 (point of effort) toward the connection hole 101, i.e. in the Z′ direction.
The second free end 133b2 may preferably be opposed to and spaced in the Z-Z′ direction from the first arm 131b and/or the base 120b. In this case, the second arm 133b may be elastically deformable such that the second free end 133b2 is displaced toward the first arm 131b and/or the base 120b, i.e. displaced in the Z′ direction. The second arm 133b may, but not necessarily, elastically deform until the second free end 133b2 abuts the first arm 131b and/or the base 120b. That is, even when elastically deformed to the maximum degree, the second free end 133b2 may be located with a clearance in the Z-Z′ direction between itself and the first arm 131b and/or the base 120b.
Alternatively, the second arm 133b may have a dimension in the Y-Y′ direction that is larger than the sum of the dimension in the Y-Y′ direction of the first arm 131b and the base 120b, so that the second free end 133b2 is not opposed to the first arm 131b or the base 120b in the Z-Z′ direction. Even in this case, the second arm 133b may elastically deform such that the second free end 133b2 is displaced in the Z′ direction. Irrespective of its size, the second arm 133b may be elastically undeformable.
The lock arm 130b further includes a lock projection 134b. The lock projection 134b extends from the first free end 131b2 of the first arm 131b toward the main hole 111b, i.e. extends in the Z′ direction. In other words, the lock projection 134b extends from a vertex of the lock arm body of lateral U-shape in cross-section toward the main hole 111b (in the Z′ direction). The lock projection 134b is initially located at a “lock position” in the main hole 111b. The lock projection 134b at the lock position can fit in a lock hole C23 of the male connector C2 as received in the connection hole 101 of the female connector C1. The lock projection 134b can be displaced in the Z direction from the lock position to a “displacement position” in accordance with the displacement in the Z direction of the first free end 131b2 of the first arm 131b. The displacement position is on the Z-direction side relative to the lock position. When the lock projection 134b as fitting in the lock hole C23 of the male connector C2 moves to the displacement position, the lock projection 134b becomes disengaged from the lock hole C23.
The lock projection 134b is a projection of an insulating resin or a metal in the shape of a polygonal prism (e.g. a quadrangular prism as shown in
1) Provided that the first arm 131b is made of an insulating resin, the lock projection 134b is made of an insulating resin and integrally contiguous with the first free end 131b2 of the first arm 131b.
2) Provided that the first arm 131b is made of an insulating resin, the lock projection 134b is made of a metal and fixed to the first free end 131b2 of the first arm 131b.
3) Provided that the first arm 131b is made of a metal plate, the lock projection 134b is part of the same metal plate, formed by cutting a part of the first free end 131b2 of the first arm 131b and bending the part to extend in the Z′-direction.
4) Provided that the first arm 131b is made of a metal plate, the lock projection 134b is made of an insulating resin fixed to the first free end 131b2 of the first arm 131b.
The lock projection 134b may be provided with an inclined face 134b1. The inclined face 134b1 is an end face on the Y′-direction side of the lock projection 134b. The inclined face 134b1 slopes down in the Y direction from its Z-direction end to its Z′-direction end. When the male connector C2 is received into the connection hole 101 of the female connector C1, the edge on the Y-direction side of the lock hole C23 of the male connector C2 presses the inclined face 134b1, which assists the lock arm 130b to rotate with the base 120b as the fulcrum. The lock projection 134b may be provided without the inclined face 134b1.
The lock arm 130b further includes a leading face 135b on the Y-direction side. The leading face 135b may be configured to include a leading end 135b1, a far end 135b2, and an inclined face 135b3. The leading end 135b1 is an edge constituted by the Y-direction-side end face of the lock projection 134b and the end face on the side of the main hole 111b (Z′-direction-side end face) of the lock projection 134b. In the leading face 135b, the far end 135b2 is located farther away from the main hole 111b than the leading end 135b1, i.e. located on the Z-direction side relative to the leading end 135b1. The inclined face 135b3 slopes down in the Y direction from the far end 135b2 to the leading end 135b1.
The leading face 135b may particularly have any one of the following configurations 1) to 3), for example:
Configuration 1): the leading face 135b is provided only at the lock projection 134b. In other words, the leading face 135b is the Y-direction-side end face of the lock projection 134b. In this case, the far end 135b2 of the leading face 135b may be the boundary between the lock projection 134b and the first free end 131b2 of the first arm 131b. Alternatively, the far end 135b2 may be located on the Z′-direction side relative to such boundary. The inclined face 135b3 can abut against the edge on the Y-direction side of the lock hole C23 of the male connector C2 such as to bite into the edge.
Configuration 2): the leading face 135b is provided at the lock projection 134b and the first free end 131b2 of the first arm 131b. In other words, the leading face 135b is the Y-direction-side end face of the lock projection 134b and the first free end 131b2. In this case, the Y-direction-side end face of the lock projection 134b is flush with the Y-direction-side end face of the first free end 131b2. The far end 135b2 of the leading face 135b may be the boundary between the first free end 131b2 of the first arm 131b and the middle portion 132b. Alternatively, the far end 135b2 may be located on the Z′-direction side relative to such boundary and within the first free end 131b2. The inclined face 135b3 includes a contact portion 135b31, which is the Y-direction-side end face of the lock projection 134b, and the contact portion 135b31 can abut against the edge on the Y-direction side of the lock hole C23 of the male connector C2 such as to bite into the edge.
Configuration 3): as illustrated in
It should be appreciated that with respect to the length of the inclined face 135b3, configuration 1) is the smallest, configuration 3) is the largest, and configuration 2) is between configurations 1) and 3).
The inclined face 135b3 may extend at an inclination angle in a range of between 80° and 90° with respect to the Z′-direction-side face of the lock projection 134b, but the inclination angle is not limited to this range. The leading face 135b does not necessarily include the inclined face 135b3. For example, the leading face 135b may be a vertical face parallel to the Z-Z′ direction or an arced face recessed in the Y′ direction.
When the male connector C2 as received in the connection hole 101 of the female connector C1 is pulled in the Y′ direction (removing direction), the edge on the Y-direction side of the lock hole C23 of the male connector C2 presses the lock projection 134b of the lock arm 130b in the Y′ direction to apply thereon a load in the Y′ direction. If the leading face 135b of the lock arm 130b does not include the inclined face 135b3, when the lock projection 134b is subjected to the above load, at least the lock arm body of the lock arm 130b is compressed between the base 120b of the female connector C1 and the edge on the Y-direction side of the male connector C2 and thereby elastically deformed. If the leading face 135b of the lock arm 130b includes the inclined face 135b3, when the lock projection 134b is subjected to the above load, at least the lock arm body of the lock arm 130b is compressed between the base 120b of the female connector C1 and the edge on the Y-direction side of the male connector C2 and thereby elastically deformed such that the inclined face 135b3 is displaced in the Y′ direction. In either case, the load is absorbed by the elastic deformation of the at least lock arm body. Specifically, the load is absorbed to prevent the load from displacing the first free end 131b2 of the first arm 131b of the lock arm 130b in the Z direction and elastically deforming the first arm 131b with the base 120b as the fulcrum. The absorbed load results in the stable fitting of the lock projection 134b of the lock arm 130b in the lock hole C23 of the male connector C2. The load may elastically deform the lock arm 130b in its entirety, rather than the lock arm body only.
If the second abutment 130a of the first body 100a includes the first hole 131a (chamber), the female connector C1 may further include a seal 200 made of an elastic material, such as silicone rubber. The seal 200 is accommodated in the first hole 131a such as to be in close contact, from the side of a direction orthogonal to the Y-Y′ direction, with the leading portion C21 of the male connector C2 as received in the connection hole 101. The seal 200 may be of a loop shape, such as an annular shape (see
If the female connector C1 includes the seal 200, the main body 110b of the second body 100b may further include at least one stop abutment 140b. The or each stop abutment 140b is a projection or ridge on a circumferential wall of the main hole 111b, or the end portion on the Y-direction side of the main hole 111b (in other words, the edge on the Y-direction side of the main hole 111b). The at least one stop abutment 140b is located on the Y′-direction side relative to the seal 200, and it abuts the seal 200 or is opposed to the seal 200 with a clearance on the Y′-direction side. The stop abutment 140b restricts movement of the seal 200 in the Y′ direction. In the embodiment shown in
The female connector C1 further includes at least one terminal 300. The or each terminal 300 is configured to be accommodated in the connection hole 101 of the body 100 such that a contact portion 310 of the terminal 300 makes contact with a terminal C24 of the male connector C2 as received in the connection hole 101. In the embodiment of
The female connector C1 may further include at least one cable 600 of a corresponding number with the at least one terminal 300. If a single terminal 300 is provided, a single cable 600 is provided and connected to a connection portion 320 of the terminal 300. If a plurality of terminals 300 is provided, a plurality of cables 600 of the same number as the terminals 300 are provided and connected to the respective connection portions 320 of the terminals 300. The at least one cable 600 extends through the tubular portion of the first body 100a to be led out of the first body 100a. The cables 600 can be bundled into a composite cable as shown in
A procedure of assembling of the female connector C1 will now be described below in detail. The first body 100a is prepared holding the at least one terminal 300 as described above. The second body 100b is also prepared. The second body 100b is inserted into the first chamber 110a of the first body 100a from the Z-direction side such as to be accommodated in the first chamber 110a (this step will be hereinafter referred to as “the placement step”). In the placement step, the first abutment 120a and the second abutment 130a of the first body 100a are brought into abutment with the second body 100b from the Y′- and the Y-direction sides, respectively. The first body 100a thus restricts the second body 100b positionally in the Y-Y′ direction. If the first abutment 120a includes the opening 121a, the main hole 111b of the second body 100b, in the placement step, is brought into communication with the opening 121a. If the second abutment 130a includes the first hole 131a, the main hole 111b of the second body 100b, in the placement step, is brought into communication with the first hole 131a. If the female connector C1 includes the seal 200, the seal 200 is inserted from the Y′-direction side into the first hole 131a of the first body 100a before placing the second body 100b into the first chamber 110a of the first body 100a. In the placement step, the at least one stop abutment 140b of the second body 100b is located on the Y′-direction side relative to the seal 200, and the main hole 111b of the second body 100b is brought into communication with the first hole 131a. The female connector C1 is thus assembled.
A procedure of connecting the female connector C1 to the male connector C2 will now be described below in detail. The male connector C2 is inserted into the connection hole 101 of the female connector C1. At this point, the edge on the Y-direction side of the lock hole C23 of the male connector C2 presses the lock projection 134b of the lock arm 130b of the female connector C1 from the Y′-direction side, and the edge pushes the lock arm 130b upward, i.e. in the Z direction. The lock arm 130b thus pushed elastically deforms in the Z direction with the base 120b as the fulcrum. The lock projection 134b of the lock arm 130b rides up and over the edge on the Y-direction side of the male connector C2 and fits into (is locked into) the lock hole C23. With the male connector C2 received in the connection hole 101, the or each terminal 300 of the female connector C1 is brought into physical contact and electrical connection with a corresponding terminal C24 of the male connector C2. The female connector C1 is thus electrically connected to the male connector C2 to form a connection structure of the female connector C1 and the male connector C2. It is preferable, but not required, that the male connector C2 is received in the connection hole 101 such that the at least part in the Y-Y′ direction of the received male connector C2 is held in the connection hole 101 as described above.
A procedure of releasing the connection between the female connector C1 and the male connector C2 will now be described below in detail. A user presses the second free end 133b2 (point of effort) of the second arm 133b of the lock arm 130b toward the connection hole 101, i.e. in the Z′-direction. This press causes the lock arm 130b to pivot substantially in the Z direction with the base 120b as the fulcrum. More specifically, the above press causes at least the first arm 131b of the lock arm 130b is elastically deformed with the base 120b as the fulcrum, whereby the first free end 131b2 of the first arm 131b and the lock projection 134b (point of application collectively) are displaced substantially in the Z direction. If elastically deformable, the second arm 133b elastically deforms in accordance with the elastic deformation of the first arm 131b such that the second free end 133b2 of the second arm 133b is displaced in the Z′ direction. Upon displacement in the Z direction of the lock projection 134b of the lock arm 130b, the lock projection 134b is released from the fitting to the lock hole C23 of the male connector C2. At this point, the user pulls out the male connector C2 in the Y′ direction (removing direction). This releases the connection between the female connector C1 and the male connector C2.
The female connector C1 and the connection structure provides the following technical features and effects:
1) The female connector C1 is configured such as to eliminate or reduce unintentional release of the fitting (locking) of the lock projection 134b of the lock arm 130b from the lock hole C23 of the male connector C2 if the male connector C2 is pulled in the Y′ direction in the state where the male connector C2 is connected to the female connector C1 (hereinafter referred to as the “connection state”). The reason is as follows. When the male connector C2 is pulled in the Y′ direction, load in the Y′ direction is exerted on the lock projection 134b of the lock arm 130b, but the load is absorbed by compressing at least the lock arm body of the lock arm 130b between the base 120b of the female connector C1 and the edge on the Y-direction side of the male connector C2. In other words, the load hardly acts in such a manner as to displace the first free end 131b2 of the first arm 131b of the lock arm 130b in the Z direction.
2) The female connector C1 has improved tensile strength in the Y′ direction for the following reason. The second body 100b is fixed in position in the Y-Y′ direction by the first and second abutments 120a, 130a of the first body 100a, reducing the possibility that the second body 100b becomes detached in the Y′ direction from the first body 100a even if the male connector C2 in the connection state is pulled in the Y′ direction to apply load in the Y′ direction to the lock projection 134b of the lock arm 130b. Also, if the female connector C1 includes the seal 200, the seal 200 in the connection state is in close contact with the outer circumferential face of the leading portion C21 of the male connector C2. When the male connector C2 is pulled in the Y′ direction, load in the Y′ direction is applied also on the seal 200, and also on the at least one stop abutment 140b of the second body 100b via the seal 200. The second body 100b is received in the first chamber 110a of the first body 100a from the Z-direction side, and fixed in position in the Y-Y′ direction by the first and second abutments 120a, 130a of the first body 100a. The second body 100b thus fixed is unlikely to become detached from the first body 100a in the Y′-direction due to the load in the Y′ direction.
3) The lock arm 130b of the female connector C1 has a reduced dimension in the Y-Y′ direction, and accordingly the female connector C1 as a whole has a reduced dimension in the Y-Y′ direction. This is because the lock arm body of the lock arm 130b generally has a lateral U-shape in cross-section.
A connection structure of a female connector C1 and a male connector C2′ according to a plurality of embodiments including the second embodiment of the invention will now be described with reference to
The male connector C2′ is different from the male connector C2 in that the male connector C2′ includes a protrusion C23′ instead of the lock hole C23.
In this case, the lock position of the lock projection 134b of the lock arm 130b of the female connector C1 is a position in the main hole 111b, at which the lock projection 134b can abut the protrusion C23′ of the male connector C2′ as received in the connection hole 101 of the female connector C1 from the Y′-direction side. The displacement position of the lock projection 134b is on the Z-direction side relative to the lock position. When the lock projection 134b as abutting the protrusion C23′ of the male connector C2′ moves to the displacement position, the lock projection 134b becomes disengaged from the protrusion C23′.
If the leading face 135b of the lock arm 130b has configuration 1) as describe above, the inclined face 135b3 of the leading face 135b is abuttable on the protrusion C23′ of the male connector C2′ from the Y′-direction side. If the leading face 135b of the lock arm 130b has configuration 2) or 3) as describe above, the contact portion 135b31 of the inclined face 135b3 of the leading face 135b is abuttable on the protrusion C23′ of the male connector C2′ from the Y′-direction side.
When the male connector C2′ as received in the connection hole 101 of the female connector C1 is pulled in the Y′ direction (removing direction), the protrusion C23′ of the male connector C2′ presses the lock projection 134b of the lock arm 130b in the Y′ direction to apply thereon a load in the Y′ direction. If the leading face 135b of the lock arm 130b does not include the inclined face 135b3, when the lock projection 134b is subjected to the above load, at least the lock arm body of the lock arm 130b is compressed between the base 120b of the female connector C1 and the protrusion C23′ of the male connector C2′ and thereby elastically deformed. If the leading face 135b of the lock arm 130b includes the inclined face 135b3, when the lock projection 134b is subjected to the above load, at least the lock arm body of the lock arm 130b is compressed between the base 120b of the female connector C1 and the protrusion C23′ of the male connector C2′ and thereby elastically deformed such that the inclined face 135b3 is displaced in the Y′ direction. In either case, the load is absorbed by the elastic deformation of the at least lock arm body. Specifically, the load is absorbed to prevent the load from displacing the first free end 131b2 of the first arm 131b of the lock arm 130b in the Z direction and elastically deforming the first arm 131b with the base 120b as the fulcrum. The absorbed load results in the stable abutment between the lock projection 134b of the lock arm 130b and the protrusion C23′ of the male connector C2′. The load may elastically deform the lock arm 130b in its entirety, rather than the lock arm body only.
The female connector C1 can be connected to, and disconnected from, the male connector C2′ in a similar manner to the male connector C2.
The connection structure of the female connector C1 and the male connector C2′ provides similar technical features and effects to those provided by the connection structure of the female connector C1 and the male connector C2.
A female connector C3 according to a plurality of embodiments including the third embodiment of the invention will now be described with reference to
The female connector C3 includes a body 100 and at least one seal 200. The body 100 includes the connection hole 101 for receiving and removing the male connector C4 in the Y-Y′ direction. The body 100 has a first body 100a and a second body 100b, which are made of an insulating resin.
The first body 100a includes a first chamber 110a, a second chamber 120a, a first abutment 130a, and a second abutment 140a. The second chamber 120a is a space in the first body 100a, located on the Y′-direction side relative to the first chamber 110a. More specifically, the second chamber 120a may be defined by the first abutment 130a and the second abutment 140a. For example, the second chamber 120a may have the same configuration as the first chamber 110a of the female connector C1. In this case, the second body 100b is received in the second chamber 120a from the Z-direction side and fixed in position in the Y-Y′ direction by the first body 100a.
The first abutment 130a and the second abutment 140a may have the same configuration as the first abutment 120a and the second abutment 130a, respectively, of the female connector C1. The first abutment 130a is located on the Y′-direction side relative to the second chamber 120a and abuts, from the Y′-direction side, the second body 100b as accommodated in the second chamber 120a. The second abutment 140a is located on the Y-direction side relative to the second chamber 120a and abuts, from the Y-direction side, the second body 100b as accommodated in the second chamber 120a.
The first chamber 110a, forming part of the connection hole 101, is a hole in of the first body 100a. The first chamber 110a is located on the Y-direction side relative to the second chamber 120a and opens in the Y′ direction. If the second abutment 140a is a wall, the first chamber 110a may, but is not required to, be provided in the second abutment 140a as illustrated in
The at least one seal 200 is made of an elastic material, such as silicone rubber, and accommodated in the first chamber 110a such as to be in close contact, from the side of a direction orthogonal to the Y-Y′ direction, with the leading portion C21 of the male connector C4 as received in the connection hole 101. The seal 200 may specifically have one of the following configurations 1) and 2), for example:
1) The seal 200 of the female connector C3 may have the same configuration as the seal 200 of the connector C1 (see
2) The female connector C3 is provided with a plurality of seals 200 in a loop-shaped arrangement and securely accommodated in the first chamber 110a. In this case, the outer faces of the seals 200 are in close contact with the circumferential wall 111a of the first chamber 110a, the leading portion C21 of the male connector C4 can be received inside the space defined by the seals 200 such as to be in close contact with the inner faces of the seals 200.
The second body 100b includes a through-hole 110b (main hole), a circumferential wall 120b of the through-hole 110b, and at least one stop abutment 130b. The through-hole 110b extends in the Y-Y′ direction through the second body 100b. The through-hole 110 forms part of the connection hole 101. More particularly, when the second body 100b is fixed in the second chamber 120a, the through-hole 110b constitutes a part on the Y′-direction side of the connection hole 101 relative to the first chamber 110a. The circumferential wall 120b of the through-hole 110b is a tubular wall extending in the Y-Y′ direction. The or each stop abutment 130b is a projection or ridge on the circumferential wall 120b, or the end portion on the Y-direction side of the circumferential wall 120b (in other words, the edge on the Y-direction side of the through-hole 110b). The at least one stop abutment 130b is located on the Y′-direction side relative to the at least one seal 200, and it abuts the at least one seal 200 or is opposed to the at least one seal 200 with a clearance on the Y′-direction side. The at least one stop abutment 130b restricts movement of the at least one seal 200 in the Y′ direction. In the embodiment shown in
If the or each one stop abutment 130b is a projection or a ridge, it may be, but is not required to be, abuttable on a step C22 of the male connector C4 from the Y-direction side (see
The connection hole 101 includes at least the through-hole 110b of the second body 100b and the first chamber 110a of the first body 100a. The through-hole 110b and the first chamber 110a may directly communicate with each other as illustrated in
The second abutment 140a may, but is not required to, be adapted to hold, on the Y-direction side relative to the second body 100b, the leading portion C21 of the male connector C4 as received in the connection hole 101. For example, if the second abutment 140a is provided with the holding hole 141 as described above, the holding hole 141a may have a circumferential wall 141a1 of annular or polygonal loop-shape. The circumferential wall 141a1 may conform to the shape of the outer circumferential face of the leading portion C21 of the male connector C4 and accordingly may be abuttable on the outer circumferential face of the leading portion C21. In this case, the leading portion C21 of the male connector C4 is held by bringing the circumferential wall 141a1 of the holding hole 141a into abutment with the outer circumferential face of the leading portion C21. Also, the holding hole 141a may include a wall face 141a2 on the Y-direction side, extending orthogonally to the circumferential wall 141a1 of the holding hole 141a. The wall face 141a2 may abut, from the Y-direction side, the leading face (the Y-direction-side the end face) of the leading portion C21 of the male connector C4. In this case, the leading portion C21 of the male connector C4 is held by bringing the circumferential wall 141a1 of the holding hole 141a into abutment with the outer circumferential face of the leading portion C21 and/or bringing the wall face 141a2 of the holding hole 141a into abutment with the leading face of the leading portion C21.
The first abutment 130a may, but is not required to, be adapted to hold, on the Y′-direction side relative to the second body 100b, a portion of the male connector C4 as received in the connection hole 101. This portion of the male connector C4 is located on the Y′-direction side of the leading portion C21 and the step C22 of the male connector C4 and will be hereinafter referred to as a far portion C23. For example, if the first abutment 130a is provided with the opening 131a as described above, the opening 131a may have an inner edge of annular or polygonal loop-shape. This inner edge may conform to the shape of the outer circumferential face of the far portion C23 of the male connector C4 and accordingly may be abuttable on the outer circumferential face of the far portion C23. In this case, the far portion C23 is held by bringing the inner edge of the opening 131a of the first abutment 130a into abutment with the outer circumferential face of the far portion C23 of the male connector C4.
The first body 100a and/or the second body 100b may further include at least one engagement portion 100c. The engagement portion 100c may have any one of the following configurations 1) to 4).
1) If the first body 100a includes the lock arm 130b of the female connector C1, an engagement portion 100c is provided as a lock projection having the same configuration as the lock projection 134b of the lock arm 130b. Such lock projection can engage in an engagement recess of the male connector C4 (see
2) An engagement portion 100c is provided as an engagement recess in the lock arm, in place of the lock projection of configuration 1) above. Such engagement recess can engage with an engagement projection of the male connector C4.
3) The or each engagement portion 100c is an engagement projection on the circumferential wall of a part of the connection hole 101 of the first body 100a or on the circumferential wall 120b of the through-hole 110b of the second body 100b. Such engagement recess can engage with an engagement recess of the male connector C4.
4) The or each engagement portion 100c is an engagement recess in the circumferential wall of a part of the connection hole 101 of the first body 100a or in the circumferential wall 120b of the through-hole 110b of the second body 100b. Such engagement recess can engage with an engagement projection of the male connector C4. In either configuration 3) or 4), the engagement portion 100c itself may be made of an elastic body in order to facilitate disconnection of the male connector C4.
The first body 100a and/or the second body 100b may further include at least one guide 100d. The guide 100d can have one of the following configurations 1) and 2).
1) The or each guide 100d is a guide projection on the circumferential wall of a part of the connection hole 101 of the first body 100a or on the circumferential wall 120b of the through-hole 110b of the second body 100b. Such guide projection extends in the Y-Y′ direction and can be received in a guide groove of the male connector C4. In the embodiment of
2) The or each guide 100d is a guide groove in the circumferential wall of a part of the connection hole 101 of the first body 100a or in the circumferential wall 120b of the through-hole 110b of the second body 100b. Such guide recess extends in the Y-Y′ direction and can receive a guide projection of the male connector C4.
The at least one guide 100d of any configuration serves to prevent erroneous insertion of the male connector C4 into the connection hole 101 by guiding the guide groove or the guide projection of the male connector C4. The at least one guide 100d may be replaced with a key portion, which may be a projection or a recess, that prevents the erroneous insertion of the male connector C4 into the connection hole 101. The key portion may be provided in the circumferential wall of a part of the connection hole 101 of the first body 100a or in the circumferential wall 120b of the through-hole 110b of the second body 100b.
The female connector C3 further includes at least one terminal 300. The or each terminal 300 is configured to be accommodated in the connection hole 101 of the body 100 such that a contact portion 310 of the terminal 300 makes contact with a terminal C24 of the male connector C4 as received in the connection hole 101. In the embodiment of
The female connector C3 may further include at least one cable 600 of a corresponding number with the at least one terminal 300. If a single terminal 300 is provided, a single cable 600 is provided and connected to a connection portion 320 of the terminal 300. If a plurality of terminals 300 is provided, a plurality of cables 600 of the same number as the terminals 300 are provided and connected to the respective connection portions 320 of the terminals 300. The cables 600 can be bundled into a composite cable as shown in
A procedure of assembling the female connector C3 will now be described in detail. The first body 100a is prepared holding the at least one terminal 300 as described above. The at least one seal 200 is also prepared and inserted into the first chamber 110a of the first body 100a from the Y′-direction side. The second body 100b is also prepared. The second body 100b is inserted into the second chamber 120a of the first body 100a from the Z-direction side such as to be placed in the second chamber 120a (this step will be hereinafter referred to as “the placement step”). In the placement step, the first abutment 130a and the second abutment 140a of the first body 100a are brought into abutment with the second body 100b from the Y′- and the Y-direction sides, respectively. The second body 100b is thus positionally restricted in the Y-Y′ direction with respect to the first body 100a. In the placement step, the at least one stop abutment 130b of the second body 100b is located on the Y′-direction side relative to the at least one seal 200, and the through-hole 110b of the second body 100b is brought into communication directly or indirectly with the first chamber 110a. If the first abutment 130a includes the opening 131a, the through-hole 110b of the second body 100b, in the placement step, is brought into communication directly or indirectly with the opening 131a. The female connector C3 is thus assembled.
The female connector C3 provides the following technical features and effects:
1) The possibility is reduced that the second body 100b of the female connector C3 becomes detached in the Y′ direction from the first body 100a even if the male connector C4 is pulled in the Y′ direction. More particularly, when the male connector C4 is pulled in the Y′ direction as received in the connection hole 101 of the female connector C3, i.e. in the state where the leading portion C21 of the male connector C4 is received in the at least one seal 200, which is in close contact with the outer circumferential face of the leading portion C21 of the male connector C4 (this state will be hereinafter referred to as a “received state”). At this point, load in the Y′ direction is applied to the at least one seal 200 and also to the at least one stop abutment 130b of the second body 100b via the seal 200. However, the second body 100b is received in the second chamber 120a of the first body 100a from the Z-direction side, and fixed in position in the Y-Y′ direction by the first and second abutments 130a, 140a of the first body 100a. The second body 100b thus fixed is unlikely to become detached from the first body 100a in the Y′-direction due to the load in the Y′ direction.
2) It is easy to dispose the at least one stop abutment 130b of the second body 100b in position with respect to the at least one seal 200 for the following reasons. This is typically the case if the at least one seal 200 is a loop-shaped seal 200 being accommodated in the first chamber 110a of the first body 100a and having an outer circumferential face in close contact with the circumferential wall 111a of the first chamber 110a, or a plurality of seals 200 in a loop-shaped arrangement accommodated in the first chamber 110a of the first body 100a and having respective outer circumferential faces in close contact with the circumferential wall 111a of the first chamber 110a. The at least one stop abutment 130b is a projection or ridge on the circumferential wall 120b of the through-hole 110b of the second body 100b, or the end portion on the Y-direction side of the circumferential wall 120b. As such, the at least one stop abutment 130b can be easily disposed on the Y′-direction side relative to the at least one seal 200, simply by placing the second body 100b into the second chamber 120a of the first body 100a.
3) When the male connector C4 in the connection state is twisted or pried (moved in a direction crossing the Y-Y′ direction), the movement of the male connector C4 causes application of load to the first body 100a and the second body 100b. However, in the connection state, the second abutment 140a and the first abutment 130a respectively hold the leading portion C21 and the far portion C23 of the male connector C4 on the Y- and Y′-direction sides relative to the second body 100b. Consequently, the applied load is dispersed to the second abutment 140a and the first abutment 130a, reducing the load applied to the second body 100b.
4) If the second body 100b of the female connector C3 includes the engagement portion 100c, the female connector C3 has improved tensile strength in the Y′ direction for the following reason. In the connection state, the engagement portion 100c is engaged with the engagement recess or engagement projection of the male connector C4. When the male connector C4 in this state is pulled in the Y′ direction, load in the Y′ direction is applied to the engagement portion 100c. However, the second body 100b is fixed in position in the Y-Y′ direction by the first and second abutments 130a, 140a of the first body 100a as described above. Therefore, the second body 100b with the engagement portion 100c is unlikely to move in the Y′ direction or become detached in the Y′ direction from the first body 100a.
5) If the first body 100a of the female connector C3 includes the engagement portion 100c, load applied to the second body 100b is reduced when the male connector C4 in the connection state is pulled in the Y′ direction. This is because the engagement portion 100c is provided not in the second body 100b but in the first body 100a, the applied load will not be applied to the second body 100b via the engagement portion 100c.
6) If the second body 100b of the female connector C3 includes the engagement portion 100c, the guide 100d, and/or the key portion, it is only necessary to replace the second body 100b in order to adapt the female connector C3 to engage with and/or guide male connectors of different types, and/or to prevent erroneous insertion of male connectors of different types into the female connector C3. Specifically, it is only necessary to replace the second body 100b with a different second body 100b having an engagement portion 100c, a guide 100d, and/or a key portion of different aspect. By adopting a different second body 100b having an engagement portion 100c of different aspect that is compatible with an engagement recess or projection of a different male connector from the male connector C4, the engagement portion 100c of different aspect can be engaged with the engagement recess or projection of the different male connector in the connection state. Likewise, by adopting a different second body 100b having a guide 100d of different aspect that is compatible with a guide groove or projection of a different male connector from the male connector C4, the guide 100d of different aspect can guide the guide groove or projection of the different male connector when inserting the male connector into the female connector. Likewise, by adopting a different second body 100b having a key portion of different aspect that is compatible with a key groove or projection of a different male connector, the female connector can receive such different male connector only, preventing erroneous insertion of a male connector of any other type.
The female connectors and the male connectors described above are not limited to the above embodiments, but they may be modified in any manner within the scope of the claims. Some example variants will now be described.
The body of the female connector of the invention may or may not include the first and second bodies as separate components. The first and second bodies of any one of the above aspects may be integrally formed.
In any lock arm of the female connector of the invention, the first free end of the first arm may be provided with a lock hole in place of the lock projection. Such variant female connector may mate with a variant male connector including a lock projection, in place of the lock hole or the protrusion described above. When the variant male connector is received in the connection hole of the variant female connector, the lock projection fits in the lock hole of the lock arm of the variant female connector. The first arm and/or the second arm of any aspect of the invention may be inclined in the Z-Z′ direction.
The first abutment of the invention may not be adapted to hold, on the Y′-direction side relative to the second body, the far portion of the male connector as received in the connection hole. For example, if the first abutment is a projection or a lug or provided without an opening, and such first abutment may not be adapted to hold the far portion of the male connector as received in the connection hole. The second abutment of the invention may not be adapted to hold, on the Y-direction side relative to the second body, the leading portion of the male connector as received in the connection hole. For example, if the second abutment is a projection or a lug or provided without a holding hole, the second abutment of the invention may not be adapted to hold the leading portion of the male connector as received in the connection hole. The at least one seal and/or the at least one stop abutment may be omitted in the invention.
It should be appreciated that the above embodiments and variants of female connectors and the male connectors are described above by way of examples only. The materials, shapes, dimensions, numbers, arrangements, and other configurations of the constituents of female connectors and the male connectors may be modified in any manner if they can perform similar functions. The configurations of the embodiments and the variants described above may be combined in any possible manner. The Y-Y′ direction (first direction) of the invention may be any direction as long as it is the receiving/removing direction of the male connector with respect to the connection hole of the female connector of the invention. The Z-Z′ direction (second direction) of the invention may be any direction crossing the Y-Y′ direction. The X-X′ direction of the invention may be any direction that crosses the Y-Y′ and Z-Z′ directions and that is located on a different plane from the plane where the Y-Y′ and Z-Z′ directions are located.
The present invention can include any combination of these various features or embodiments above and/or below as set-forth in sentences and/or paragraphs. Any combination of disclosed features herein is considered part of the present invention and no limitation is intended with respect to combinable features.
Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the present specification and practice of the present invention disclosed herein. It is intended that the present specification and examples be considered as exemplary only with a true scope and spirit of the invention being indicated by the following claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2017-053096 | Mar 2017 | JP | national |
2017-098871 | May 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4946395 | Cope | Aug 1990 | A |
5820399 | Shirouzu | Oct 1998 | A |
5913703 | Suzuki | Jun 1999 | A |
5938470 | Kashiyama | Aug 1999 | A |
Number | Date | Country |
---|---|---|
2003272750 | Sep 2003 | JP |
2015195126 | Nov 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20180269625 A1 | Sep 2018 | US |