The present invention relates to a connector for providing electrical connection between a first conductor and a second conductor. In particular, the present invention relates to miniature connector assemblies having small dimensions so as to be used in e.g. hearing aids.
U.S. Pat. No. 4,125,309 discloses a miniature pin board assembly comprising a miniature matrix having coplanar conductive strips in a first row overlaid by a second row of coplanar strips. Both rows of strips are embedded within a moulded substrate of an elastomer-based material which is sufficiently rigid to maintain the rows in a predetermined spatial relationship.
A plurality of recesses is arranged in the substrate. The recesses are arranged in columns and rows. Each recess exposes a conductor in the first row and a conductor in the second row where such conductors cross each other.
A conductive pin may be inserted into a selected aperture to engage the corresponding exposed conductors, thereby making a cross point connection. The elastomer-based material encircling the selected recess is elastically expanded upon insertion of the pin and exerts a resilient and residual retention force on the pin biasing the same into positive electrical contact with the cross point connected conductors.
The resilient properties around the recesses of the pin board assembly of U.S. Pat. No. 4,125,309 are provided by the elastomer-based material. Thus, it is the mechanical properties of the elastomer-based material that keeps a male connector (pin) in position when inserted into a recess. Furthermore, the pin board assembly of U.S. Pat. No. 4,125,309 is mainly suitable for mounting on e.g. printed circuit boards.
U.S. Pat. No. 4,466,684 discloses a low insertion force connector with resilient metal conductors in the openings of an insulating connector body. Each conductor has a square opening and has integral leaf springs extending from the respective sides of the square towards a terminal entry end of the openings. The four leaf springs are grouped in two pairs that can engage with the entering terminal either simultaneously or shifted relative to each other. To orient and to fixate the conductors in the openings the conductors comprise tabs precisely fitted to be received in grooves of the connector body.
It may be an object of a preferred embodiment of the present invention to provide a miniaturised connector assembly where the resilient properties are provided by a resilient conductor in a simple way.
It may also be an object of a preferred embodiment of the present invention to provide a miniaturised connector assembly comprising a reduced number of mechanical elements.
The above-mentioned objects are complied with by providing, in a first aspect, a female connector assembly, comprising
Each of the one or more conductor channels may host at least one resilient conductor. At least a part of the track, in a cross-section, may define a semi-circle. It may also be so that at least a part of the track encircles at least a part of the second portion of the bent resilient conductor displaced in the track.
The female connector may further comprise a top part arranged on the base part. The base and the top part may, in combination, define the track so that one part of the track is defined in the base part whereas another part of the track is defined in the top part. The track may be defined by a first recess defined in a surface of the base part and a second recess defined in a surface of the top part.
Preferably, the top part is fixedly attached to the base part. This fixed attachment may be provided by several means such as a snap-lock, threads in either base or top part being adapted to receive bolts or the like. The top part may also be glued to the base part or the top part may be attached to the base part by providing heat to either of the two parts. Also, techniques such as ultrasonic welding may be applied to attach the top part to the base part.
A conductor recess may be defined in at least one of the conductor channels. The conductor recess may extend continuously from the first end of the conductor channel to the second end of the conductor channel. The first portion of the bent resilient conductor may be adapted to be received in the conductor recess when the second portion is received in the track.
A third portion of the bent resilient conductor may be defined between the first portion and the second portion, the third portion being adapted to engage with at least a part of the rod-shaped conductor from a male connector assembly. The third portion may comprise a sharply bended section, said bended section being adapted to engage with e.g. a recess of the rod-shaped conductor.
The female connector may further comprise blocking means for blocking at least a part of the track so as to limit the sliding movement of the second portion of the bent resilient conductor when displaced in the track. The blocking means may be a separate rod inserted in the track or it may be implemented by tapering the track to dimensions smaller than the second portion of the bent resilient conductor.
The female connector may further comprise sealing means adapted to seal at least one of the conductor channels. The sealing means may further be adapted to provide a fluid tight seal. The sealing means may comprise a flexible membrane having a passage adapted to receive the rod-shaped conductor of the male connector. The flexible membrane may be made of a rubber or a silicone material. Preferably, the flexible membrane may comprise a bead. Preferably, the sealing means is positioned between the base part and a top part. More preferably, the top part is fastened to the base part. In principle, the top may be fastened by any means such as gluing, soldering, interface locking, clamping, joining by heating, snap-locking, welding or the like. Preferably, ultrasonic welding is applied to fasten the top part to the base part. The sealing means may also be fastened to the base part and/or the top part by any suitable means such as ultrasonic welding, welding, laser welding, gluing, joining by adhesive strips and joining by heating,
In principle, the base part may comprise an arbitrary number of conductor channels, such as 1, 2, 3, 4, 5 or even more conductor channels.
Preferably, the female connector has a volume between 2 mm3 and 10 mm3, such as between 4 mm3 and 8 mm3, 5 mm3 and 7 mm3, such as approximately 6 mm3. The cross-sectional area of at least one of the conductor channels is preferably between 0.1 and 0.3 mm2, such as approximately 0.2 mm2.
The female connector may in principle take any form. Thus, the base and/or top part may define, in a plane substantially perpendicular to the conductor channels, a substantially rectangular cross-sectional shape. The length of the connector may for example be approximately 2.5–3.0 mm, more preferably 2.67 mm. The width of the connector may for example be approximately 1.3–1.7, more preferably 1.53 mm. The height of the connector may for example be approximately 1.2–1.8, more preferably 1.6 mm. Alternatively, the base and/or top part may define, in a plane substantially perpendicular to the conductor channels, a substantially circular cross-sectional shape. The diameter of the substantially circular shape may be within the range 1–2 mm.
At least one of the bent resilient conductors may be fabricated in a material selected from the group consisting of aluminium, magnesium, titanium, copper, nickel, zinc, tin, lead, chrome, tungsten, molybdenum, silver, gold, platinium and any alloy thereof. The base part and/or the top part may be fabricated in a material selected from the group consisting of elastomers, polymers and any other plastic material.
Preferred embodiments of the invention will be described in detail below with reference to the accompanying
a shows a perspective view of a rod-shaped conductor and the flexible membrane according to the present invention, whereas
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The base part 4 additionally comprises channels 18 extending from the front surface 12 to the rear surface 14. Near the front surface 12 the cross-sectional size and shape for the channels 18 is identical to the cross-sectional shape and size of the channels 16 of the top part 6. On the rear surface 10 of the top part 6, upper recess parts 20 are defined. On the front surface 12 of the base part corresponding lower recess parts 22 are defined. The upper recess parts 20 and the lower recess parts 22 together define track channels adapted to receive conductors 24. The conductors may slide in the track channel, which is indicated by the arrow 26.
Conductor 24 comprises three parts: 1) a second portion 44, 2) a first portion 46 and 3) a third portion 48. The track channel defined by the upper recess parts 20 and the lower recess parts 22 are adapted to slidingly receive the second portion 44 of the conductor. The conductor recess 30 is adapted to receive the first portion 46 which extends through the small channel 42 when the second portion is received in the lower recess part 22. A part of the first portion emerges on the rear surface 14 of the base part. The width 50 of the conductor 24 is 0.15 mm and the conductor comprises stainless steel—spring quality.
The third portion 48 of the resilient conductor is defined between the second portion 44 and the first portion 46. The third portion 48 is adapted to engage with at least a part of a rod-shaped conductor from a male connector assembly (not shown). The third portion 48 comprises a sharply bended section being adapted to engage with e.g. a recess of the rod-shaped conductor.
Preferably, the flexible membrane having five passages 61 each adapted to receive a rod-shaped conductor of the male connector is positioned between base part 4 and top part 6 when assembled. In order for the rod-shaped connector to be able to engage with the conductors channels 18 of base part 4, the five passages 61 should be aligned with the five conductor channels 18.
a shows a perspective view of a rod-shaped conductor 27 and the flexible membrane 60. It is indicated how the conductor 27 is intended to penetrate the flexible membrane 60 through the passage 61. The passage 61 has the form of a tubular hole with at least a closed position in which the passage 61 provides a fluid tight sealing and a receiving position in which the passage is capable of receiving the rod-shaped conductor 27. In the receiving position the rod-shaped conductor 27 penetrating the passage 61 elastically extends the passage 61. Due to the elastic extension of the passage 61, the passage 61 provides a close fit around the rod-shaped conductor 27 so as to obtain a fluid tight sealing in the receiving position of the passage 61. In the closed position the passage 61 has a maximum diameter of approximately 0.1 mm while the diameter in the receiving position is extendable up to at least 0.15 mm.
More alternatively, the passage 61 may comprise cut out slits (not shown) in the flexible membrane 60 to facilitate easy access for the conductor 27. The slits may have a common centre of origin and be symmetrically arranged around said centre of origin, e.g. four slits in the flexible membrane 60 with a common centre of origin may be oriented at right angles to each other forming a cross seen from a top view. Possibly, slits and holes of various forms may be combined to form different kinds of passages 61 adapted to provide a fluid tight sealing in both a closed position and a receiving position.
This application claims the benefit of Provisional application Ser. No. 60/448,098, filed Feb. 20, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4125309 | Grantiz et al. | Nov 1978 | A |
4466684 | Grant et al. | Aug 1984 | A |
5622514 | Crompton et al. | Apr 1997 | A |
6443739 | Currie | Sep 2002 | B1 |
6623290 | Tran | Sep 2003 | B1 |
6651322 | Currie | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
1 454 215 | Jul 1966 | FR |
Number | Date | Country | |
---|---|---|---|
20040166740 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60448098 | Feb 2003 | US |