The present disclosure relates generally to orthopaedic prostheses, and particularly to orthopaedic prostheses for use in hip replacement surgery.
Joint arthroplasty is a well-known surgical procedure by which a diseased and/or damaged natural joint is replaced by a prosthetic joint. The prosthetic joint may include a prosthesis that is implanted into one or more of the patient's bones. Many hip prostheses include a femoral prosthesis that is implanted into a patient's femur. A femoral prosthesis typically includes an elongated stem component that is received in the medullary canal of the patient's femur and a spherically-shaped head component that bears against the patient's acetabulum or a prosthetic replacement acetabular cup.
Many femoral prostheses are formed from metallic materials or a combination of metallic and polymeric materials. According to Wolff's law, a patient's bone tissue will remodel in proportion to the stress applied it. Because elongated stem components formed from metal typically have an elastic modulus greater than the elastic modulus of the patient's bone, metallic stem components may shield the patient's bone from stress such that the proximal femoral bone does not remodel to an effective degree, possibly resulting in a loss of support for the implant and/or implant failures.
According to one aspect of the disclosure, an orthopaedic hip prosthesis is disclosed. The orthopaedic hip prosthesis includes a femoral head component including a spherical surface shaped to engage a prosthetic acetabular component and a femoral stem component. The stem component has a first shell including a neck configured to be secured to the femoral head component and an elongated body extending distally from the neck. The first shell includes a polymeric material. The stem component also includes a core that is positioned in the first shell, and the core is formed from a material having a high tensile strength and a high elastic modulus. The core includes a first core body extending into the neck of the first shell and a second core body extending into the elongated body of the first shell. A second shell extends over a proximal section of the elongated body of the first shell. The second shell is formed from a metallic foam.
In some embodiments, the first shell may include a shoulder having a distal surface, and the second shell may include a proximal end that is engaged with the distal surface of the shoulder.
In some embodiments, the second core body of the core may have a medial surface and a lateral surface positioned opposite the medial surface, and the second shell may have a medial surface and a lateral surface positioned opposite the medial surface. When the orthopaedic hip prosthesis is viewed in a transverse plane, the first shell and the second shell may define a first thickness between a medial-most point of the medial surface of the second shell and a medial-most point of the medial surface of the first core body and a second thickness between a lateral-most point of the lateral surface of the second shell and a lateral-most point of the lateral surface of the first core body. The first thickness may be less than the second thickness.
In some embodiments, when the orthopaedic hip prosthesis is viewed in the transverse plane, the medial surface of the first core body may be convex and the lateral surface of the first core body is convex.
In some embodiments, when the orthopaedic hip prosthesis is viewed in the transverse plane, the medial surface of the first core body may be defined by a first radius and the lateral surface of the first core body may be defined by a second radius that is greater than the first radius.
Additionally, in some embodiments, the transverse plane may be a first transverse plane extending through the first shell, the second shell, and the core, and the first shell may have a medial surface and a lateral surface positioned opposite the medial surface. When the orthopaedic hip prosthesis is viewed in a second transverse plane extending through the orthopaedic hip prosthesis distal of the second shell, a third thickness may be defined between a medial-most point of the medial surface of the first shell and a medial-most point of the medial surface of the first core body. The third thickness may be greater than the first thickness.
In some embodiments, the femoral head component may include a tapered bore, and the neck of the first shell may include a tapered post configured to be received in the tapered bore of the femoral head component.
In some embodiments, the femoral head component may include a body including the spherical surface. The femoral head component may also include a polymeric insert positioned in the body, and the insert may have the tapered bore defined therein.
In some embodiments, the metallic foam shell may be shaped to engage a surgically-prepared proximal end of a patient's femur. Additionally, the first shell may be formed from a metal-polymer composite material. In some embodiments, the material of the core may be selected from a group consisting of a cobalt-chromium alloy and a titanium alloy.
According to another aspect, an orthopaedic hip prosthesis is disclosed. The orthopaedic hip prosthesis includes an implantable distal stem component including a core formed from a material having a high tensile strength and a high elastic modulus and a shell extending over the core. The shell including a tapered post configured to be received in a tapered bore of an implantable head component. The shell includes a polymeric material.
In some embodiments, when the orthopaedic hip prosthesis is viewed in a transverse plane extending through the shell and the core, a first thickness may be defined between a medial-most point of the shell and a medial-most point of a medial surface of the core, and a second thickness may be defined between a lateral-most point of the shell and a lateral-most point of a lateral surface of the core. The first thickness may be less than the second thickness.
In some embodiments, the shell may include a sheath extending over a proximal end of the core and a cover layer extending distally from the sheath. The cover layer may engage only a lateral surface of a distal end of the core.
Additionally, in some embodiments, the shell may be formed from a metal-polymer composite material. In some embodiments, the core may be formed from cobalt-chromium alloy.
In some embodiments, the shell may be a first shell including an elongated body, and the implantable distal stem component may include a second shell extending over a proximal section of the elongated body. The second shell may be formed from a metallic foam. In some embodiments, the second shell may be formed from titanium. In some embodiments, the second shell is formed from cobalt-chromium alloy.
According to another aspect, an orthopaedic hip prosthesis includes an implantable distal stem component. The stem component includes a first shell, a core positioned in the first shell, and a second shell. The first shell includes a tapered post configured to be received in a tapered bore of an implantable head component and an elongated body extending distally from the tapered post. The first shell is also formed from a metal-polymer composite material. The elongated body of the first shell includes a distal section shaped to engage the surgically-prepared proximal end of a patient's femur distal of the second shell.
The core is formed from a material having a high tensile strength and a high elastic modulus. The core includes a first core body extending into the tapered post of the first shell and a second core body extending into the elongated body of the first shell. The second shell extends over a proximal section of the elongated body of the first shell, and the second shell is formed from a metallic foam and including a porous outer surface shaped to engage a surgically-prepared proximal end of a patient's femur.
The detailed description particularly refers to the following figures, in which:
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Terms representing anatomical references, such as anterior, posterior, medial, lateral, superior, inferior, etcetera, may be used throughout the specification in reference to the orthopaedic implants or prostheses and surgical instruments described herein as well as in reference to the patient's natural anatomy. Such terms have well-understood meanings in both the study of anatomy and the field of orthopaedics. Use of such anatomical reference terms in the written description and claims is intended to be consistent with their well-understood meanings unless noted otherwise.
Referring to
The stem component 14 may be provided in a number of different configurations in order to fit the needs of a given patient's anatomy. In particular, the stem component 14 may be configured in various different lengths to conform to the patient's anatomy (e.g. a relatively long stem component 14 for use with a long femur, a relatively short stem for use with a short femur, etcetera). As shown in
The neck 34 is configured to be coupled to the head component 12. In the illustrative embodiment, the bore 22 of the head component 12 is tapered, and the neck 34 of the stem component 14 includes a tapered post 40 that is received in the tapered bore 22. When the tapered post 40 is seated in the tapered bore 22, the head component 12 is taper locked onto the stem component 14. It should be appreciated that in other embodiments the neck and the head component may be configured to be press fit or secured together by other mechanical fastening means.
The casing 24 also includes an elongated body 50 that extends distally from the collar 32. As shown in
As shown in
The inner core 60 is formed as a monolithic structure (e.g., a single molded or cast part). It should be appreciated that in other embodiments the components of the core 60 (e.g., the segments 64, 66) may be formed as separate components secured to one another by a mechanical fastener (e.g., screw, bolt, taper fit, etc.), adhesive, or other suitable fastener. In the illustrative embodiment, the inner core 60 is formed from an implant grade metallic material having a high tensile strength and a high elastic modulus (i.e., a high material stiffness). As used herein, the term “high tensile strength” refers to a tensile strength that is greater than 650 MPa. Additionally, as used herein, the term “high elastic modulus” refers to an elastic modulus or modulus of elasticity that is greater than or equal to 100 GPa. In the illustrative embodiment, the core 60 is formed from cobalt-chromium alloy (“CoCr”) having a minimum ultimate tensile strength of 650 MPa and an elastic modulus of approximately 195 GPa. It should be appreciated that in other embodiments the core 60 may be formed any material having a high tensile strength and a high elastic modulus, including, for example, a titanium alloy such as Ti-6Al-4V, which has a minimum ultimate tensile strength of 750 MPa and an elastic modulus of approximately 105 GPa.
The core body 62 of the inner core 60 lies generally in the coronal plane of a patient's body when the prosthesis 10 is secured to the patient's femur. As shown in
The distal segment 66 of the core body 62 has another thickness 78 at its distal end 76 when the core 60 is viewed in the coronal plane. The thickness 78, like the thickness 72, is defined between the surfaces 68, 70 adjacent to the distal end 76. In the illustrative embodiment, the thickness 78 is less than the thickness 72. In that way, the core body 62 tapers to decrease in thickness between the proximal end 74 and the distal end 76.
As shown in
As described above, the casing 24 encases the inner core 60. As shown in
In the illustrative embodiment, the casing 24 is formed from a composite reinforced polymer such as, for example, carbon-fiber reinforced polyetheretherketone (“PEEK”). The composite has an elastic modulus of approximately 21.5 GPa and an ultimate tensile strength of approximately 223 MPa. In that way, the casing 24 has an elastic modulus that is closer to that of a patient's femur. It should be appreciated that in other embodiments the casing 24 may be formed any composite or polymeric material having a low elastic modulus, such as, for example, a glass-filled polymer such as glass-filled PEEK, a non-reinforced polymer such as neat PEEK, or other reinforced or non-reinforced polymer.
As described above, the stem component 14 of the prosthesis 10 also includes a shell 26 that is secured to the proximal section 52 of the casing 24. The shell 26 is formed from a metallic foam matrix having a low elastic modulus. In the illustrative embodiment, the shell 26 is formed from a foam matrix of titanium having an elastic modulus of approximately 10 GPa and an ultimate tensile strength of the foam matrix of titanium is approximately 35 MPa. In that way, the shell 26 has an elastic modulus that is closer to that of a patient's femur. It should be appreciated that in other embodiments the shell 26 may be formed any metallic foam matrix having a low elastic modulus, such as, for example, a CoCr foam matrix having an elastic modulus of approximately 19 GPa, a CoCr alloy foam matrix, a titanium foam alloy matrix, or other foam matrix.
As shown in
As shown in
For example, as shown in
As shown in
The combined lateral thickness 110 includes a thickness 130 of the casing 24 and a thickness 132 of the shell 26. As shown in
Similarly, the combined medial thickness 112 includes a thickness 140 of the casing 24 and a thickness 142 of the shell 26. As shown in
In the distal section 54 of the casing 24, the thickness of the casing 24 on the lateral side 100 of the stem component 14 is also greater than the thickness of the casing 24 on the medial side 98 of the stem component 14. For example, as shown in
Returning to
The insert 162 is secured to a body 166 of the head component 12 formed from an implant grade metallic material such as, for example, cobalt-chromium alloy (“CoCr”) or a titanium alloy such as Ti-6Al-4V. As shown in
In use, the prosthesis 10 is inserted into a proximal end of a patient's surgically-prepared femur. The elongated stem component 14 is received in the intramedullary canal and the casing 24 and the shell 26 engage the portion of the patient's femur surrounding the canal. As described above, the inner core 60 is sized and shaped to meet the minimum strength requirements of the prosthesis 10, while the casing 24 and the shell 26 cooperate to provide the stem component 14 with the external geometry necessary to fit into the intramedullary canal. The combination of the high tensile strength/high elastic modulus core 60 with the low modulus casing 24 and the low modulus shell 26 results in a reduced stiffness for the stem component 14 such that stress shielding of the patient's bone is reduced.
Referring now to
The casing 224 includes a neck 34 that is configured to be coupled to the head component 12. Like the embodiment of
As shown in
In the illustrative embodiment, the casing 224 molded over the core 220. The casing 224 is formed from a composite reinforced polymer such as, for example, carbon-fiber reinforced polyetheretherketone (“PEEK”). The composite has an elastic modulus of approximately 21.5 GPa and an ultimate tensile strength of approximately 223 MPa. In that way, the casing 224 has an elastic modulus that is closer to that of a patient's femur. It should be appreciated that in other embodiments the casing 24 may be formed any composite or polymeric material having a low elastic modulus, such as, for example, a glass-filled polymer such as glass-filled PEEK, a non-reinforced polymer such as neat PEEK, or other reinforced or non-reinforced polymer.
As shown in
As shown in
The core body 246 (i.e., the core segments 250, 252) and the casing 224 (i.e., the sheath 230 and cover layer 234) cooperate to define a longitudinal axis 260 of the stem component 214. The core body 246 has a longitudinal axis 262. As shown in
For example, as shown in
As shown in
In the illustrative embodiment, the cover layer 234 of the casing 224 decreases in thickness as it extends distally along the core segment 252. For example, as shown in
In use, the prosthesis 210 is inserted into a proximal end of a patient's surgically-prepared femur. The elongated stem component 214 is received in the intramedullary canal and the sheath 230 and the cover layer 234 of the casing 224 engage the portion of the patient's femur surrounding the canal. As described above, the core 220 is sized and shaped to meet the minimum strength requirements of the prosthesis 210, while the casing 224 is configured to possess the external geometry necessary to fit into the intramedullary canal. The combination of the high tensile strength/high elastic modulus core 220 with the low modulus casing 224 results in a reduced stiffness for the prosthesis 210 such that stress shielding of the patient's bone is reduced.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
There are a plurality of advantages of the present disclosure arising from the various features of the method, apparatus, and system described herein. It will be noted that alternative embodiments of the method, apparatus, and system of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the method, apparatus, and system that incorporate one or more of the features of the present invention and fall within the spirit and scope of the present disclosure as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/995,843, which was filed on Jan. 14, 2016 and is now issued as U.S. Pat. No. 9,717,597, which is a divisional of U.S. patent application Ser. No. 13/829,026, which was filed on Mar. 14, 2013 and is now issued as U.S. Pat. No. 9,271,839, and which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4164794 | Spector et al. | Aug 1979 | A |
4227265 | Frey | Oct 1980 | A |
4351069 | Ballintyn et al. | Sep 1982 | A |
4756862 | Spector et al. | Jul 1988 | A |
4808186 | Smith | Feb 1989 | A |
4851008 | Johnson | Jul 1989 | A |
4878919 | Pavlansky et al. | Nov 1989 | A |
4986834 | Smith et al. | Jan 1991 | A |
4990161 | Kampner | Feb 1991 | A |
5152798 | Kranz | Oct 1992 | A |
5181930 | Dumbleton et al. | Jan 1993 | A |
5314492 | Hamilton et al. | May 1994 | A |
5316550 | Forte | May 1994 | A |
5336265 | Serbousek et al. | Aug 1994 | A |
5433750 | Gradinger et al. | Jul 1995 | A |
5443513 | Moumene et al. | Aug 1995 | A |
5480449 | Hamilton et al. | Jan 1996 | A |
5514184 | Doi et al. | May 1996 | A |
5545227 | Davidson et al. | Aug 1996 | A |
5549702 | Ries et al. | Aug 1996 | A |
5591233 | Kelman et al. | Jan 1997 | A |
5702448 | Buechel et al. | Dec 1997 | A |
5735905 | Parr | Apr 1998 | A |
5834113 | Shalaby et al. | Nov 1998 | A |
6066176 | Oshida | May 2000 | A |
6121172 | Marcolongo et al. | Sep 2000 | A |
6228123 | Dezzani | May 2001 | B1 |
6296667 | Johnson et al. | Oct 2001 | B1 |
6312473 | Oshida | Nov 2001 | B1 |
6409852 | Lin et al. | Jun 2002 | B1 |
6602293 | Biermann et al. | Aug 2003 | B1 |
6626948 | Storer et al. | Sep 2003 | B2 |
6656226 | Yoon | Dec 2003 | B2 |
6695884 | Townley | Feb 2004 | B1 |
6719793 | McGee | Apr 2004 | B2 |
6887278 | Lewallen | May 2005 | B2 |
6913623 | Zhu | Jul 2005 | B1 |
7141073 | May et al. | Nov 2006 | B2 |
7947084 | Link | May 2011 | B2 |
8088169 | Dorr | Jan 2012 | B2 |
8906108 | Armacost et al. | Dec 2014 | B2 |
9271839 | Armacost et al. | Mar 2016 | B2 |
9717597 | Armacost et al. | Aug 2017 | B2 |
9907657 | Fonte et al. | Mar 2018 | B2 |
20020016635 | Despres, III et al. | Feb 2002 | A1 |
20020049501 | Storer et al. | Apr 2002 | A1 |
20040102854 | Zhu | May 2004 | A1 |
20040172138 | May et al. | Sep 2004 | A1 |
20050119759 | Tuke et al. | Jun 2005 | A1 |
20060184250 | Bandoh et al. | Aug 2006 | A1 |
20060240064 | Hunter et al. | Oct 2006 | A9 |
20070093912 | Borden | Apr 2007 | A1 |
20070150068 | Dong et al. | Jun 2007 | A1 |
20070219641 | Dorr et al. | Sep 2007 | A1 |
20080039941 | Steinberg | Feb 2008 | A1 |
20080167723 | Acker et al. | Jul 2008 | A1 |
20080200990 | McTighe et al. | Aug 2008 | A1 |
20080243264 | Fonte | Oct 2008 | A1 |
20080255675 | Sidebotham | Oct 2008 | A1 |
20090005868 | Gundlapalli et al. | Jan 2009 | A1 |
20090076508 | Weinans et al. | Mar 2009 | A1 |
20090162235 | Kita et al. | Jun 2009 | A1 |
20090234459 | Sporring et al. | Sep 2009 | A1 |
20100174377 | Heuer | Jul 2010 | A1 |
20100312354 | Bandoh et al. | Dec 2010 | A1 |
20120010720 | Dickerson | Jan 2012 | A1 |
20120022662 | Conway et al. | Jan 2012 | A1 |
20120125896 | Vargas et al. | May 2012 | A1 |
20120196147 | Rabiei | Aug 2012 | A1 |
20130338789 | Armacost et al. | Dec 2013 | A1 |
20140107801 | Armacost et al. | Apr 2014 | A1 |
20140277557 | Armacost et al. | Sep 2014 | A1 |
20170246001 | Conway et al. | Aug 2017 | A1 |
20170367829 | Choudhury et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
3442845 | Jun 1985 | DE |
10029859 | Sep 2001 | DE |
0375599 | Jun 1990 | EP |
0484082 | May 1992 | EP |
2777622 | Sep 2014 | EP |
2839641 | Nov 2003 | FR |
0663067 | Mar 1994 | JP |
2004537370 | Dec 2004 | JP |
2007151805 | Jun 2007 | JP |
2012115356 | Jun 2012 | JP |
1983002555 | Aug 1983 | WO |
9306793 | Apr 1993 | WO |
2002013730 | Feb 2002 | WO |
2011005126 | Jan 2011 | WO |
2012065068 | May 2012 | WO |
Entry |
---|
Long, Marc et al., “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, 19, (1998), 1621-1639. |
European Search Report for European Application No. 13171799.3-1654, dated Oct. 4, 2013, 4 pages. |
European Search Report for European Application No. 14156387.4.-1654, dated May 14, 2014, 6 pages. |
Chapter 52, Strain Distribution in the Proximal Femur After Cementless Implantation of Hip Replacements, Mathys et al., Biomechanics:Current Interdisciplinary Research, pp. 371-376. |
Von Hasselbach C, Bombelli R, The isoelastic RM hip endoprosthesis, OP-Journal. 6(2): 29-37 (1990). |
English translation of Notification of Reasons for Refusal in Japanese Patent Application No. 2014-050097, completed Jan. 9, 2018. |
Partial European Search Report for European Patent Application No. 14197339.6, completed Apr. 30, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170325963 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13829026 | Mar 2013 | US |
Child | 14995843 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14995843 | Jan 2016 | US |
Child | 15665658 | US |