This invention relates in general to an electric connector and, more specifically, to a female electric connector that includes protection against inward extension of terminal arms.
Electric connectors may be used in a variety of electrical applications, for example, in completing electrical circuits with components in a power distribution box or connecting a wiring harness to an electrical device. These electric connectors may include a female connector that includes multiple flexible terminal arms and a male connector that is inserted into the female connector between the terminal arms. The male connector engages the terminal arms and pushes them outwardly, establishing electric communication between the female connector and the male connector. The terminal arms are moved during normal insertion of the male connector. It would be advantageous to have a female contact that limits the movement of the terminal arms.
This invention relates to a female electric connector. The female electric connector may include a terminal body. The female electric connector may include a plurality of terminal arms. The terminal arms may extend from the terminal body around a terminal axis. The female electric connector may include an over-deflection protection that limits deflection of the terminal arms in an inward direction. The inward direction may be generally toward the terminal axis. The over-deflection protection may comprise a pair of opposed tabs. The opposed tabs may extend from adjacent terminal arms. Each tab may define a tab engagement surface. The tab engagement surfaces of the opposed tabs may be generally parallel to each other. The tab engagement surfaces of the opposed tabs may be separated by a tab space. The over-deflection protection may not limit the movement of the terminal arms in an outward direction. The outward direction may be generally away from the terminal axis. The female electric connector may include a terminal body having a first side, a second side, a third side, and a fourth side. The female electric connector may include a first terminal arm extending from the first side. The female electric connector may include a second terminal arm extending from the second side. The female electric connector may include a third terminal arm extending from the third side. The female electric connector may include a fourth terminal arm extending from the fourth side. The terminal axis may be located between the first terminal arm and the second terminal arm. The terminal axis may be located between the third terminal arm and fourth terminal arm. A first opposed arm line may be perpendicular to the terminal axis and pass through the first terminal arm and the second terminal arm. A second opposed arm line may be perpendicular to the terminal axis and passes through the third terminal arm and the fourth terminal arm. The first opposed arm line may be generally perpendicular to the second opposed arm line.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.
Referring to the drawings, there is shown in
The illustrated terminal base 14 is made of an electrically-conductive material, such as copper, but the terminal base 14 may be made of any desired material. The illustrated terminal base 14 is made from a single piece of sheet metal stamped and folded into the illustrated shape. However, the terminal base 14 may be made from more than one piece of material and may be made by any desired method. Further, the particular shape of the terminal base 14 may be different from that illustrated, if desired.
The terminal base 14 includes a terminal body 18. The terminal body 18 has a generally square box shape centered on a terminal axis 20 that is generally perpendicular to sides 22, 24, 26, and 28 of the body. A termination area 30 extends from the terminal body 18. An electrically-conductive wire (not shown) may be attached to the termination area 30.
The terminal base 14 includes a first pair of terminal arms 32 that extend from the first side 22 of the terminal body 18 and a second pair of terminal arms 34 that extend from the second side 24 of the terminal body 18. The terminal axis 20 is located between the first pair of terminal arms 32 and the second pair of terminal arms 34. The terminal base 14 also includes a third pair of terminal arms 36 that extend from the third side 26 of the terminal body 18 and a fourth pair of terminal arms 38 that extend from the fourth side 28 of the terminal body 18. The terminal axis 20 is located between the third pair of terminal arms 36 and the fourth pair of terminal arms 38. Referring to
Each of the terminal arms 32, 34, 36, and 38 includes a respective contact area 44. As the terminal arms 32, 34, 36, and 38 extend from the terminal body 18, they extend in an inward direction, generally toward the terminal axis 20, up to the contact areas 44. The contact areas 44 include the portions of the terminal arms 32, 34, 36, and 38 that are closest to the terminal axis 20 and are the portions of the terminal arms 32, 34, 36, and 38 that will be engaged with the male pin terminal 12. The terminal arms 32, 34, 36, and 38 extend past the contact areas 44 and extend in an outward direction, generally away from the terminal axis 20, to respective terminal arm ends 46. It should be appreciated that contact areas 44 of the first pair of terminal arms 32, the second pair of terminal arms 34, the third pair of terminal arms 36, and the fourth pair of terminal arms 38 define a generally square-shaped pattern, as best shown in
A channel, indicated generally at 48, is defined between the first pair of terminal arms 32, the second pair of terminal arms 34, the third pair of terminal arms 36, and the fourth pair of terminal arms 38. The terminal axis 20 is located within the channel 48. When the male pin terminal 12 is mated with the female electric connector 10, it is inserted into the channel 48. When the male pin terminal 12 is mated with the female electric connector 10, the terminal arms 32, 34, 36, and 38 will be pushed in an outward direction, generally away from the terminal axis 20.
The clamp 16 includes a first clamp arm 50 on the first side 22 of the terminal body 18, a second clamp arm 52 on the second side 24 of the terminal body 18, a third clamp arm 54 on the third side 26 of the terminal body 18, and a fourth clamp arm 56 on the fourth side 28 of the terminal body 18. The clamp arms 50, 52, 54, and 56 are connected by a clamp center 58 that is located within a space defined by the terminal body 18. The illustrated clamp 16 is made of an electrically-conductive material, but may be made of any desired material. The illustrated clamp 16 is made from a single piece of sheet metal that is stamped and folded into the illustrated shape. However, the clamp 16 may be made from more than one piece of material and may be made by any desired method. Each of the clamp arms 50, 52, 54, and 56 engages one of the pairs of terminal arms 32, 34, 36, and 38 and helps to bias the respective pair of terminal arms 32, 34, 36, and 38 in the inward direction, generally toward the terminal axis 20. The clamp 16 serves to help the terminal base 14 maintain contact with the male pin terminal 12. The clamp 16 may have a shape different from that illustrated, if desired.
The illustrated terminal base 14 is stamped from a single piece of sheet metal and is folded into the illustrated shape. As shown in
The illustrated terminal base 14 includes optional tabs 68 that extend from the pairs of terminal arms 32, 34, 36, and 38. The tabs 68 are an over-deflection protection that limits deflection of the pair of terminal arms 32, 34, 36, and 38 in the inward direction. As previously-described, the clamp 16 serves to bias the terminal arms of the terminal body 18 in the inward direction, generally toward the terminal axis 20, thus providing a force to improve the contact between the terminal base 14 and the male pin terminal 12 when the two terminals are mated. However, it may be desirable to limit the distance that the pair of terminal arms 32, 34, 36, and 38 are deflected in the inward direction. Referring to
As previously described, the male pin terminal 12 is inserted into the channel 48 when the male pin terminal 12 is mated with the female electric connector 10. To properly mate the two terminals, the centerline of the illustrated male pin terminal 12 is preferably aligned with the terminal axis 20. If the male pin terminal 12 is not properly aligned with the female electric connector 10, the male pin terminal 12 may engage one of the terminal arm ends 46 when being inserted into the channel 48. This could cause a force to push the associated terminal arm 32, 34, 36, and 38 in the inward direction, generally toward the terminal axis 20. Sufficient force applied to the terminal arm end 46 could damage the terminal arm 32, 34, 36, 38 by deforming it and bending it in the inward direction. It should be appreciated that the tabs 68 provide protection against this type of damage to the female electric connector 10.
Referring to
The terminal base 114 includes a reinforced layer 174. The reinforced layer 174 includes an extended termination area 176 and reinforced wings 178. The reinforced wings 178 extend from a terminal body 118 to the extended termination area 176. The reinforced wings 178 provide a path for electrical current to travel between a terminal body 118 and the termination area 118. This may allow the alternative female electric connector 110 to provide less resistance to current flow as compared to the female electric connector 10. It should be appreciated that this may allow the alternative female connector 110 to conduct a larger electrical current than the female electric connector 10, or allow the alternative female electric connector 110 to conduct the same electrical current while generating less heat.
Additionally, the reinforced wings 178 may provide improved structural stability to the alternative female electric connector 110 as compared to the female electric connector 10. Referring to
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims the benefit of U.S. Provisional Application No. 61/766,058, filed Feb. 18, 2013, and U.S. Provisional Application No. 61/864,150, filed Aug. 9, 2013, the disclosures of which are both incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5080604 | Rider et al. | Jan 1992 | A |
5362244 | Hanson et al. | Nov 1994 | A |
5664972 | Zinn | Sep 1997 | A |
6186841 | Jacobsson | Feb 2001 | B1 |
6955569 | Baker et al. | Oct 2005 | B2 |
7578694 | Takahashi et al. | Aug 2009 | B2 |
7892050 | Pavlovic et al. | Feb 2011 | B2 |
7988481 | Bethurum et al. | Aug 2011 | B2 |
20060040555 | Chen et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20140235113 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61864150 | Aug 2013 | US | |
61766058 | Feb 2013 | US |