The present invention relates to connectors for fluid conduits and methods of using such connectors. More particularly, the present invention relates to female connectors for releasable coupling with male connectors defining a fluid conduit and methods of manufacturing and using such connectors.
Quick connect/disconnect coupling assemblies for small flexible tube applications and other applications are known in the art. Such couplings are utilized for bio-medical applications, convenience handling, beverage dispensing, instrument connections, photochemical handling, etc. Despite the existence of such couplings, there is a need in the art for a female and male coupling arrangement that offers improved coupling security, simplified operation, and decreased manufacturing costs.
The present invention, in one embodiment, is a female connector for releasable coupling with a male connector. The male connector defines a first fluid conduit and includes a male end adapted to be received within the female connector. The male end includes a coupling feature. The female connector comprises a second fluid conduit, an opening, and a collet finger. The opening is adapted to receive the male end such that the first and second fluid conduits are placed in fluid communication when the male end is fully inserted into the opening. The collet finger includes an engagement feature adapted to engage the coupling feature of the male end and displace generally laterally to a travel direction of the male end when the male end is being inserted into the opening.
In one embodiment, the opening of the female connector is defined by a collar having a window through which the engagement feature displaces when the male end is inserted into the opening.
In one embodiment, the engagement feature of the female connector includes an arcuate leading edge, an arcuate lip adapted to engage the coupling feature of the male end, and an arcuate beveled surface located between the arcuate leading edge and the arcuate lip. In one embodiment, the arcuate leading edge is defined by a first radius and the arcuate lip is defined by a second radius that is smaller than the first radius. In one embodiment, the engagement feature further includes a first arcuate wall portion extending from the arcuate leading edge to the arcuate beveled surface. In one embodiment, the engagement feature further includes a second arcuate wall portion extending from the arcuate beveled surface to the arcuate lip. In one embodiment, the coupling feature of the male end is a groove and the first arcuate wall portion resides within the groove when the engagement feature engages the coupling feature.
In one embodiment, the female connector further includes a biasing element adapted to bring the engagement feature into contact with the coupling feature of the male end. In one embodiment, the collet finger of the female connector includes an integral biasing element adapted to bring the engagement feature into contact with the coupling feature of the male end.
In one embodiment, the female connector further comprises a button including a member extending therefrom adapted to cause the engagement feature to displace laterally away from the coupling feature upon depressing the button. In one embodiment, the member is a wedge that is adapted to engage an inclined surface of the collet finger. In one embodiment, the member moves generally laterally to the displacement direction of the collet finger and the travel direction of the male end.
In one embodiment, the female connector further comprises a housing generally containing the collet finger and supporting the button. In one embodiment, the button is pivotally coupled to the housing.
In one embodiment, the female connector further comprises a biasing element extending between the housing and the button to bias the member away from the collet finger. In one embodiment, the button includes a latch extending therefrom adapted to engage the housing to prevent the button from overly biasing away from the collet finger.
The present invention, in one embodiment, is a female connector for releasable coupling with a male connector. The male connector defines a first fluid conduit and includes a male end adapted to be received within the female connector. The male end includes a coupling feature. The female connector comprises an opening, a collet finger, and an actuation element. The opening is adapted to guide the male connector along a first line of action as the male connector passes into the opening to be received within the female connector. The collet finger includes an engagement feature adapted to engage the coupling feature of the male end and displace along a second line of action generally normal to the first line of action. The actuation element is adapted to displace along a third line of action generally normal to the first and second lines of action in order to disengage the engagement feature from the coupling feature of the male end.
In one embodiment, the female connector further comprises a button from which the actuation element extends. In one embodiment, the female connector further comprises a housing and the button is pivotally coupled to the housing. In one embodiment, the substantially encloses the collet finger and supports the button.
In one embodiment, the female connector further includes first and second biasing elements. The first biasing element acts against the collet finger to bias the engagement feature into engagement with the coupling feature of the male end. The second biasing element acts against the button to bias the actuation element away from the collet finger.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
For a discussion of the overall configuration of the female quick-connect coupler 5 of the subject invention, reference is now made to
As shown in
As can be understood from
As indicated in
For a discussion of the elements comprising the female coupler 5 of the subject invention, reference is now made to
a. Male Connector
For a discussion of the features of the male connector 10, reference is now made to
As can be understood from
As can be understood from
As indicated in
In one embodiment, the male connector 10 is formed from acetal. In another embodiment, the male connector 10 is formed from nylon. In yet other embodiments, the male connector 10 is formed from other appropriate polymers.
b. Upper Housing Portion
For a discussion of the features of the upper housing portion 20, reference is now made to
As shown in
As indicated in FIGS. 2 and 4-6, the longitudinally extending body 112 includes a barbed male end 130, a female end 135, and a fluid conduit 137 extending through the body 112 from the female end 135 to the male end 130. The barbed male end 130 includes a tapered section 140 that increases in diameter as it extends from the tip of the barbed end 130 to a lip 145 that extends circumferentially about the body 112. The tapered section 140 facilitates the insertion of the barbed male end 130 into a second tubular conduit 150 (illustrated in hidden lines in
As illustrated in
As shown in FIGS. 2 and 4-6, the body 112 includes a pair of parallel ribs 165 extending longitudinally along the bottom surface of the body 112. The body 112 also includes a pair of curved saddles 170 that are located near the top surface of the body 112, near the intersection between the body 112 and the shell wall 110. The saddles 170 serve as the lower half of pivot pin brackets for retaining the pivot pins of the button, as will be discussed later in this Detailed Description.
In one embodiment, the upper housing portion 20 is formed from acrylonitrile-butadiene-styrene (“ABS”). In another embodiment, the upper housing portion 20 is formed from polycarbonate. In yet other embodiments, the upper housing portion 20 is formed from other appropriate polymers.
c. Button
For a discussion of the features of the button 15, reference is now made to
As indicated in FIGS. 2 and 7-9, the button 15 includes a wedge member 180, a latch member 185, and a pair of pins 190. The wedge member 180 tapers as it extends downward from the bottom surface of the button platform 174. The wedge member 180 includes an arcuate inclined surface 195 for engaging a portion of the collet finger 35 to disengage the engagement feature of the collet finger 35 from the coupling feature of the male connector 10, as discussed later in this Detailed Description. The latch member 185 extends downward from the bottom surface of the button platform 174 and includes a lip 199 at the free end of the latch member 185. The pair of pins 190 extends downward from the bottom rear surface of the button platform 174, each pin extending generally perpendicularly away from the longitudinal centerline of the button platform 174.
As can be understood from
In one embodiment, the button 15 is formed from nylon. In another embodiment, the button 15 is formed from acetal. In yet other embodiments, the button 15 is formed from other appropriate polymers. In one embodiment, the helical spring 40 is formed from a metal such as 302 stainless steel.
d. Collet Finger
For a discussion of the features of the collet finger 35, reference is now made to
As shown in FIGS. 2 and 11-16, the collet finger 35 includes a head portion 196, a body portion 200, and a tail portion 205. The head portion 196 includes an engagement feature 210 configured to engage the groove 100 of the male connector 10. In one embodiment, the engagement feature 210 includes an arcuate leading edge 215, a first arcuate wall portion 220, an arcuate beveled surface 225, a second arcuate wall portion 230 and an arcuate lip 235. The first arcuate wall portion 220 extends from the arcuate leading edge 215 to the arcuate beveled surface 225. The second arcuate wall portion 230 extends from the arcuate beveled surface 225 to the arcuate lip 235. The arcuate leading edge 215 and first arcuate wall portion 220 are defined by a first radius. The arcuate lip 235 and the second arcuate wall portion 230 are defined by a second radius that is smaller than the first radius. The arcuate lip 235 is formed by the edge formed between the second arcuate wall portion 230 and a back planar surface 240 perpendicularly intersecting the second arcuate wall portion 230.
As shown in
As shown in FIGS. 2 and 11-16, the body portion 200 includes an arcuate inclined face 245 and a notch 250. The notch 250 is located on a bottom side of the body portion 200 and is configured to mate with features in the lower housing portion 25. The arcuate inclined face 245 is located on an inner side of the body portion 200 and tapers as it extends from the top of the body portion 200 to the bottom of the body portion 200. As can be understood from
As shown in
As shown in FIGS. 2 and 11-16, in one embodiment, the collet finger 35 includes a tail portion 205 that curves back about the outside surface of the body portion 200. The tail portion 205 serves as an integral biasing element that acts against the interior surface of the lower housing portion 25 to bias the engagement feature 210 laterally inward towards the longitudinal axis of the fluid conduit 137 of the longitudinally extending body 112 of the female coupler 5. Thus, the biasing nature of the tail portion 205 causes the engagement feature 210 to remain in engagement with the coupling feature (i.e., groove 100) of the male connector 10 until caused to disengage by the actuation of the button 15.
In the embodiment depicted in FIGS. 2 and 11-16, the head, body and tail portions 196, 200, 205 are formed entirely from the same material in one piece. In one embodiment, the entire collet finger 35 is formed from nylon. In another embodiment, the entire collet finger 35 is formed from acetal. In yet other embodiments, the entire collet finger 35 is formed from other appropriate polymers.
In one embodiment, as indicated in
In one embodiment, the integral biasing element 205 is replaced with a biasing element 205 that is separate from the collet finger 35. In one such embodiment, the separate biasing element 205 is a leaf spring located between a surface of the collet finger 35 and the interior surface of the housing 12. In one embodiment, the separate biasing element 205 is a helical spring located between a surface of the collet finger 35 and the interior surface of the housing 12.
As can be understood from
As indicated in
In one embodiment, the o-ring 45 is formed from nitrile buna-n. In other embodiments, the o-ring 45 is formed from other appropriate polymer materials.
e. Lower Housing Portion
For a discussion of the features of the lower housing portion 25, reference is now made to FIGS. 2 and 17-24.
As shown in FIGS. 2 and 17-20, the lower housing portion 25 includes a collar 255, a spring post 260, a pair of saddle posts 265, a ridge 270, a shell wall 275, a semi-circular opening 280, and a rectangular opening 285. The ridge 270 is centered laterally within the interior of lower housing portion 25 and extends longitudinally in a manner that is parallel to the longitudinal axis of the lower housing portion 25. The ridge 270 mates with the pair of parallel ribs 165 extending longitudinally along the bottom surface of the body 112 of the upper housing portion 20.
As can be understood from FIGS. 1C and 17-20, the exterior surface of the shell wall 275 is rounded and ergonomically shaped. The interior surface of the shell wall 275 defines a bowl-like volume. The semi-circular opening 280 in the rear of the shell wall 275 receives the longitudinally extending body 112 of the upper housing portion 20 when the upper and lower housing portions 20, 25 are mated together to form the overall housing 12, as can be understood from
As illustrated in FIGS. 2 and 17-20, the spring post 260 extends generally vertically upward from the interior surface of the shell wall 275. As shown in
As indicated in FIGS. 2 and 17-20, each saddle post 265 includes an arcuate saddle surface 290. As shown in
As illustrated in FIGS. 2 and 17-20, the collar 255 includes a flange 300 perpendicularly intersecting a cylindrical wall portion 305. A window 306 or opening extends laterally through the cylindrical wall portion 305 and is defined in the cylindrical wall portion 305 by upper and lower planar wall portions 310′, 310″. The front side of the window 306 is open, and the rear side 315 of the window 306 is the vertical planar face of the flange. A cylindrical opening 320 passes through the collar 255. Thus, as can be understood from
As indicated in
In one embodiment, the lower housing portion 25 is formed from acrylonitrile-butadiene-styrene (“ABS”). In another embodiment, the lower housing portion 25 is formed from polycarbonate. In yet other embodiments, the lower housing portion 25 is formed from other appropriate polymers.
f. Front Housing Portion
For a discussion of the features of the front housing portion 30, reference is now made to
As can be understood from
As indicated in
In one embodiment, the front housing portion 30 is formed from acrylonitrile-butadiene-styrene (“ABS”). In another embodiment, the front housing portion 30 is formed from polycarbonate. In yet other embodiments, the front housing portion 30 is formed from other appropriate polymers.
g. Coupler Operation
For a discussion of the operation of the female coupler 5, reference is now made to
As can be understood from
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. The invention is limited only by the scope of the following claims.
This application is a continuation patent application of U.S. patent application Ser. No. 11/149,624, filed Jun. 10, 2005 and entitled “Female Connector for Releasable Coupling with a Male Connector Defining a Fluid Conduit;” the disclosure of which is hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
163261 | Ruppenthal | May 1875 | A |
185896 | Curtis | Jan 1877 | A |
187982 | Pirsson et al. | Mar 1877 | A |
200944 | Smith | Mar 1878 | A |
235580 | Smith et al. | Dec 1880 | A |
327509 | Aldridge | Oct 1885 | A |
584008 | Munson | Jun 1887 | A |
465868 | List | Dec 1891 | A |
725421 | Dinkins | Apr 1903 | A |
727982 | Ludwig | May 1903 | A |
874957 | Godley | Dec 1907 | A |
884461 | Browne | Apr 1908 | A |
909131 | Antic | Jan 1909 | A |
951889 | Teuer | Mar 1910 | A |
1029819 | Nylander | Jun 1912 | A |
1033187 | Metzger | Jul 1912 | A |
1039354 | Bonadio | Sep 1912 | A |
1077417 | McCracken | Nov 1913 | A |
1078112 | Storm | Nov 1913 | A |
1193446 | Wells | Aug 1916 | A |
1239345 | Brown | Sep 1917 | A |
1255847 | Arkin | Feb 1918 | A |
1259684 | Vinten | Mar 1918 | A |
1489310 | Critchlow | Apr 1924 | A |
1526218 | Johnson | Feb 1925 | A |
1578504 | Bronson et al. | Mar 1926 | A |
1587079 | Machino | Jun 1926 | A |
1767073 | Ingold | Jun 1930 | A |
1863360 | Weatherhead | Jun 1932 | A |
1950947 | Mulroyan | Mar 1934 | A |
2023428 | Liebhardt | Dec 1935 | A |
2056524 | Johnson | Oct 1936 | A |
2066473 | Jorgensen | Jan 1937 | A |
2097628 | Liebhardt | Nov 1937 | A |
2099335 | Hansen | Nov 1937 | A |
2108714 | Hirsch et al. | Feb 1938 | A |
2139745 | Goodall | Dec 1938 | A |
2147355 | Scholtes | Feb 1939 | A |
2159116 | Zacharias | May 1939 | A |
2211147 | Miller | Aug 1940 | A |
2257321 | Arnold | Sep 1941 | A |
2263293 | Ewald | Nov 1941 | A |
2340119 | Graham | Jan 1944 | A |
2346445 | Merker et al. | Apr 1944 | A |
2352728 | Merker et al. | Jul 1944 | A |
2429782 | Versoy | Oct 1947 | A |
2432946 | Theunissen | Dec 1947 | A |
2470800 | Ashton | May 1949 | A |
2479499 | Le Clair | Aug 1949 | A |
2500720 | Van der Heem | Mar 1950 | A |
2507536 | Goodson | May 1950 | A |
2516583 | Moore | Jul 1950 | A |
2535740 | Knopp | Dec 1950 | A |
2577009 | Frantz | Dec 1951 | A |
2626974 | Howard et al. | Jan 1953 | A |
2630131 | Snyder | Mar 1953 | A |
2661018 | Snyder | Dec 1953 | A |
2701147 | Summerville | Feb 1955 | A |
2722399 | Oetiker | Nov 1955 | A |
2753195 | Palmer | Jul 1956 | A |
2774616 | Dodd et al. | Dec 1956 | A |
2790571 | Flaith et al. | Apr 1957 | A |
2864628 | Edleson | Dec 1958 | A |
2915325 | Foster | Dec 1959 | A |
2926934 | Gill | Mar 1960 | A |
2931668 | Baley | Apr 1960 | A |
2937892 | Prescott, Jr. | May 1960 | A |
2948553 | Gill et al. | Aug 1960 | A |
2991090 | De Cenzo | Jul 1961 | A |
3017203 | Macleod | Jan 1962 | A |
3037497 | Roberson | Jun 1962 | A |
3073342 | Magorien | Jan 1963 | A |
3078068 | Romney | Feb 1963 | A |
D196473 | Hill | Oct 1963 | S |
3124157 | Krzewina | Mar 1964 | A |
3171196 | Helitas | Mar 1965 | A |
3217771 | Beall et al. | Nov 1965 | A |
3227380 | Pinkston | Jan 1966 | A |
3237974 | Press | Mar 1966 | A |
3245703 | Manly | Apr 1966 | A |
3276799 | Moore et al. | Oct 1966 | A |
3279497 | Norton et al. | Oct 1966 | A |
3314696 | Ferguson et al. | Apr 1967 | A |
D209166 | Hunt | Nov 1967 | S |
D209168 | Hunt | Nov 1967 | S |
3352576 | Thomas | Nov 1967 | A |
3382892 | Cerbin | May 1968 | A |
3403930 | Bernier | Oct 1968 | A |
3448760 | Cranage | Jun 1969 | A |
3450424 | Calisher | Jun 1969 | A |
3512808 | Graham | May 1970 | A |
3523701 | Graham | Aug 1970 | A |
3538940 | Graham | Nov 1970 | A |
3542338 | Scaramucci | Nov 1970 | A |
3545490 | Burrus | Dec 1970 | A |
3550626 | Daniels et al. | Dec 1970 | A |
3560027 | Graham | Feb 1971 | A |
3563265 | Graham | Feb 1971 | A |
3574314 | Quercia | Apr 1971 | A |
3588149 | Demler | Jun 1971 | A |
3596933 | Luckenbill | Aug 1971 | A |
3599843 | Johnston | Aug 1971 | A |
3600917 | Krock | Aug 1971 | A |
3690336 | Drum | Sep 1972 | A |
3712583 | Martindale et al. | Jan 1973 | A |
3750238 | Tanner | Aug 1973 | A |
3815887 | Curtis et al. | Jun 1974 | A |
3817561 | Kay | Jun 1974 | A |
3876234 | Harms | Apr 1975 | A |
3889710 | Brost | Jun 1975 | A |
3899200 | Gamble | Aug 1975 | A |
3921656 | Meisenheimer, Jr. et al. | Nov 1975 | A |
3979934 | Isenmann | Sep 1976 | A |
3990674 | Schattenberg | Nov 1976 | A |
4025049 | Schmidt | May 1977 | A |
4039213 | Walters | Aug 1977 | A |
4072330 | Brysch | Feb 1978 | A |
4099748 | Kavick | Jul 1978 | A |
4129145 | Wynn | Dec 1978 | A |
4142546 | Sandau | Mar 1979 | A |
D252470 | Pawlak | Jul 1979 | S |
4181149 | Cox | Jan 1980 | A |
D254505 | Parsons et al. | Mar 1980 | S |
D255145 | Nederman | May 1980 | S |
4220360 | Jacek et al. | Sep 1980 | A |
D258526 | Nederman | Mar 1981 | S |
D259278 | McCaw | May 1981 | S |
4271865 | Galloway et al. | Jun 1981 | A |
4287644 | Durand | Sep 1981 | A |
4296949 | Muetterties et al. | Oct 1981 | A |
4319774 | Kavick | Mar 1982 | A |
4330010 | Drescher et al. | May 1982 | A |
4330142 | Paini | May 1982 | A |
4331175 | Brake et al. | May 1982 | A |
4331177 | Makishima | May 1982 | A |
4340200 | Stegmeier | Jul 1982 | A |
4345786 | Egert | Aug 1982 | A |
4346703 | Dennehey | Aug 1982 | A |
4351351 | Flory et al. | Sep 1982 | A |
4366816 | Bayard et al. | Jan 1983 | A |
4393548 | Herb | Jul 1983 | A |
4397442 | Larkin | Aug 1983 | A |
4434121 | Schaper | Feb 1984 | A |
4436125 | Blenkush | Mar 1984 | A |
4437689 | Goebel et al. | Mar 1984 | A |
4439188 | Dennehey | Mar 1984 | A |
4458719 | Strybel | Jul 1984 | A |
4500118 | Blenkush | Feb 1985 | A |
4527745 | Butterfield et al. | Jul 1985 | A |
4541457 | Blenkush | Sep 1985 | A |
4541657 | Smyth | Sep 1985 | A |
D282962 | Gerber | Mar 1986 | S |
4603888 | Goodall et al. | Aug 1986 | A |
4613112 | Phlipot et al. | Sep 1986 | A |
4616859 | Brunet | Oct 1986 | A |
4632436 | Kimura | Dec 1986 | A |
4658326 | Clark et al. | Apr 1987 | A |
4694544 | Chapman | Sep 1987 | A |
4699298 | Grant et al. | Oct 1987 | A |
4703957 | Blenkush | Nov 1987 | A |
4706847 | Sankey et al. | Nov 1987 | A |
4712280 | Fildan | Dec 1987 | A |
4738401 | Filicicchia | Apr 1988 | A |
4753268 | Palau | Jun 1988 | A |
4776067 | Sorensen | Oct 1988 | A |
4790567 | Kawano et al. | Dec 1988 | A |
4790569 | Chaffee | Dec 1988 | A |
4792115 | Jindra et al. | Dec 1988 | A |
4793637 | Laipply et al. | Dec 1988 | A |
D300361 | Tokarz | Mar 1989 | S |
4827921 | Rugheimer | May 1989 | A |
4832237 | Hurford, Jr. | May 1989 | A |
4834423 | DeLand | May 1989 | A |
4844512 | Gahwiler | Jul 1989 | A |
4863201 | Carstens | Sep 1989 | A |
4896402 | Jansen et al. | Jan 1990 | A |
4900065 | Houck | Feb 1990 | A |
4903995 | Blenkush et al. | Feb 1990 | A |
4923228 | Laipply et al. | May 1990 | A |
4934655 | Blenkush et al. | Jun 1990 | A |
4935992 | Due | Jun 1990 | A |
4949745 | McKeon | Aug 1990 | A |
4969879 | Lichte | Nov 1990 | A |
D313067 | Kotake et al. | Dec 1990 | S |
D313277 | Haining | Dec 1990 | S |
D314050 | Sone | Jan 1991 | S |
D314233 | Medvick | Jan 1991 | S |
4982736 | Schneider | Jan 1991 | A |
4991880 | Bernart | Feb 1991 | A |
5009252 | Faughn | Apr 1991 | A |
5033777 | Blenkush | Jul 1991 | A |
5052725 | Meyer et al. | Oct 1991 | A |
5074601 | Spors et al. | Dec 1991 | A |
5076615 | Sampson | Dec 1991 | A |
5078429 | Braut et al. | Jan 1992 | A |
5090448 | Truchet | Feb 1992 | A |
5090747 | Kotake | Feb 1992 | A |
5094482 | Petty et al. | Mar 1992 | A |
5104158 | Meyer et al. | Apr 1992 | A |
D326155 | Boehringer et al. | May 1992 | S |
5112084 | Washizu | May 1992 | A |
5114250 | Usui | May 1992 | A |
5123677 | Kreczko et al. | Jun 1992 | A |
5160177 | Washizu | Nov 1992 | A |
5165733 | Sampson | Nov 1992 | A |
5176406 | Straghan | Jan 1993 | A |
D333178 | Novy | Feb 1993 | S |
5190224 | Hamilton | Mar 1993 | A |
5222279 | Frano et al. | Jun 1993 | A |
5228724 | Godeau | Jul 1993 | A |
5232020 | Mason et al. | Aug 1993 | A |
D339417 | Sampson et al. | Sep 1993 | S |
5316041 | Ramacier, Jr. et al. | May 1994 | A |
5330235 | Wagner et al. | Jul 1994 | A |
5356183 | Cole | Oct 1994 | A |
5374088 | Moretti et al. | Dec 1994 | A |
5385311 | Morikawa et al. | Jan 1995 | A |
5385331 | Allread et al. | Jan 1995 | A |
D357307 | Ramacier, Jr. et al. | Apr 1995 | S |
5405339 | Kohnen et al. | Apr 1995 | A |
5405340 | Fageol et al. | Apr 1995 | A |
5437650 | Larkin et al. | Aug 1995 | A |
5494074 | Ramacier, Jr. et al. | Feb 1996 | A |
5507733 | Larkin et al. | Apr 1996 | A |
D372093 | Sampson et al. | Jul 1996 | S |
5536258 | Folden | Jul 1996 | A |
5547166 | Engdahl | Aug 1996 | A |
5553895 | Karl et al. | Sep 1996 | A |
D375160 | Sampson et al. | Oct 1996 | S |
5568946 | Jackowski | Oct 1996 | A |
5595217 | Gillen et al. | Jan 1997 | A |
5628726 | Cotter | May 1997 | A |
D380262 | Van Funderburk et al. | Jun 1997 | S |
D387147 | Vandermast et al. | Dec 1997 | S |
5695223 | Boticki | Dec 1997 | A |
D388876 | Sampson | Jan 1998 | S |
5709244 | Patriquin et al. | Jan 1998 | A |
5725258 | Kujawski | Mar 1998 | A |
5737810 | Krauss | Apr 1998 | A |
5745957 | Khokhar et al. | May 1998 | A |
5746414 | Weldon et al. | May 1998 | A |
5762646 | Cotter | Jun 1998 | A |
5799987 | Sampson | Sep 1998 | A |
5820614 | Erskine et al. | Oct 1998 | A |
5845943 | Ramacier, Jr. et al. | Dec 1998 | A |
5855568 | Battiato et al. | Jan 1999 | A |
5882047 | Ostrander et al. | Mar 1999 | A |
D407803 | Redman | Apr 1999 | S |
5897142 | Kulevsky | Apr 1999 | A |
5911367 | McInerney | Jun 1999 | A |
5911403 | deCler et al. | Jun 1999 | A |
5911404 | Cheng | Jun 1999 | A |
5930424 | Heimberger et al. | Jul 1999 | A |
5938244 | Meyer | Aug 1999 | A |
5941577 | Musellec | Aug 1999 | A |
D413967 | Yuen | Sep 1999 | S |
5957898 | Jepson et al. | Sep 1999 | A |
5964485 | Hame et al. | Oct 1999 | A |
5975489 | deCler et al. | Nov 1999 | A |
5984378 | Ostrander et al. | Nov 1999 | A |
6015171 | Schorn | Jan 2000 | A |
D419861 | Khokhar | Feb 2000 | S |
6024124 | Braun et al. | Feb 2000 | A |
6029701 | Chaffardon et al. | Feb 2000 | A |
6032691 | Powell et al. | Mar 2000 | A |
D422487 | Khokhar | Apr 2000 | S |
6050297 | Ostrowski et al. | Apr 2000 | A |
6076234 | Khokhar et al. | Jun 2000 | A |
6077259 | Caizza et al. | Jun 2000 | A |
6082401 | Braun et al. | Jul 2000 | A |
6089540 | Heinrichs et al. | Jul 2000 | A |
6112855 | Camacho et al. | Sep 2000 | A |
6123690 | Mejslov | Sep 2000 | A |
6135150 | Powell et al. | Oct 2000 | A |
6135992 | Wang | Oct 2000 | A |
6152914 | Van De Kerkhof et al. | Nov 2000 | A |
6161578 | Braun et al. | Dec 2000 | A |
6182694 | Sievers et al. | Feb 2001 | B1 |
6189560 | Reynolds | Feb 2001 | B1 |
6199919 | Kawasaki et al. | Mar 2001 | B1 |
6221064 | Nadal | Apr 2001 | B1 |
6231089 | DeCler et al. | May 2001 | B1 |
D444054 | Bernard et al. | Jun 2001 | S |
6257626 | Campau | Jul 2001 | B1 |
6261282 | Jepson et al. | Jul 2001 | B1 |
6293596 | Kinder | Sep 2001 | B1 |
6302147 | Rose et al. | Oct 2001 | B1 |
6318764 | Trede et al. | Nov 2001 | B1 |
6344033 | Jepson et al. | Feb 2002 | B1 |
D459206 | Caveney et al. | Jun 2002 | S |
6402207 | Segal et al. | Jun 2002 | B1 |
6423053 | Lee | Jul 2002 | B1 |
6481759 | Kawasaki et al. | Nov 2002 | B1 |
6485483 | Fujii | Nov 2002 | B1 |
6505866 | Nakamura et al. | Jan 2003 | B1 |
6520546 | Szabo | Feb 2003 | B2 |
D471261 | Kozu | Mar 2003 | S |
6540263 | Sausner | Apr 2003 | B1 |
6595964 | Finley et al. | Jul 2003 | B2 |
6612634 | Zoppas | Sep 2003 | B1 |
6626465 | Lacroix et al. | Sep 2003 | B2 |
6641177 | Pinciaro | Nov 2003 | B1 |
6649829 | Garber et al. | Nov 2003 | B2 |
6652007 | Hwang | Nov 2003 | B1 |
6669681 | Jepson et al. | Dec 2003 | B2 |
6676172 | Alksnis | Jan 2004 | B2 |
6688654 | Romero | Feb 2004 | B2 |
6692038 | Braun | Feb 2004 | B2 |
6722705 | Korkor | Apr 2004 | B2 |
6783520 | Candray et al. | Aug 2004 | B1 |
6799747 | Lai | Oct 2004 | B1 |
6840277 | Nimberger | Jan 2005 | B1 |
6848723 | Lamich | Feb 2005 | B2 |
6871878 | Miros | Mar 2005 | B2 |
D503778 | Wicks | Apr 2005 | S |
6886803 | Mikiya et al. | May 2005 | B2 |
6897374 | Garber et al. | May 2005 | B2 |
6899315 | Maiville et al. | May 2005 | B2 |
6929246 | Arzenton et al. | Aug 2005 | B2 |
6945273 | Reid | Sep 2005 | B2 |
6949084 | Marggi et al. | Sep 2005 | B2 |
6997919 | Olsen et al. | Feb 2006 | B2 |
7005581 | Burnette | Feb 2006 | B2 |
7011342 | Guivarc'h et al. | Mar 2006 | B2 |
D522109 | White et al. | May 2006 | S |
7044161 | Tiberghien | May 2006 | B2 |
7044506 | Dong | May 2006 | B2 |
7108297 | Takayanagi et al. | Sep 2006 | B2 |
7128348 | Kawamura et al. | Oct 2006 | B2 |
7137654 | Segal et al. | Nov 2006 | B2 |
7147252 | Teuscher et al. | Dec 2006 | B2 |
7153296 | Mitchell | Dec 2006 | B2 |
D550355 | Racz et al. | Sep 2007 | S |
D569955 | Chen | May 2008 | S |
D570457 | Brown | Jun 2008 | S |
7390029 | Matsubara | Jun 2008 | B2 |
7677608 | Takayanagi | Mar 2010 | B2 |
20010054819 | Guest | Dec 2001 | A1 |
20030193188 | Miros | Oct 2003 | A1 |
20040232696 | Andre | Nov 2004 | A1 |
20050001425 | deCler et al. | Jan 2005 | A1 |
20050012330 | Schmidt | Jan 2005 | A1 |
20050057042 | Wicks | Mar 2005 | A1 |
20050082828 | Wicks et al. | Apr 2005 | A1 |
20050211934 | Garber et al. | Sep 2005 | A1 |
20050258646 | Gunderson | Nov 2005 | A1 |
20070029796 | Bibby | Feb 2007 | A1 |
20070169825 | Packham et al. | Jul 2007 | A1 |
20070209716 | Rankin | Sep 2007 | A1 |
20080061553 | Schmidt | Mar 2008 | A1 |
20090256355 | Wicks et al. | Oct 2009 | A1 |
20100001516 | Pisula, Jr. et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
WO06135666 | Dec 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080277924 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11149624 | Jun 2005 | US |
Child | 12178138 | US |