This application claims foreign priority benefits under 35 U.S.C. §119(a)-(d) to DE 10 2008 017 043.7, filed Apr. 3, 2008, which is hereby incorporated by reference in its entirety.
The following relates to an electrical terminal and manufacturing method for electrical connections in vehicular and other environments.
A detailed description and accompanying drawings are set forth below.
a is a simplified, exemplary profile diagram depicting one embodiment of the terminal described herein;
b is a simplified, exemplary cross-sectional diagram depicting one embodiment of the terminal described herein;
With reference to
Crimp-on terminals are electrical terminals that are, for example, attached to wires to be easily connected to screw terminals or fast-on/quick-disconnect terminals. Thus, crimp-on terminals may connect two wires together either permanently or with disconnect capability. Typically, crimp-on terminals are attached by inserting the stripped end of a stranded wire into the wire connecting portion of the terminal. This wire connection portion is then compressed tightly around the wire or “crimped” by squeezing the wire connecting portion with a special crimping device.
It is well known in the automotive industry that cars are equipped with numerous electrical components, most of which require a bundle of wires to operate. Thus, in today's vehicles, electrical connectors are especially critical. Without them, it would be nearly impossible to build or service a car. For example, whenever a bundle of wires passes through or attaches to a component of a car that might have to be removed, there must be a connector there to allow for that removal. Moreover, connectors may be required to connect one group of wires to another group of corresponding wires to complete circuits throughout the vehicle. A single connector can house any number of electrical wires and electrical wire terminals simplifying the connection and disconnection of bundles of wires in automotive an other environments.
Electrical terminals come in various shapes, sizes and configurations. Female terminals typically have male counterparts for making reliable electrical connections. The tab of a male terminal may be securely inserted into a female terminal for joining together an electrical circuit. Female terminals may be designed for insertion into specific connectors. Additionally, female terminals may be designed to receive particular male terminals or vice versa. In order to facilitate a reliable and constant terminal engagement, the female terminal design may include a spring arm or some other contact surface within a terminal interior to apply pressure to the tab of a male terminal to hold the male terminal in place and maintain electrical contact.
Referring now to the drawings,
Terminal connection portion 14 of electrical terminal 10 can be a substantially rectangular tubular member 20 having terminal insertion opening 22 formed by a front edge 24 of terminal connecting portion 14. Terminal insertion opening 22 may be configured to receive a tab a male terminal (not shown). As shown in
A polarization tab 32 may project outward from bottom portion 26. Polarization tab 32 can help secure electrical terminal 10 into an electrical connector housing (not shown) with the proper orientation.
As best shown in
Contact arm 34 may include contact face 40 defining the location where a spring force is applied by contact arm 34. Contact face 40 can be located proximate upper portion 30 defining a slot for the tab of a male terminal to be inserted. Spring force from contact face 40 can press the male terminal against upper portion 30 to retain the male terminal within the interior of terminal connecting portion 14. Contact arm 34 may apply sufficient force to the male terminal to prevent the male terminal from disengaging from electrical terminal 10 unintentionally while simultaneously maintaining constant electrical contact between electrical terminal 10 and the male terminal. It should be noted that the spring force established by contact arm 34 may be varied by varying the shape of contact arm 34. For example, the width of contact arm 34 may be increased or decreased, or contact arm 34 may be tapered from shoulder 36 to contact face 40. Alternatively, a slot 41 (best shown in
Contact face 40 of contact arm 34 may be located proximate terminal insertion opening 22 such that it is capable of receiving male terminals relatively short in length. Of course, positioning contact face 40 near terminal insertion opening in this manner may not preclude electrical terminal 10 from receiving male terminals of a longer length.
Contact arm 34 may also include laterally extending spring overstress regions 42 on opposite sides of contact face 40. Spring overstress regions 42 may resemble a pair of opposing tabs extending outward away from contact arm 34 in a generally transverse direction. Spring overstress regions 42 may provide sufficient protection to avoid plastic deformation of contact arm 34.
As shown in
Referring now to
Pre-formed terminal cutout 48 may include wire connecting portion 12 and terminal connecting portion 14. As described with reference to
Again, the shape of contact arm 34 may be varied. The width can be increased or decreased, contact arm 34 may be tapered, or slot 41 may be punched into contact arm 34. Varying the shape of contact arm 34 varies the spring characteristic in accordance with design standards and requirements. To this end, the stamping tool which stamps conductive material 46 into pre-formed terminal cutout 48 may include exchangeable dies to allow for adjustment of this spring characteristic.
Pre-formed terminal cutout 48 of electrical terminal 10 may have a primary longitudinal axis as shown by line 50 in
Pre-formed terminal cutout 48 may be formed into electrical terminal 10 as shown in
Referring now to
To this end, at step 66, contact arm 34 may then be straightened at shoulder 36 such that the longitudinal axis 52 of contact arm 34 can become generally parallel to the longitudinal axis 50 of electrical terminal 10. In order to properly straighten contact arm 34 so that it can be in alignment with upper portion 30 of terminal connecting portion 14, a special coining process may be used. During the coining process, conductive material 46 is squeezed at or near a confined area around shoulder 36 causing conductive material 46 to flow in such a way that allows contact arm 34 to be straightened without bending pre-formed terminal cutout 48.
After the straightening step 66, contact arm 34 may be folded at shoulder 36 down longitudinal axis 50 (or along a line orthogonal to longitudinal axis 50), at step 68. By folding contact arm 34 at shoulder 36, only a single fold may be required to redirect contact arm 34 towards front edge 24 of terminal connecting portion 14. During this folding step 68, contact arm 34 can be folded down axis 50 toward front edge 24 of terminal connecting portion 14. By folding contact arm 34 at shoulder 36, only a single fold may be required to redirect contact arm 34 towards front edge 24 of terminal connecting portion 14. The net result may be additional material savings.
Next, at step 70, terminal connecting portion 74 may be bent along corresponding chain lines 54,56 to form box-shaped tubular member 20 defined by bottom portion 26, opposing side walls 28, and upper portion 30 opposing bottom portion 26. In that regard, contact arm 34 may be folded to cantilever from upper portion 30 into tubular member 20 toward terminal insertion opening 22, thereby forming a resilient spring. The spring force of contact arm 34 can provide pressure at contact face 40 against a male terminal upon insertion into terminal insertion opening 22 to retain the male terminal in constant electrical contact with electrical terminal 10.
It should be noted that the method of
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2008 017 043.7 | Apr 2008 | DE | national |