1. Field of the Invention
The present invention relates to a female terminal.
2. Description of the Related Art
However, even if the female terminal described in Japanese Unexamined Patent Publication No. 2009-21187 can reduce an insertion force, a projecting portion to be brought resiliently into contact with the male terminal is an embossed projection and it remains unchanged that a point where a contact pressure peaks and a top portion are arranged very close to each other. Thus, there is a possibility that plating wear occurs from the point where the contact pressure peaks to the top portion and contact resistance increases.
A female terminal disclosed in this specification has a resilient piece to be brought resiliently into contact with a male terminal. The resilient piece is displaceable between an initial position where the resilient piece is located before the male terminal contacts and a deformation position where the resilient piece is deformed resiliently by the contact of the male terminal therewith. A contact mark formed on a point where a contact pressure generated between the resilient piece and the male terminal is maximized and a slide contact mark formed by the slide contact of the male terminal with the resilient piece displaced to the deformation position are arranged not to overlap each other. Thus, an increase of contact resistance can be suppressed as compared to the case where the contact mark and the slide contact mark overlap each other, i.e. the contact mark and the slide contact mark are arranged very close to each other.
When A denotes the size of the contact mark in an arrangement direction of the contact mark and the slide contact mark, B denotes the size of the slide contact mark in the arrangement direction and C denotes a distance between centers of the contact mark and the slide contact mark in the arrangement direction, a configuration satisfying C>(A+B)/2 may be adopted.
According to this configuration, the size A of the contact mark and the size B of the slide contact mark may, for example, be measured in advance and the distance C between the centers may be set based on the measured sizes A, B. Then, the shape of the resilient piece may be appropriately set based on the distance C between the centers.
According to the female terminal disclosed by this specification, it is possible to suppress an increase of contact resistance.
An embodiment is described with reference to
(Male Terminal 11)
The male terminal 11 is formed by press-working a metal plate material into a predetermined shape. The male terminal 11 includes a male tab 12 in the form of a long and narrow plate, and contact surfaces of the male terminal 12 with the female terminal 10 are flat surfaces. Although the male terminal 11 is connected to an end of a wire in this embodiment, it may be connected to an unillustrated device.
(Female Terminal 10)
The female terminal 10 is formed by press-working a metal plate material into a predetermined shape. The female terminal 10 includes a tubular portion 14 into which the male tab 12 of the male terminal 11 is to be inserted. As shown in
The ceiling wall 17 is formed by being bent substantially at a right angle at the upper end edge of one of the pair of side walls 16 toward the other side wall 16. A locking portion 18 is formed on a side end edge of the ceiling wall 17 and inserted into a locking hole 19 formed on the other side wall 16. A side end edge of the other side wall 16 is folded onto the upper surface of the ceiling wall 17. In this way, the tubular portion 14 is held to have the rectangular tube shape.
A wire barrel 20 extends behind the bottom wall 15. As shown in
(First Resilient Pieces 23)
A first base end portion 24 is formed to project on the front end edge of the bottom wall 15. The first base end portion 24 is folded inwardly (rearwardly) of the tubular portion 14 from the front end edge of the bottom wall 15. As shown in
As shown in
Lengths of the respective first resilient pieces 23 in the front-back direction are substantially equal. Further, widths of the respective first resilient pieces 23 in a direction (hereinafter, referred to as a width direction) perpendicular to the inserting direction of the male terminal 11 are substantially equal. Further, an interval is substantially equal between each pair of adjacent first resilient pieces 23. Thus, the plurality of first resilient pieces 23 are arranged at equal intervals substantially over the entire width of the tubular portion 14.
As shown in
(Second Resilient Pieces 26)
A second base end portion 27 is formed to project on the front end edge of the ceiling wall 17. The second base end portion 27 is folded inwardly (rearwardly) of the tubular portion 14 from the front end edge of the ceiling wall 17. As shown in
As shown in
Lengths of the respective second resilient pieces 26 in the front-back direction are substantially equal. Further, widths of the respective second resilient pieces 26 in a direction (hereinafter, referred to as a width direction) perpendicular to the inserting direction of the male terminal 11 are substantially equal. Further, an interval is substantially equal between each pair of adjacent second resilient pieces 26. Thus, the plurality of second resilient pieces 26 are arranged at equal intervals substantially over the entire width of the tubular portion 14.
As shown in
As shown in
(First Line Contact Portions and First Gradually Changing Portions)
As shown in
The contact surface 29A of the first line contact portion 29 and the contact surface 30A of the first gradually changing portion 30 are both flat surfaces and configured to be brought into line contact with the male terminal 11. A length of a contact edge with the male terminal 11 is constant in the inserting direction of the male terminal 11 on the contact surface 29A of the first line contact portion 29, whereas a length of a contact edge with the male terminal 11 is longest at the end 29B of the first contact portion 29, becomes gradually shorter toward the first contact portion 25 and is shortest on the first contact portion 25 on the contact surface 30A of the first gradually changing portion 30. As shown in
(Second Line Contact Portions and Second Gradually Changing Portions)
The second resilient piece 26 is configured to be vertically symmetrical with the first resilient piece 23 and includes a second line contact portion 31 to be brought into line contact with the male terminal 11, the second contact portion 28 to be brought into point contact with the male terminal 11 and a second gradually changing portion 32 arranged between the second line contact portion 31 and the second contact portion 28 and having a contact area with the male terminal 11 gradually reduced toward the second contact portion 28. Similarly to the first gradually changing portion 30, the second gradually changing portion 32 has a substantially isosceles triangular shape long in the front-back direction and is formed in an area extending from an end 31B of the second line contact portion 31 to a top 28A of the second contact portion 28. A cutting line cutting contact surfaces 31A, 32A of the second resilient piece 26 with the male terminal 11 in a longitudinal direction at a position passing through the top 28A of the second contact portion 28 along the inserting direction of the male terminal 11 is a straight line (see
The contact surface 31A of the second line contact portion 31 and the contact surface 32A of the second gradually changing portion 32 are both flat surfaces and configured to be brought into line contact with the male terminal 11. A length of a contact edge with the male terminal 11 is constant in the inserting direction of the male terminal 11 on the contact surface 31A of the second line contact portion 31, whereas a length of a contact edge with the male terminal 11 is longest at the end 31B of the second contact portion 31, becomes gradually shorter toward the second contact portion 28 and is shortest on the second contact portion 28 on the contact surface 32A of the second gradually changing portion 32. Similarly to the first resilient piece 23, non-contact surfaces 32B not to be brought into contact with the male terminal 11 are formed on both sides of the second gradually changing portion 32 and these non-contact surfaces 32B are connected to the contact edge 28B of the second contact portion 28. Note that the second contact portion 28 extends obliquely downward while maintaining a cross-sectional shape at the contact edge 28B.
(Contact Mark and Slide Contact Mark)
Each resilient piece 23, 26 is displaceable between an initial position shown in
A point where the male terminal 11 starts contacting each resilient piece 23, 26 located at the initial position as shown in
Here, when A denotes the size of the contact mark 35 in an arrangement direction of the contact mark 35 and the slide contact mark 26, B denotes the size of the slide contact mark 36 in the arrangement direction and C denotes a distance between centers of the contact mark 35 and the slide contact mark 36 in the arrangement direction (separation distance between the point where the contact pressure is maximized and the slide contact point 34 in this embodiment), the contact mark 35 and the slide contact mark 36 are arranged not to overlap each other so as to satisfy C>(A+B)/2.
In this embodiment, the contact start point 33 matches the end 29B, 31B of each line contact portion 29, 31 and the slide contact point 34 matches the top 25A, 28A of each contact portion 25, 28. Thus, by arranging the contact mark 35 and the slide contact mark 36 at a distance from each other, it can be suppressed that plating wear occurs at each contact portion 25, 28 by repeated insertion and withdrawal of the male terminal 11. In this way, an increase of contact resistance caused by the insertion and withdrawal of the male terminal 11 can be suppressed.
As described above, since the contact mark 35 and the slide contact mark 36 are arranged not to overlap each other in this embodiment, an increase of contact resistance can be suppressed as compared to the case where a contact mark and a slide contact mark overlap each other, i.e. the contact mark and the slide contact mark are arranged very close to each other.
When A denotes the size of the contact mark 35 in the arrangement direction of the contact mark 35 and the slide contact mark 26, B denotes the size of the slide contact mark 36 in the arrangement direction and C denotes the distance between the centers of the contact mark 35 and the slide contact mark 36 in the arrangement direction, a configuration satisfying C>(A+B)/2 may be adopted.
According to this configuration, the size A of the contact mark 35 and the size B of the slide contact mark 36 may be, for example, measured in advance and the distance C between the centers may be set based on the measured sizes A, B. Then, the shapes of the resilient pieces 23, 26 may be appropriately set based on the distance C between the centers.
The technique disclosed by this specification is not limited to the above described and illustrated embodiment. For example, the following various modes are also included.
Although the contact mark 35 and the slide contact mark 36 are both shaped to be elliptical in the above embodiment, the shapes of the contact mark and the slide contact mark are not limited to elliptical shapes. Further, if the contact mark and the slide contact mark are irregularly shaped, C>(A+B)/2 may not be satisfied. However, even in such a case, the contact mark and the slide contact mark have only to be arranged not to overlap each other.
Although the female terminal 10 in which each contact portion 25, 28 is not formed by embossing is illustrated in the above embodiment, even a female terminal including embossed contact portions may be adopted if a contact mark and a slide contact mark do not overlap each other.
Number | Date | Country | Kind |
---|---|---|---|
2014-131019 | Jun 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/066439 | 6/8/2015 | WO | 00 |