Femoral prostheses with upsizing and downsizing capabilities

Information

  • Patent Grant
  • 11324599
  • Patent Number
    11,324,599
  • Date Filed
    Wednesday, November 6, 2019
    5 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
According to one example, a femoral prosthesis system is provided that has a plurality of sizing options using two families of femoral prostheses is disclosed. The second family of femoral prostheses can have a predetermined increase in femoral posterior condylar offset relative to the first family of femoral prosthesis. In one example, the second family of femoral prostheses can have the predetermined increase in the femoral posterior condylar offset while maintaining substantially a same femoral medial-lateral condylar extent relative to a comparably sized one of the first family of femoral prostheses.
Description
FIELD

The present subject matter relates to orthopedic prostheses and, more particularly, to prostheses and systems used in knee arthroplasties including revision knee arthroplasties.


BACKGROUND

Orthopedic procedures and prostheses are commonly utilized to repair and/or replace damaged bone and tissue in the human body. For example, a knee arthroplasty can be used to restore natural knee function by repairing damaged or diseased articular surfaces of the femur and/or tibia. An incision is made into the knee joint to expose the bones comprising the joint. Cut guides are used to guide the removal of the articular surfaces that are to be replaced. Prostheses are used to replicate the articular surfaces. Knee prostheses can include a femoral prosthesis implanted on the distal end of the femur, which articulates with a tibial bearing component and a tibial component implanted on the proximal end of a tibia to replicate the function of a healthy natural knee. Various types of arthroplasties are known including a total knee arthroplasty, where all of the articulating compartments of the joint are repaired with prosthetic components.


Overview

This disclosure pertains generally to femoral prostheses and systems for a knee arthroplasty including a revision knee arthroplasty. The present inventors have recognized, among other things, that it is desirable to offer versatile sizing options with regards to a combination of femoral posterior condylar offset and femoral medial-lateral condylar extent. More particularly, the present inventors have recognized a femoral prosthesis system that can have a plurality of sizing options using two families of femoral prostheses. The second family of femoral prostheses has a predetermined increase in the femoral posterior condylar offset relative to the first family of femoral prosthesis. In one example, the second family of femoral prostheses can have the predetermined increase in the femoral posterior condylar offset while maintaining substantially the same femoral medial-lateral condylar extent relative to the first family of femoral prostheses. Thus, for example, if sizing criteria dictate, a femoral prosthesis of a first size from the second family can be selected having a relatively larger femoral posterior condylar offset but a same femoral medial-lateral condylar extent to a correspondingly sized femoral prosthesis from the first family. Similarly, the systems allow for downsizing should sizing criteria dictate. For example, a femoral prosthesis of a first size from the first family can be selected having a femoral medial-lateral condylar extent that is larger than desired but having a femoral posterior condylar offset that is sized as desired. In such situation, the disclosed examples allow a correspondingly sized femoral prosthesis from the second family to be selected that has substantially a same femoral posterior condylar offset but a femoral medial-lateral condylar extent that differs from that of the femoral prosthesis of the first size from the first family by a predetermined amount. Such sizing versatility allows a patient appropriate femoral prosthesis from the first family or the second family to be selected more easily (e.g., selection is made using a consistent logical upsizing or downsizing scheme).


Regarding the first family of femoral prostheses, according to one example, the first family of femoral prostheses have a first range of posterior condylar offsets and a corresponding range of femoral medial-lateral condylar extents. The range for the femoral medial-lateral condylar extent of the first family can be between about 59 mm (for a size 1 femoral prosthesis) and about 80 mm (for a size 13 femoral prosthesis), for example. Similarly, the range of the posterior condylar offset can be between about 33 mm (for the size 1 femoral prosthesis) to about 52 mm (for the size 13 femoral prosthesis), for example. According to some examples, the femoral medial-lateral condylar extent can be substantially linearly incremented in a size increase from the size 1 to the size 13 femoral prosthesis such that for each increase in femoral size (e.g., going from a size 1 to size 3 or from a size 7 to a size 9) there is a corresponding known increase in the femoral medial-lateral condylar extent. The posterior condylar offset can be similarly substantially linearly incremented such that there is a known increase when moving up or down in prostheses size.


The present inventors have additionally recognized the prosthesis system can have the second family of femoral prostheses be compatible with the same tibial bearing component as a correspondingly sized femoral prosthesis from the first family of femoral prostheses. According to some examples, the second family of femoral prostheses can have a second range of posterior condylar offsets and corresponding femoral medial-lateral condylar extents. The range for the femoral medial-lateral condylar extent of the first family can be between about 59 mm (for a size 1+ femoral prosthesis) and about 77 mm (for a size 11+ femoral prosthesis), for example. Similarly, the range of the posterior condylar offset can be between about 37 mm (for the size 1+ femoral prosthesis) to about 52 mm (for the size 11+ femoral prosthesis), for example. According to some examples, the femoral medial-lateral condylar extent can be substantially linearly incremented in a size increase from the size 1+ to the size 11+ femoral prosthesis such that for each increase in femoral size there is a corresponding increase in the femoral medial-lateral condylar extent. The posterior condylar offset can be similarly substantially linearly incremented such that there is a known increase when moving up or down in prostheses size.


As discussed above, the size increase for the first family of femoral prostheses and the size increase for the second family of femoral prostheses can be related so as to be substantially the same (See FIGS. 5A-5C) according to some examples. However, the posterior condylar offset between the first family and the second family can be offset in that the femoral prostheses from the second family are always larger by a known amount (e.g., 3 mm) in the posterior condylar offset.


To further illustrate the apparatuses and systems disclosed herein, the following non-limiting examples are provided:


Example 1 is a system for knee arthroplasty that can optionally include: a first family having a first plurality of femoral prostheses with different stock sizes from one another, each of the first plurality of femoral prostheses having: a first stem housing extending along a first axis; and a first medial condyle and a first lateral condyle coupled to the first stem housing; wherein the first medial condyle and the first lateral condyle have a first posterior condylar offset as measured from the first axis to a first posterior-most point of the first medial condyle and the first lateral condyle; and wherein the first medial condyle and the first lateral condyle have a first femoral medial-lateral condylar extent from a medial most edge of the first medial condyle to a lateral most edge of the first lateral condyle; a second family having a second plurality of femoral prostheses with different stock sizes from one another, each of the second plurality of femoral prostheses having: a second stem housing extending along a second axis; and a second medial condyle and a second lateral condyle coupled to the second stem housing; wherein the second medial condyle and the second lateral condyle have a second posterior condylar offset from the second axis to a second posterior-most point of the second medial condyle and the second lateral condyle; and wherein the second medial condyle and the second lateral condyle have a second femoral medial-lateral condylar extent from a medial most edge of the second medial condyle to a lateral most edge of the second lateral condyle; wherein the first femoral medial-lateral condylar extent of at least one of the first plurality of femoral prostheses and the second femoral medial-lateral condylar extent of at least one of the second plurality of femoral prostheses are substantially the same.


In Example 2, the subject matter of Example 1 optionally can include the at least one of the first plurality of femoral prostheses and the at least one of the second plurality of femoral prostheses are configured to articulate with a same tibial bearing component.


In Example 3, the subject matter of any one or more of Examples 1-2 optionally can include the first posterior condylar offset of the at least one of the first plurality of femoral prostheses and the second posterior condylar offset of the at least one of the second plurality of femoral prostheses differ by a predetermined amount.


In Example 4, the subject matter of any one or more of Examples 1-3 optionally can include the predetermined amount comprises substantially 3 mm, and wherein the second medial condyle and a second lateral condyle are thickened along a posterior portion comprising at least a region between a posterior bone-contacting surface and a posterior portion of the J-curve when viewed in a sagittal plane relative to a corresponding thickness of the first medial condyle and the first lateral condyle.


In Example 5, the subject matter of any one or more of Examples 1-4 optionally can include the first posterior condylar offset of at least four of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least four of the second plurality of femoral prostheses.


In Example 6, the subject matter of any one or more of Examples 1-5 optionally include the first posterior condylar offset of at least six of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least six of the second plurality of femoral prostheses.


In Example 7, the subject matter of any one or more of Examples 1-6 optionally can include the first femoral medial-lateral condylar extent of at least four of the first plurality of the femoral prostheses is substantially the same as the second femoral medial-lateral condylar extent of at least four of the second plurality of femoral prostheses.


In Example 8, the subject matter of any one or more of Examples 1-7 optionally can include the first femoral medial-lateral condylar extent of at least six of the first plurality of the femoral prostheses is substantially the same as the second femoral medial-lateral condylar extent of at least six of the second plurality of femoral prostheses.


In Example 9, the subject matter of any one or more of Examples 1-8 optionally can include each of the different stock sizes of the first plurality of femoral prostheses differ with respect to the first femoral medial-lateral condylar extent by a first amount between a smaller size and a next larger size and each of the different stock sizes of the second plurality of femoral prostheses differ with respect to the second femoral medial-lateral condylar extent by a second amount between a corresponding smaller size and a corresponding next larger size, and wherein the first amount is substantially the same as the second amount.


In Example 10, the subject matter of any one or more of Examples 1-9 optionally can include each of the different stock sizes of the first plurality of femoral prostheses differ with respect to the first posterior condylar offset by a third amount between a smaller size and a next larger size and each of the different stock sizes of the second plurality of femoral prostheses differ with respect to the second posterior condylar offset by a fourth amount between a corresponding smaller size and a corresponding next larger size, and wherein the third amount is substantially the same as the fourth amount.


Example 11 is a system for knee arthroplasty can optionally include: a first family having a first plurality of femoral prostheses with different stock sizes from one another, each of the first plurality of femoral prostheses having: a first stem housing extending along a first axis; and a first medial condyle and a first lateral condyle coupled to the first stem housing; wherein the first medial condyle and the first lateral condyle have a first posterior condylar offset as measured from the first axis to a first posterior-most point of the first medial condyle and the first lateral condyle; and wherein the first medial condyle and the first lateral condyle have a first femoral medial-lateral condylar extent as measured from a medial most edge of the first medial condyle to a lateral most edge of the first lateral condyle; a second family having a second plurality of femoral prostheses with different stock sizes from one another, each of the second plurality of femoral prostheses having: a second stem housing extending along a second axis; and a second medial condyle and a second lateral condyle coupled to the second stem housing, wherein the second medial condyle and the second lateral condyle have a second posterior condylar offset as measured from the second axis to a second posterior-most point of the second medial condyle and the second lateral condyle; and wherein the second medial condyle and the second lateral condyle have a second femoral medial-lateral condylar extent as measured from a medial most edge of the second medial condyle to a lateral most edge of the second lateral condyle; wherein the first posterior condylar offset of at least one of the first plurality of femoral prostheses and the second posterior condylar offset of at least one of the second plurality of femoral prostheses are substantially the same; and wherein the first femoral medial-lateral condylar extent of the at least one of the first plurality of femoral prostheses and the second femoral medial-lateral condylar extent of the at least one of the second plurality of femoral prostheses differ by a first predetermined amount.


In Example 12, the subject matter of Example 11 optionally can include at least one of the first medial condyle and the first lateral condyle have a first thickness at a posterior portion between a first posterior bone-contacting surface and the first posterior-most point and at least one of the second medial condyle and the second lateral condyle have a second thickness at a corresponding posterior portion between a second posterior bone-contacting surface and the second posterior-most point, and wherein the first thickness differs from the second thickness by a second predetermined amount.


In Example 13, the subject matter of Example 12 optionally can include a third thickness of the at least one of the first medial condyle and the first lateral condyle as measured between a first posterior chamfer and an articular surface differs by a third predetermined amount from a fourth thickness of at least one of the second medial condyle and the second lateral condyle as measured between a corresponding second posterior chamfer and a corresponding articular surface.


In Example 14, the subject matter of Example 13 optionally can include an anterior bone-contacting surface of the at least one of the second plurality of femoral prostheses is disposed relatively nearer the second axis by a fourth predetermined amount than a corresponding anterior bone-contacting surface of the at least one of the first plurality of femoral prostheses.


In Example 15, the subject matter of Example 14 optionally can include one or both of the first predetermined amount and the second predetermined amount comprises substantially 3 mm, the third predetermined amount comprises substantially 1 mm and the fourth predetermined amount comprises substantially 1 mm.


In Example 16, the subject matter of any one or more of Examples 11-15 optionally can include the at least one of the first plurality of femoral prostheses and the at least one of the second plurality of femoral prostheses are configured to articulate with a same tibial bearing component.


In Example 17, the subject matter of any one or more of Examples 11-16 optionally can include the first posterior condylar offset of at least four of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least four of the second plurality of femoral prostheses.


In Example 18, the subject matter of any one or more of Examples 11-17 optionally can include the first posterior condylar offset of at least six of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least six of the second plurality of femoral prostheses.


In Example 19, the subject matter of any one or more of Examples 11-18 optionally can include the first femoral medial-lateral condylar extent of at least four of the first plurality of the femoral prostheses is substantially the same as the second femoral medial-lateral condylar extent of at least four of the second plurality of femoral prostheses.


In Example 20, the subject matter of any one or more of Examples 11-19 optionally can include the first femoral medial-lateral condylar extent of at least six of the first plurality of the femoral prostheses is substantially the same as the second femoral medial-lateral condylar extent of at least six of the second plurality of femoral prostheses.


In Example 21, the subject matter of any one or more of Examples 11-20 optionally can include each of the different stock sizes of the first plurality of femoral prostheses differ with respect to the first femoral medial-lateral condylar extent by a first amount between a smaller size and a next larger size and each of the different stock sizes of the second plurality of femoral prostheses differ with respect to the second femoral medial-lateral condylar extent by a second amount between a corresponding smaller size and a corresponding next larger size, and wherein the first amount is substantially the same as the second amount.


In Example 22, the subject matter of any one or more of Examples 11-21 optionally can include each of the different stock sizes of the first plurality of femoral prostheses differ with respect to the first posterior condylar offset by a third amount between a smaller size and a next larger size and each of the different stock sizes of the second plurality of femoral prostheses differ with respect to the second posterior condylar offset by a fourth amount between a corresponding smaller size and a corresponding next larger size, and wherein the third amount is substantially the same as the fourth amount.


In Example 23, the systems of any one or any combination of Examples 1-22 can optionally be configured such that all elements or options recited are available to use or select from.


These and other examples and features of the present devices and systems will be set forth in part in the following Detailed Description. This overview is intended to provide a summary of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive removal of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals can describe similar components in different views. Like numerals having different letter suffixes can represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various examples discussed in the present document.



FIG. 1 shows a perspective view of a prosthesis assembly including a femoral prosthesis, a tibial bearing component and a tibial baseplate according to an example of the present application.



FIG. 2 shows a perspective view of the femoral prosthesis of FIG. 1 according to an example of the present application.



FIG. 2A shows a cross-sectional view of FIG. 2 in a sagittal plane extending through an intercondylar space between a medial condyle and a lateral condyle according to an example of the present application.



FIGS. 3 and 3A show a system that includes a first femoral prosthesis of a first size from a first family and a second femoral prosthesis from a second family, the second femoral prosthesis of a corresponding size but having an additional thickness in a posterior portion as compared with the first femoral prosthesis according to an example of the present application.



FIGS. 4 and 4A show a femoral prosthesis of either the first family or the second family showing femoral medial-lateral condylar extent and a posterior condylar offset according to an example of the present application.



FIG. 5A is a graph of a system of femoral prostheses from the first family and the second family, the graph plotting the difference in sizes of the first family and the second family as measured by the femoral medial-lateral condylar extent and the posterior condylar offset according to an example of the present application.



FIG. 5B is the graph of FIG. 5A but shows an upsizing technique whereby a physician can increase the posterior condylar offset while maintaining the femoral medial-lateral condylar extent by swapping a femoral prosthesis of a first size from the first family for a femoral prosthesis of the second family according to an example of the present application.



FIG. 5C is the graph of FIG. 5A but shows a downsizing technique whereby the physician can reduce the femoral medial-lateral condylar extent but maintain the posterior condylar offset by swapping a femoral prosthesis of a first size from the first family for a femoral prosthesis of the second family according to an example of the present application.



FIG. 6 shows a sizing chart for a family of tibial bearing components relative to a family of femoral prostheses and tibial baseplates and in accordance with an example of the present application



FIG. 7 shows example of the downsizing of FIG. 5C with regard to two juxtapositioned prostheses having substantially a same posterior condylar offset including one femoral prosthesis of the first family and one femoral prosthesis of the second family according to an example of the present application.





DETAILED DESCRIPTION

The present application relates femoral prostheses and systems. The systems, for example, can include a first family having a first plurality of femoral prostheses with different stock sizes from one another. The system can additional include a second family having a second plurality of femoral prostheses with different stock sizes from one another. Each of the first plurality of femoral prostheses can have a first stem housing extending along a first axis and a first medial condyle and a first lateral condyle coupled to the first stem housing. The first medial condyle and the first lateral condyle can have a first posterior condylar offset as measured from the first axis to a first posterior-most point of the first medial condyle and the first lateral condyle. The first medial condyle and the first lateral condyle can have a first femoral medial-lateral condylar extent as measured from a medial most edge of the first medial condyle to a lateral most edge of the first lateral condyle. Similarly, the second stem housing can extending along a second axis and a second medial condyle and a second lateral condyle can be coupled to the second stem housing. The second medial condyle and the second lateral condyle can have a second posterior condylar offset as measured from the second axis to a second posterior-most point of the second medial condyle and the second lateral condyle. The second medial condyle and the second lateral condyle can have a second femoral medial-lateral condylar extent as measured from a medial most edge of the second medial condyle to a lateral most edge of the second lateral condyle. The first femoral medial-lateral condylar extent of at least one of the first plurality of femoral prostheses and the second femoral medial-lateral condylar extent of at least one of the second plurality of femoral prostheses can be substantially the same according to some examples.


The present application relates to prostheses and systems that can be used in a knee arthroplasty and/or as part of a later knee revision surgery. As described herein, the term system or assembly can include both tibial prosthesis and a femoral prosthesis. This application focuses on aspects of the femoral prosthesis, which can include the stem housing, the medial condyle and the lateral condyle. As discussed previously, the femoral prostheses can be part of the system used to simplify sizing and offer various femoral options that can be compatible with the same tibial bearing component. Additional features and benefits of the various examples provided herein will be discussed and/or will be apparent to one of ordinary skill in the art.


As used herein, the terms “proximal” and “distal” should be given their generally understood anatomical interpretation. The term “proximal” refers to a direction generally toward the torso of a patient, and “distal” refers to the opposite direction of proximal, i.e., away from the torso of a patient. It should be understood that the use of the terms “proximal” and “distal” should be interpreted as though the patient were standing with the knee joint in extension despite the apparatuses described herein generally being used with the knee joint in flexion. The intent is to differentiate the terms “proximal” and “distal” from the terms “anterior” and “posterior”. As used herein, the terms “anterior” and “posterior” should be given their generally understood anatomical interpretation. Thus, “posterior” refers to a rear of the patient, e.g., a back of the knee. Similarly, “anterior” refers to a front of the patient, e.g., a front of the knee. Thus, “posterior” refers to the opposite direction of“anterior”. Similarly, the term “lateral” refers to the opposite direction of “medial”.



FIG. 1 illustrates a prosthesis assembly 10 that can be used as part of a system 12 described herein. The assembly 10 and system 12 can include a femoral prosthesis 14 and a tibial prosthesis 15. In the example of FIG. 1, the prosthesis assembly 10 is shown in a perspective view with the femoral prosthesis 14 articulated relative to the tibial prosthesis 15 to 135° of flexion. FIGS. 2A, 3 and 3A show various examples of the femoral prosthesis 14 (sometimes indicated with other reference numbers) in a cross-sectional view along a sagittal plane. The sagittal plane extends along the anterior-posterior direction and the proximal-distal direction of the femoral prosthesis illustrated.


According to the examples provided herein, the prosthesis assembly 10 and system 12 can utilize posterior stabilized (PS) prostheses. Thus, the tibial prosthesis 15 can include a spine 16 and the femoral prosthesis 14 can include a cam 18 (FIGS. 2 and 2A). The spine 16 and the cam 18 can designed to cooperate with one another to stabilize the femoral prosthesis 14 with respect to tibial prosthesis 15 in lieu of a posterior cruciate ligament (PCL). However, other prosthesis designs are contemplated including a mid-level constraint (MLC) design, a cruciate retaining (CR) design, a constrained condylar (CC), an ultra-congruent (UC) design, for example. CR tibial prostheses are generally used in surgical procedures which retain the PCL. The CR and UC designs omit the spine 16 and cam 18. In any case, the femoral prosthesis 14 defines an intercondylar space 23 between medial and lateral condyles 20 and 22 (shown in FIGS. 1 and 2). In the case of a CR or UC, this intercondylar space can entirely open and uninterrupted by the cam 18 as it is in FIGS. 1, 2 and 2A.


Turning to the components illustrated in FIG. 1, the tibial prosthesis 15 can include a tibial bearing component 26 and a tibial baseplate 24. The tibial bearing component 26 can include the spine 16 (FIGS. 2 and 2A), a proximal medial articular surface 32 and a proximal lateral articular surface 34. The tibial baseplate 24 can include a keel 36. Additional components such as a stem 38 can be used with the prosthesis assembly 10 in some examples.


As shown in FIG. 1, the femoral prosthesis 14 can be disposed atop and can articulate relative to the tibial prosthesis 15. Such articulation can be between the medial and lateral femoral condyles 20 and 22 and the proximal medial articular surface 32 and the proximal lateral articular surface 34, respectively. The proximal medial articular surface 32 and the proximal lateral articular surface 34 can be shaped (e.g., curved) to facilitate such articulation during knee joint flexion. The spine 16 (FIGS. 2 and 2A) of the tibial bearing component 26 can be centrally located between the proximal medial articular surface 32 and the proximal lateral articular surface 34. The spine 16 can be configured to engage with the cam 18 during flexion. Such engagement provides additional stability that would otherwise be offered by ligaments such as the PCL.


The tibial bearing component 26 can be secured to the tibial baseplate 24 as shown in FIG. 1. Such securement can be facilitated by the use of rails, notches, bosses, an insert, and/or fastener according to various examples.



FIGS. 2 and 2A show the femoral prosthesis 14. FIG. 2 shows the femoral prosthesis 14 from a posterior-medial position. FIG. 2A shows the femoral prosthesis 14 in a cross-section along the sagittal plane, the cross-section extending along the intercondylar space 23 and bisecting the cam 18.



FIGS. 2 and 2A show the cam 18, which can have multiple radii according to the illustrated example. In addition to the medial and lateral condyles 20 and 22 (only the medial condyle 20 is shown in FIG. 2A), the femoral prosthesis 14 can include a posterior bone-interfacing surface 40 (shown partially dashed in FIG. 2A), a posterior bone-interfacing chamfer surface 42 (shown dashed in FIG. 2A), a distal bone-interfacing surface 44 (shown dashed in FIG. 2A), an anterior bone-interfacing chamfer surface 46 (not shown in FIG. 2A), an anterior bone-interfacing surface 48 (not shown in FIG. 2A) and a stem housing 50. The medial and lateral condyles 20 and 22 can include medial and lateral articular surfaces 52A and 52B, respectively. When viewed in the sagittal plane, (as in FIG. 2A) the articular surfaces 52A and 52B can form J-curves (only one is shown in FIG. 2A).


The cam 18 can be positioned at a posterior end of the intercondylar space 23 and can extend between the medial and lateral condyles 20 and 22. As shown in FIG. 2, portions of the posterior bone-interfacing surface 40, the posterior bone-interfacing chamfer surface 42, the distal bone-interfacing surface 44, the anterior bone-interfacing chamfer surface 46 and the anterior bone-interfacing surface 48 can be formed by the medial and lateral condyles 20 and 22. The medial and lateral articular surfaces 52A and 52B can be disposed opposite (spaced by a thickness of the medial and lateral condyles 20 and 22) from the posterior bone-interfacing surface 40, the posterior bone-interfacing chamfer surface 42, the distal bone-interfacing surface 44, the anterior bone-interfacing chamfer surface 46 and the anterior bone-interfacing surface 48. The medial and lateral condyles 20 and 22 can have varying thicknesses both medial-lateral and anterior-posterior.


The posterior bone-interfacing surface 40, the posterior bone-interfacing chamfer surface 42, the distal bone-interfacing surface 44, the anterior bone-interfacing chamfer surface 46 and the anterior bone-interfacing surface 48 are configured to abut resected portions of the femur (not shown) upon implantation of the femoral prosthesis 14. The stem housing 50 can be positioned generally between the medial and lateral condyles 20 and 22 and can be coupled thereto. The stem housing 50 can be positioned anterior of the intercondylar space 23. The stem housing 50 can extend generally proximally and can be symmetrical about a first axis A as shown in FIG. 2A. In some examples, the stem housing 50 can be canted medial-lateral so as to be both extend medial-lateral and proximal in extent from interconnection between the medial and lateral condyles 20 and 22.



FIGS. 3 and 3A shows examples of femoral prostheses 114, 214 that can be used according to a system 100. The femoral prostheses 114, 214 can be configured in a manner similar to that of the example femoral prosthesis 14 previously described. The femoral prosthesis 114 can be from a first family 102 of femoral prostheses of which the femoral prosthesis 114 is exemplary of one distinct predetermined size. Similarly, the femoral prosthesis 214 can be from a second family 202 of femoral prostheses of which the femoral prosthesis 214 is exemplary of one distinct predetermined size. The femoral prosthesis 114 can be similar in size with respect to the femoral prosthesis 214 according to some examples. Such similarity can be that a medial-lateral condylar extent (shown subsequently) of the femoral prosthesis 114 can be substantially the same as the medial-lateral condylar extent of the femoral prosthesis 214. Thus, according to some examples, the femoral prostheses 114, 214 can be compatible to articulate with the same tibial prosthesis (i.e. the same bearing component) as is discussed further subsequently. The medial-lateral condylar extent is illustrated in reference to FIGS. 4-5C and can comprise a distance from a medial most edge of the medial condyle to a lateral most edge of the lateral condyle.


However, as shown in FIGS. 3 and 3A, the femoral prosthesis 114 can differ in size from the femoral prosthesis 214 in that the femoral prosthesis 214 has a different thickness 204 between at least the posterior bone-interfacing surface 240 and the articular surface 206 than the femoral prosthesis 114. Thus, a thickness 104 between the posterior bone-interfacing surface 140 and the articular surface 106 differs from the thickness 204 as shown in the example of FIGS. 3 and 3A. Thus, for the femoral prosthesis 214, the second medial condyle 220 and the second lateral condyle (only the medial condyle 220 is shown in FIGS. 3 and 3A) are thickened along a posterior portion 207 comprising at least a region between the posterior bone-contacting surface 240 and a posterior portion of the J-curve 209 when viewed in a sagittal plane relative to a corresponding thickness of the first medial condyle and the first lateral condyle of the femoral prosthesis 114.


Due to the difference between the thickness 104 and the thickness 204, the femoral prosthesis 114 can have a posterior condylar offset 108 that differs from a posterior condylar offset 208 of the femoral prosthesis 214. According to some examples, the posterior condylar offset 108 can differ from the posterior condylar offset 208 by a predetermined amount (e.g., 1, 2, 3, 4 or 5 mm). Indeed, in the illustrated embodiment of FIGS. 3 and 3A, the predetermined amount can comprise substantially 3 mm difference between the posterior condylar offset 208 and the posterior condylar offset 108.



FIGS. 4 and 4A shows a femoral prosthesis 314 that can comprise one of either the first family of femoral prostheses 302 or the second family of femoral prostheses 304 discussed subsequently in regards to FIGS. 5A to 5C. As shown in FIGS. 4 and 4A, the femoral prosthesis 314 can include a medial-lateral condylar extent 306 and a posterior condylar offset 308.


The medial-lateral condylar extent 306 can be from a medial most edge 310 of a medial condyle 320 to a lateral most edge 312 of a lateral condyle 322. The posterior condylar offset 308 can extend from an axis A of a stem housing 314 to a posterior-most point P of at least one of the medial condyle 320 and the lateral condyle 322.



FIGS. 5A-5C provide a system 300 comprised of the first family of femoral prostheses 302 and the second family of femoral prostheses 304. Each of the first family of femoral prostheses 302 and the second family of femoral prostheses 304 include a plurality of distinct sizes as shown in the plot of FIGS. 5A-5C. In the example of FIGS. 5A-5C, the first family of femoral prostheses 302 can have seven distinct sizes indicated as sizes 1, 3, 5, 7, 9, 11 and 13. The second family of femoral prostheses 304 can have six distinct sizes indicated as sizes 1+, 3+, 5+, 7+, 9+ and 11+.


According to the example of FIG. 5A, the posterior condylar offset of at least four of the first family of femoral prostheses 302 (the first family of femoral prostheses 302 being of different distinct sizes from one another) can be substantially the same as the posterior condylar offset of at least four of the second family of femoral prostheses 304 (the second family of femoral prosthesis 304 being of different distinct sizes from one another). According to some examples, the posterior condylar offset of at least six of the first family of femoral prostheses 302 can be substantially the same as the posterior condylar offset of at least six of the second family of femoral prostheses 304 (e.g., sizes 3 and 1+ can have substantially the same posterior condylar offset, sizes 5 and 3+ can have substantially the same posterior condylar offset, sizes 7 and 5+ can have substantially the same posterior condylar offset, sizes 9 and 7+ can have substantially the same posterior condylar offset, sizes 11 and 9+ can have substantially the same posterior condylar offset and sizes 13 and 11+ can share substantially the same posterior condylar offset).


Similarly, the femoral medial-lateral condylar extent of at least four of the first family of femoral prostheses 302 (the first family of femoral prostheses 302 being of different distinct sizes from one another) can substantially the same as the femoral medial-lateral condylar extent of at least four of the second family of femoral prostheses 304 (the second family of femoral prosthesis 304 being of different distinct sizes from one another). According to some examples, the femoral medial-lateral condylar extent of at least six of the first family of femoral prostheses 302 can be substantially the same as the femoral medial-lateral condylar extent of at least six of the second family of femoral prostheses 304 (e.g., sizes 1 and 1+ can have substantially the same femoral medial-lateral condylar extent, sizes 3 and 3+ can have substantially femoral medial-lateral condylar extent, sizes 5 and 5+ can have substantially the same femoral medial-lateral condylar extent, sizes 7 and 7+ can have substantially the same femoral medial-lateral condylar extent, sizes 9 and 9+ can have substantially the same femoral medial-lateral condylar extent and sizes 11 and 11+ can share substantially the same femoral medial-lateral condylar extent).


As shown in FIGS. 5A and 5B, each of the different stock sizes of the first family of plurality of femoral prostheses 302 can differ with respect to the femoral medial-lateral condylar extent by a first amount (e.g., a few mm such as 3 mm) between a smaller size and a next larger size and each of the different stock sizes. Similarly, the second family of femoral prostheses 304 can differ with respect to the femoral medial-lateral condylar extent by a second amount (e.g., a few mm such as 3 mm) between a corresponding smaller size and a corresponding next larger size. In some cases, the first amount can be substantially the same as the second amount.



FIG. 5B shows that the system 300 can have the first family of femoral prostheses 302 be compatible with the second family of femoral prostheses 304 for a flexion fill. In particular, up to six of the first family of femoral prostheses 302 can be compatible with corresponding sizes of the second family of femoral prostheses 304 such that the posterior condylar offset can be changed by swapping a particular size of prosthesis from the first family of femoral prostheses 302 for a corresponding size of the second family of femoral prostheses 304 (e.g., a size 1 can be swapped for a size 1+, etc.). According to the example of FIG. 5B, the posterior condylar offset can be changed by a predetermined amount (e.g., 3 mm) when swapping a particular size of prosthesis from the first family of femoral prostheses 302 for a corresponding size of the second family of femoral prostheses 304. Furthermore, according to the example of FIG. 5B, while the posterior condylar offset can be changed, the femoral medial-lateral condylar extent between the first size of the first family of femoral prostheses 302 and the correspondingly size of the second family of femoral prostheses 304 can remain substantially the same.



FIG. 5C shows the system 300 can be used for a downsizing in the femoral medial-lateral condylar extent while the flexion fill can be maintained. In particular, up to six of the first family of femoral prostheses 302 can be compatible with other sizes of the second family of femoral prostheses 304 such that the femoral medial-lateral condylar extent can be changed by swapping a particular size of prosthesis from the first family of femoral prostheses 302 for a second size of the second family of femoral prostheses 304 (e.g., a size 3 can be swapped for a size 1+, etc.). According to the example of FIG. 5C, while the femoral medial-lateral condylar extent can be changed, the posterior condylar offset between the first size of the first family of femoral prostheses 302 and the second size of the second family of femoral prostheses 304 can remain substantially the same.



FIG. 6 shows a sizing chart for the family of tibial baseplates 350 relative to the first and second families of femoral prostheses 302, 304. As shown in FIG. 6 the least one of the first family of femoral prostheses 302 and the least one of the second family of femoral prostheses 304 can be configured to articulate with a same tibial bearing component. More particularly, the sizing chart shows the first and second families of femoral prostheses 302, 304 can have at least thirteen different stock sizes 1 to 13 (including+ sizes). As previously discussed and illustrated, each femoral prosthesis of the first and second families can be of a same design class but can include distinct sizes having different femoral medial-lateral condylar extent and/or posterior condylar offset.


The family of tibial baseplates 350 can have at least nine different stock sizes A to J. As shown in FIG. 6, a family of tibial bearing components 352 can be configured such that eleven stock sizes exist and that combinations of the at least nine different stock sizes of the family of tibial baseplates are compatible for operable use (e.g. to facilitate a desired articulation similar to that of a natural knee) with the at least thirteen different stock sizes of the first and second families of femoral prostheses 302, 304.



FIG. 6 also illustrates that at least six of the different stock sizes of tibial bearing components 352 are configured to be are compatible with at least four of the thirteen stock sizes of femoral prostheses while also being compatible with at least two of the tibial components 350.


According to further examples, eleven of the at least thirteen different stock sizes of the first and second families of femoral prostheses 302, 304 can be compatible for operable use with nine of the at least eleven different stock sizes of the family of tibial bearing components 352. According to further examples, twelve of the at least thirteen different stock sizes of the first and second families of femoral prostheses 302, 304 can be compatible for operable use with at least two of the at least eleven different stock sizes of the tibial bearing baseplates 350.


This overlapping sizing and the provision of many different compatible sizes can have benefits including providing for increased stability of the medial condyle of the femoral prosthesis. Additionally, the overlapping sizing allows for the flexion fill and downsizing in the femoral medial-lateral condylar extent as discussed previously with respect to FIGS. 5A-5C.



FIG. 7 provides a specific example of the downsizing in the femoral medial-lateral condylar extent while the flexion fill (substantially the same posterior condylar offset) can be maintained as previously discussed in reference to FIG. 5C. FIG. 7 shows a geometry of a first prosthesis 402 of a first size (e.g., size 9) of the first family of femoral prostheses 302 in a sagittal plane superimposed on the geometry of a second prosthesis 404 of a second size (e.g., size 7+) of the second family of femoral prostheses 304 in a sagittal plane.



FIG. 7 shows the first prosthesis 402 can include one of a first medial condyle or first lateral condyle (collectively 406). Similarly, the second prosthesis 404 can include one of a second medial condyle or second lateral condyle (collectively 408).


As shown in FIG. 7, at least one of the first medial condyle and the first lateral condyle 406 can have a first thickness T1 at a posterior portion 410 between a first posterior bone-contacting surface 412 and the first posterior-most point P1. Similarly, at least one of the second medial condyle and the second lateral condyle 408 can have a second thickness T2 at a corresponding posterior portion 414 between a second posterior bone-contacting surface 416 and the second posterior-most point P2 (points P1 and P2 can be disposed at a same posterior location). As shown in FIG. 7, according to some examples the first thickness T1 can differ from the second thickness T2 by a predetermined amount (e.g., X as shown in FIG. 7).


According to the example of FIG. 7, a third thickness of at least one of the first medial condyle and the first lateral condyle 406 as measured between a first posterior chamfer 418 and an articular surface 420 of the first prosthesis 402 differs by a predetermined amount Y from a fourth thickness of at least one of the second medial condyle and the second lateral condyle 408 as measured between a corresponding second posterior chamfer 422 and a corresponding articular surface 424 of the second prosthesis 404.


In some examples, an anterior bone-contacting surface 426 of the second prosthesis 404 (one of the second plurality of femoral prostheses 304 previously discussed) can be disposed relatively nearer to a stem housing axis A by another predetermined amount Z than a corresponding anterior bone-contacting surface 428 of the first prosthesis 402 (one of the first plurality of femoral prostheses 302).


As previously discussed, the downsizing in the femoral medial-lateral condylar extent can be by a predetermined amount (e.g., a few mm). Similarly, the predetermined amount X can be substantially 3 mm (or another desired amount), the predetermined amount Y can comprise substantially 1 mm (or another desired amount) and the predetermined amount Z comprises substantially 1 mm (or another desired amount).


At least one of the first medial condyle and the first lateral condyle 406 and at least one of the second medial condyle and the second lateral condyle 408 can have a similar sagittal J-curve 430 along a posterior and distal portion thereof 432 from the first and second posterior-most points P1 and P2, respectively, to a point distal of the stem housing 434, respectively.


Additional Notes

The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) can be used in combination with each other. Other examples can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above detailed description, various features can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed example. Thus, the following claims are hereby incorporated into the detailed description as examples or embodiments, with each claim standing on its own as a separate example, and it is contemplated that such examples can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A system for knee arthroplasty comprising: a first family having a first plurality of femoral prostheses with different stock sizes from one another, each of the first plurality of femoral prostheses having:a first stem housing extending along a first axis; anda first medial condyle and a first lateral condyle coupled to the first stem housing;wherein the first medial condyle and the first lateral condyle have a first posterior condylar offset as measured from the first axis to a first posterior-most point of the first medial condyle and the first lateral condyle; anda second family having a second plurality of femoral prostheses with different stock sizes from one another, each of the second plurality of femoral prostheses having:a second stem housing extending along a second axis; anda second medial condyle and a second lateral condyle coupled to the second stem housing;wherein the second medial condyle and the second lateral condyle have a second posterior condylar offset from the second axis to a second posterior-most point of the second medial condyle and the second lateral condyle; andwherein at least one of the first medial condyle and the first lateral condyle have a first thickness at a posterior portion between a first posterior bone-contacting surface and the first posterior-most point and at least one of the second medial condyle and the second lateral condyle have a second thickness at a corresponding posterior portion between a second posterior bone-contacting surface and the second posterior-most point, and wherein the first thickness differs from the second thickness by a first predetermined amount.
  • 2. The system of claim 1, wherein a third thickness of the at least one of the first medial condyle and the first lateral condyle as measured between a first posterior chamfer and an articular surface differs by a second predetermined amount from a fourth thickness of at least one of the second medial condyle and the second lateral condyle as measured between a corresponding second posterior chamfer and a corresponding articular surface.
  • 3. The system of claim 2, wherein an anterior bone-contacting surface of the at least one of the second plurality of femoral prostheses is disposed relatively nearer the second axis by a third predetermined amount than a corresponding anterior bone-contacting surface of the at least one of the first plurality of femoral prostheses.
  • 4. The system of claim 3, wherein the first posterior condylar offset of the at least one of the first plurality of femoral prostheses and the second posterior condylar offset of the at least one of the second plurality of femoral prostheses differ by a fourth predetermined amount, and wherein one or both of the first predetermined amount and the fourth predetermined amount comprises substantially 3 rain, the second predetermined amount comprises substantially 1 mm and the third predetermined amount comprises substantially 1 mm.
  • 5. The system of claim 1, wherein the first medial condyle and the first lateral condyle have a first femoral medial-lateral condylar extent from a medial-most edge of the first medial condyle to a lateral-most edge of the first lateral condyle, wherein the second medial condyle and the second lateral condyle have a second femoral medial-lateral condylar extent from a medial-most edge of the second medial condyle to a lateral-most edge of the second lateral condyle; wherein the first femoral medial-lateral condylar extent of at least one of the first plurality of femoral prostheses and the second femoral medial-lateral condylar extent of at least one of the second plurality of femoral prostheses are substantially the same.
  • 6. The system of claim 1, wherein the first posterior condylar offset of the at least one of the first plurality of femoral prostheses and the second posterior condylar offset of the at least one of the second plurality of femoral prostheses differ by a predetermined amount.
  • 7. The system of claim 6, wherein the predetermined amount comprises substantially 3 mm, and wherein the second medial condyle and a second lateral condyle are thickened along a posterior portion comprising at least a region between a posterior bone-contacting surface and a posterior portion of a J-curve when viewed in a sagittal plane relative to a corresponding thickness of the first medial condyle and the first lateral condyle.
  • 8. The system of claim 1, wherein the first posterior condylar offset of at least four of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least four of the second plurality of femoral prostheses.
  • 9. The system of claim 1, wherein the first posterior condylar offset of at least six of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least six of the second plurality of femoral prostheses.
  • 10. The system of claim 1, wherein each of the different stock sizes of the first plurality of femoral prostheses differ with respect to the first posterior condylar offset by a third amount between a smaller size and a next larger size and each of the different stock sizes of the second plurality of femoral prostheses differ with respect to the second posterior condylar offset by a fourth amount between a corresponding smaller size and a corresponding next larger size, and wherein the third amount is substantially the same as the fourth amount.
  • 11. A system for knee arthroplasty comprising: a first family having a first plurality of femoral prostheses with different stock sizes from one another, each of the first plurality of femoral prostheses having:a first stem housing extending along a first axis; anda first medial condyle and a first lateral condyle coupled to the first stem housing;wherein the first medial condyle and the first lateral condyle have a first posterior condylar offset as measured from the first axis to a first posterior-most point of the first medial condyle and the first lateral condyle; andwherein the first medial condyle and the first lateral condyle have a first femoral medial-lateral condylar extent as measured from a medial-most edge of the first medial condyle to a lateral-most edge of the first lateral condyle;a second family having a second plurality of femoral prostheses with different stock sizes from one another, each of the second plurality of femoral prostheses having:a second stem housing extending along a second axis; anda second medial condyle and a second lateral condyle coupled to the second stem housing;wherein the second medial condyle and the second lateral condyle have a second posterior condylar offset as measured from the second axis to a second posterior-most point of the second medial condyle and the second lateral condyle; andwherein the second medial condyle and the second lateral condyle have a second femoral medial-lateral condylar extent as measured from a medial-most edge of the second medial condyle to a lateral-most edge of the second lateral condyle;wherein the first posterior condylar offset of at least one of the first plurality of femoral prostheses and the second posterior condylar offset of at least one of the second plurality of femoral prostheses are substantially the same or differ by a predetermined amount,wherein at least one of the first medial condyle and the first lateral condyle have a first thickness at a posterior portion between a first posterior bone-contacting surface and the first posterior-most point and at least one of the second medial condyle and the second lateral condyle have a second thickness at a corresponding posterior portion between a second posterior bone-contacting surface and the second posterior-most point, and wherein the first thickness differs from the second thickness by a first predetermined amount.
  • 12. The system of claim 11, wherein the first femoral medial-lateral condylar extent of the at least one of the first plurality of femoral prostheses and the second femoral medial-lateral condylar extent of the at least one of the second plurality of femoral prostheses differ by a second predetermined amount.
  • 13. The system of claim 11, wherein a third thickness of the at least one of the first medial condyle and the first lateral condyle as measured between a first posterior chamfer and an articular surface differs by a third predetermined amount from a fourth thickness of at least one of the second medial condyle and the second lateral condyle as measured between a corresponding second posterior chamfer and a corresponding articular surface.
  • 14. The system of claim 13, wherein an anterior bone-contacting surface of the at least one of the second plurality of femoral prostheses is disposed relatively nearer the second axis by a fourth predetermined amount than a corresponding anterior bone-contacting surface of the at least one of the first plurality of femoral prostheses.
  • 15. The system of claim 14, wherein one or both of the first predetermined amount and the second predetermined amount comprises substantially 3 mm, the third predetermined amount comprises substantially 1 ram and the fourth predetermined amount comprises substantially 1 mm.
  • 16. The system of claim 11, wherein the at least one of the first plurality of femoral prostheses and the at least one of the second plurality of femoral prostheses are configured to articulate with a same tibial bearing component.
  • 17. The system of claim 11, wherein the first posterior condylar offset of at least four of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least four of the second plurality of femoral prostheses.
  • 18. The system of claim 11, wherein the first posterior condylar offset of at least six of the first plurality of the femoral prostheses is substantially the same as the second posterior condylar offset of at least six of the second plurality of femoral prostheses.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 15/971,743, filed on May 4, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/505,322, filed on May 12, 2017, the benefit of priority of each of which is claimed hereby, and each of which is incorporated by reference herein in its entirety.

US Referenced Citations (505)
Number Name Date Kind
3774244 Walker Nov 1973 A
4016606 Murray et al. Apr 1977 A
4257129 Volz Mar 1981 A
4340978 Buechel et al. Jul 1982 A
4501266 McDaniel Feb 1985 A
4568348 Johnson et al. Feb 1986 A
4673408 Grobbelaar Jun 1987 A
4711639 Grundei Dec 1987 A
4714474 Brooks, Jr. et al. Dec 1987 A
4759767 Lacey Jul 1988 A
4769040 Wevers Sep 1988 A
4770661 Oh Sep 1988 A
4795468 Hodorek et al. Jan 1989 A
4822365 Walker et al. Apr 1989 A
4936853 Fabian et al. Jun 1990 A
4944756 Kenna Jul 1990 A
4944757 Martinez et al. Jul 1990 A
4950298 Gustilo et al. Aug 1990 A
4959071 Brown et al. Sep 1990 A
4963152 Hofmann et al. Oct 1990 A
5007933 Sidebotham et al. Apr 1991 A
5047057 Lawes Sep 1991 A
5047058 Roberts Sep 1991 A
5059216 Winters Oct 1991 A
5061271 Van Zile Oct 1991 A
5071438 Jones et al. Dec 1991 A
5108442 Smith Apr 1992 A
5116375 Hofmann May 1992 A
5133758 Hollister Jul 1992 A
5137536 Koshino Aug 1992 A
5147405 Van Zile Sep 1992 A
5171283 Pappas et al. Dec 1992 A
5192328 Winters Mar 1993 A
5194066 Van Zile Mar 1993 A
5197488 Kovacevic Mar 1993 A
5219362 Tuke et al. Jun 1993 A
5226915 Bertin Jul 1993 A
5236461 Forte Aug 1993 A
5246459 Elias Sep 1993 A
5271737 Baldwin et al. Dec 1993 A
5275603 Ferrante et al. Jan 1994 A
5282861 Kaplan Feb 1994 A
5282868 Bahler Feb 1994 A
5282870 Moser et al. Feb 1994 A
5290313 Heldreth Mar 1994 A
5310480 Vidueira May 1994 A
5326361 Hollister Jul 1994 A
5344460 Turanyi et al. Sep 1994 A
5344461 Phlipot Sep 1994 A
5360016 Kovacevic Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5370699 Hood et al. Dec 1994 A
5387239 Bianco et al. Feb 1995 A
5387240 Pottenger et al. Feb 1995 A
5395401 Bahler Mar 1995 A
5405396 Heldreth et al. Apr 1995 A
5413604 Hodge May 1995 A
5413605 Ashby et al. May 1995 A
5425775 Kovacevic et al. Jun 1995 A
5445642 McNulty et al. Aug 1995 A
5458637 Hayes Oct 1995 A
5470354 Hershberger et al. Nov 1995 A
5489311 Cipolletti Feb 1996 A
5507820 Pappas Apr 1996 A
5549688 Ries et al. Aug 1996 A
5556433 Gabriel et al. Sep 1996 A
5571194 Gabriel Nov 1996 A
5609639 Walker Mar 1997 A
5609641 Johnson et al. Mar 1997 A
5609643 Colleran et al. Mar 1997 A
5609645 Vinciuerra Mar 1997 A
5613970 Houston et al. Mar 1997 A
5656785 Trainor et al. Aug 1997 A
5658341 Delfosse Aug 1997 A
5658342 Draganich et al. Aug 1997 A
5658344 Hurlburt Aug 1997 A
5683470 Johnson et al. Nov 1997 A
5702463 Pothier et al. Dec 1997 A
5702464 Lackey et al. Dec 1997 A
5733292 Gustilo et al. Mar 1998 A
5755801 Walker et al. May 1998 A
5755802 Gerber May 1998 A
5776200 Johnson et al. Jul 1998 A
5782925 Collazo et al. Jul 1998 A
5824100 Kester et al. Oct 1998 A
5824102 Buscayret Oct 1998 A
5824103 Williams et al. Oct 1998 A
5871539 Pappas Feb 1999 A
5871541 Gerber Feb 1999 A
5871543 Hofmann Feb 1999 A
5871545 Goodfellow et al. Feb 1999 A
5879394 Ashby et al. Mar 1999 A
5906643 Walker May 1999 A
5911723 Ashby et al. Jun 1999 A
5928286 Ashby et al. Jul 1999 A
5964808 Blaha et al. Oct 1999 A
5968099 Badorf et al. Oct 1999 A
5976147 LaSalle et al. Nov 1999 A
6004351 Tomita et al. Dec 1999 A
6004352 Buni Dec 1999 A
6010534 O'neil et al. Jan 2000 A
6013103 Kaufman et al. Jan 2000 A
6039764 Pottenger et al. Mar 2000 A
6068658 Insall et al. May 2000 A
6074425 Pappas Jun 2000 A
6080195 Colleran et al. Jun 2000 A
6090144 Letot et al. Jul 2000 A
6102954 Albrektsson et al. Aug 2000 A
6102955 Mendes et al. Aug 2000 A
6123729 Insall et al. Sep 2000 A
6126692 Robie et al. Oct 2000 A
6143034 Burrows Nov 2000 A
6197064 Haines et al. Mar 2001 B1
6203576 Afriat et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6210443 Marceaux et al. Apr 2001 B1
6217618 Hileman Apr 2001 B1
RE37277 Baldwin et al. Jul 2001 E
6258127 Schmotzer Jul 2001 B1
6306172 O'Neil et al. Oct 2001 B1
6325828 Dennis et al. Dec 2001 B1
6379388 Ensign et al. Apr 2002 B1
6406497 Takei et al. Jun 2002 B2
6413279 Metzger et al. Jul 2002 B1
6428577 Evans Aug 2002 B1
6436145 Miller Aug 2002 B1
6491726 Pappas Dec 2002 B2
6506215 Letot et al. Jan 2003 B1
6506216 McCue et al. Jan 2003 B1
6558426 Masini May 2003 B1
6607559 Ralph et al. Aug 2003 B2
6623526 Lloyd Sep 2003 B1
6632225 Sanford et al. Oct 2003 B2
6660039 Evans et al. Dec 2003 B1
6702821 Bonutti Mar 2004 B2
6709461 O'neil et al. Mar 2004 B2
6743258 Keller Jun 2004 B1
6755864 Brack et al. Jun 2004 B1
6770078 Bonutti Aug 2004 B2
6869448 Tuke Mar 2005 B2
6923832 Sharkey et al. Aug 2005 B1
6942670 Heldreth et al. Sep 2005 B2
6953479 Carson et al. Oct 2005 B2
6974481 Carson Dec 2005 B1
6986791 Metzger Jan 2006 B1
7025788 Metzger et al. Apr 2006 B2
7060074 Rosa et al. Jun 2006 B2
7081137 Servidio Jul 2006 B1
7083652 McCue et al. Aug 2006 B2
7153326 Metzger Dec 2006 B1
7160330 Axelson, Jr. et al. Jan 2007 B2
7189262 Hayes, Jr. et al. Mar 2007 B2
7261740 Tuttle Aug 2007 B2
7264635 Suguro Sep 2007 B2
7294149 Hozack et al. Nov 2007 B2
7309362 Yasuda et al. Dec 2007 B2
7309363 Dietz Dec 2007 B2
7326252 Otto et al. Feb 2008 B2
7351263 Afriat Apr 2008 B2
7364581 Michalowicz Apr 2008 B2
7412897 Crottet et al. Aug 2008 B2
7413577 Servidio Aug 2008 B1
7442196 Fisher et al. Oct 2008 B2
7445639 Metzger et al. Nov 2008 B2
7488330 Stad Feb 2009 B2
7497874 Metzger et al. Mar 2009 B1
7513912 Hayes, Jr. et al. Apr 2009 B2
7544211 Rochetin Jun 2009 B2
7547327 Collazo Jun 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578821 Fisher et al. Aug 2009 B2
7585328 Haas Sep 2009 B2
7587945 Crottet et al. Sep 2009 B2
7591854 Wasielewski Sep 2009 B2
7625407 Akizuki Dec 2009 B2
7628818 Hazebrouck et al. Dec 2009 B2
7632283 Heldreth Dec 2009 B2
7632314 Dietz Dec 2009 B2
7635390 Bonutti Dec 2009 B1
7678152 Suguro et al. Mar 2010 B2
7695519 Collazo Apr 2010 B2
7695520 Metzger et al. Apr 2010 B2
7776085 Bernero et al. Aug 2010 B2
7837691 Cordes et al. Nov 2010 B2
7850698 Straszheim-Morley et al. Dec 2010 B2
8012216 Metzger Sep 2011 B2
8065927 Crottet et al. Nov 2011 B2
8141437 Amirouche et al. Mar 2012 B2
8163028 Metzger et al. Apr 2012 B2
8187280 May et al. May 2012 B2
8197549 Amirouche et al. Jun 2012 B2
8211041 Fisher et al. Jul 2012 B2
8245583 Stein Aug 2012 B2
8268006 Meyers et al. Sep 2012 B2
8317870 Wagner et al. Nov 2012 B2
8328873 Metzger et al. Dec 2012 B2
8366782 Wright Feb 2013 B2
8491589 Fisher et al. Jul 2013 B2
8506571 Chana et al. Aug 2013 B2
RE44476 Meyers et al. Sep 2013 E
8568486 Wentorf et al. Oct 2013 B2
8574304 Wentorf et al. Nov 2013 B2
8591594 Parisi et al. Nov 2013 B2
8603101 Claypool et al. Dec 2013 B2
8613775 Wentorf et al. Dec 2013 B2
8617250 Metzger Dec 2013 B2
8628580 Sanford et al. Jan 2014 B2
8690954 Parisi et al. Apr 2014 B2
8740984 Hartdegen et al. Jun 2014 B2
8758444 Wentorf et al. Jun 2014 B2
8764838 Parisi et al. Jul 2014 B2
8764840 Sanford et al. Jul 2014 B2
8795282 Earl et al. Aug 2014 B2
8808387 Hawkins et al. Aug 2014 B2
8858643 Parisi et al. Oct 2014 B2
8932298 Colquhoun et al. Jan 2015 B2
8932365 Parisi et al. Jan 2015 B2
8979847 Belcher et al. Mar 2015 B2
8979936 White et al. Mar 2015 B2
8998997 Ries et al. Apr 2015 B2
9011459 Claypool et al. Apr 2015 B2
9072607 Parisi et al. Jul 2015 B2
9131945 Aram et al. Sep 2015 B2
9149206 Claypool et al. Oct 2015 B2
9173744 Donno et al. Nov 2015 B2
9186255 Parisi Nov 2015 B2
9192480 Wentorf et al. Nov 2015 B2
9204970 Parisi et al. Dec 2015 B2
9283082 Sanford et al. Mar 2016 B2
9295557 Wentorf et al. Mar 2016 B2
9295558 Parisi et al. Mar 2016 B2
9308095 Parisi et al. Apr 2016 B2
9308096 Wentorf et al. Apr 2016 B2
9314343 Parisi et al. Apr 2016 B2
9381090 Wentorf et al. Jul 2016 B2
9427337 Claypool et al. Aug 2016 B2
9492290 Claypool et al. Nov 2016 B2
9539116 Claypool Jan 2017 B2
9592133 Toler et al. Mar 2017 B2
9597090 Claypool et al. Mar 2017 B2
9655728 Parisi et al. May 2017 B2
9655729 Parisi et al. May 2017 B2
9707089 Grey et al. Jul 2017 B2
9763794 Sanford et al. Sep 2017 B2
9763795 Parisi et al. Sep 2017 B2
9763796 Wentorf et al. Sep 2017 B2
9763807 Claypool et al. Sep 2017 B2
9788954 Parisi et al. Oct 2017 B2
9861490 Wentorf et al. Jan 2018 B2
9901331 Toler et al. Feb 2018 B2
9918844 Sanford et al. Mar 2018 B2
9925050 Parisi et al. Mar 2018 B2
9925052 Dai Mar 2018 B2
10010330 Claypool et al. Jul 2018 B2
10092407 Faccioli et al. Oct 2018 B2
10188530 Claypool et al. Jan 2019 B2
10195041 Wentorf et al. Feb 2019 B2
10265181 Wentorf et al. Apr 2019 B2
10278827 Drury et al. May 2019 B2
10413415 Parisi et al. Sep 2019 B2
10470889 Wentorf et al. Nov 2019 B2
10500054 Croll Dec 2019 B2
10543099 Sanford et al. Jan 2020 B2
10575956 Dai et al. Mar 2020 B2
10675153 Byrd et al. Jun 2020 B2
10835380 Drury et al. Nov 2020 B2
10898337 Parisi et al. Jan 2021 B2
11160659 Drury et al. Nov 2021 B2
20010004721 Wolf Nov 2001 A1
20020058997 O'connor et al. May 2002 A1
20020072802 O'Neil et al. Jun 2002 A1
20020120340 Metzger et al. Aug 2002 A1
20020161448 Hayes, Jr. et al. Oct 2002 A1
20030055509 Mccue et al. Mar 2003 A1
20030199985 Masini Oct 2003 A1
20040019382 Amirouche et al. Jan 2004 A1
20040019383 Beguec Jan 2004 A1
20040034432 Hughes et al. Feb 2004 A1
20040059340 Serra et al. Mar 2004 A1
20040064191 Wasielewski Apr 2004 A1
20040122441 Muratsu Jun 2004 A1
20040153066 Coon et al. Aug 2004 A1
20040162620 Wyss Aug 2004 A1
20040167537 Errico et al. Aug 2004 A1
20040186582 Yasuda et al. Sep 2004 A1
20040204765 Fenning et al. Oct 2004 A1
20040225368 Plumet et al. Nov 2004 A1
20040236429 Ensign et al. Nov 2004 A1
20040243244 Otto et al. Dec 2004 A1
20040267371 Hayes, Jr. et al. Dec 2004 A1
20050055102 Tornier et al. Mar 2005 A1
20050096747 Tuttle et al. May 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050143832 Carson Jun 2005 A1
20050177170 Fisher et al. Aug 2005 A1
20050019771 Naegerl Sep 2005 A1
20050209701 Suguro et al. Sep 2005 A1
20050209702 Todd et al. Sep 2005 A1
20050246030 Yao Nov 2005 A1
20050267485 Cordes et al. Dec 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20050278035 Wyss et al. Dec 2005 A1
20060004460 Engh et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060030945 Wright Feb 2006 A1
20060052782 Morgan et al. Mar 2006 A1
20060069436 Sutton et al. Mar 2006 A1
20060089653 Auger et al. Apr 2006 A1
20060142869 Gross Jun 2006 A1
20060161259 Cheng et al. Jul 2006 A1
20060184176 Straszheim-Morley et al. Aug 2006 A1
20060189864 Paradis et al. Aug 2006 A1
20060190087 O'Connor Aug 2006 A1
20060195195 Burstein et al. Aug 2006 A1
20060111726 Felt et al. Oct 2006 A1
20060224244 Thomas et al. Oct 2006 A1
20060265080 Mcminn Nov 2006 A1
20070010890 Collazo Jan 2007 A1
20070123992 Sanford May 2007 A1
20070129808 Justin et al. Jun 2007 A1
20070135924 Verhoogen Jun 2007 A1
20070135926 Walker Jun 2007 A1
20070185581 Akizuki et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070234819 Amirouche et al. Oct 2007 A1
20070239165 Amirouche Oct 2007 A1
20080021566 Peters et al. Jan 2008 A1
20080051908 Angibaud et al. Feb 2008 A1
20080058947 Earl et al. Mar 2008 A1
20080058948 Biegun et al. Mar 2008 A1
20080091271 Bonitati et al. Apr 2008 A1
20080091272 Aram et al. Apr 2008 A1
20080091273 Hazebrouck Apr 2008 A1
20080103603 Hintermann May 2008 A1
20080114462 Guidera et al. May 2008 A1
20080119938 Oh May 2008 A1
20080119940 Otto et al. May 2008 A1
20080140212 Metzger et al. Jun 2008 A1
20080161918 Fankhauser et al. Jul 2008 A1
20080167722 Metzger et al. Jul 2008 A1
20080215156 Duggal et al. Sep 2008 A1
20080243258 Sancheti Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080288080 Sancheti Nov 2008 A1
20080300689 Mc Kinnon et al. Dec 2008 A1
20080300690 Burstein et al. Dec 2008 A1
20090005708 Johanson et al. Jan 2009 A1
20090036992 Tsakonas Feb 2009 A1
20090043395 Hotokebuchi et al. Feb 2009 A1
20090062806 Scott et al. Mar 2009 A1
20090082873 Hazebrouck et al. Mar 2009 A1
20090088862 Thomas et al. Apr 2009 A1
20090125114 May et al. May 2009 A1
20090149963 Sekel Jun 2009 A1
20090149964 May et al. Jun 2009 A1
20090204221 Walker Aug 2009 A1
20090204222 Burstein et al. Aug 2009 A1
20090210066 Jasty Aug 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090259314 Linder-ganz et al. Oct 2009 A1
20090264894 Wasielewski Oct 2009 A1
20090265011 Mandell Oct 2009 A1
20090265013 Mandell Oct 2009 A1
20090028731 Fisher et al. Nov 2009 A1
20090306786 Samuelson Dec 2009 A1
20090306787 Crabtree et al. Dec 2009 A1
20090319047 Walker Dec 2009 A1
20090319048 Shah et al. Dec 2009 A1
20090319049 Shah et al. Dec 2009 A1
20090326663 Dun Dec 2009 A1
20090326665 Wyss et al. Dec 2009 A1
20090326666 Wyss et al. Dec 2009 A1
20090326668 Dun Dec 2009 A1
20100010494 Quirno Jan 2010 A1
20100016976 Siebel Jan 2010 A1
20100016977 Masini Jan 2010 A1
20100016978 Williams et al. Jan 2010 A1
20100016979 Wyss et al. Jan 2010 A1
20100036499 Pinskerova Feb 2010 A1
20100036500 Heldreth et al. Feb 2010 A1
20100063594 Hazebrouck et al. Mar 2010 A1
20100063595 Dietz Mar 2010 A1
20100076563 Otto et al. Mar 2010 A1
20100082111 Thomas Apr 2010 A1
20100100011 Roche Apr 2010 A1
20100100189 Metzger Apr 2010 A1
20100100191 May et al. Apr 2010 A1
20100125339 Earl et al. May 2010 A1
20100152858 Lu et al. Jun 2010 A1
20100191298 Earl et al. Jul 2010 A1
20100191341 Byrd Jul 2010 A1
20100198275 Chana et al. Aug 2010 A1
20100222890 Barnett et al. Sep 2010 A1
20100249660 Sherman et al. Sep 2010 A1
20100249789 Rock et al. Sep 2010 A1
20100262253 Cipolletti et al. Oct 2010 A1
20100286788 Komistek Nov 2010 A1
20100292804 Samuelson Nov 2010 A1
20100305708 Lang Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20110022179 Andriacchi et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110040387 Ries et al. Feb 2011 A1
20110066246 Ries et al. Mar 2011 A1
20110082558 Kim et al. Apr 2011 A1
20110082559 Hartdegen et al. Apr 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110098824 Jukes et al. Apr 2011 A1
20110100011 Staffend May 2011 A1
20110125278 Bercovy et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110153026 Heggendorn et al. Jun 2011 A1
20110190898 Lenz et al. Aug 2011 A1
20110202139 Metzger et al. Aug 2011 A1
20110251695 Lenz et al. Oct 2011 A1
20120022658 Wentorf Jan 2012 A1
20120022659 Wentorf Jan 2012 A1
20120022660 Wentorf Jan 2012 A1
20120035735 Sanford et al. Feb 2012 A1
20120035737 Sanford Feb 2012 A1
20120095563 Sanford et al. Apr 2012 A1
20120101585 Parisi et al. Apr 2012 A1
20120158152 Claypool et al. Jun 2012 A1
20120179069 Amirouche Jul 2012 A1
20120185054 Maloney et al. Jul 2012 A1
20120185055 Maloney et al. Jul 2012 A1
20120232429 Fischer et al. Sep 2012 A1
20120290088 Amirouche et al. Nov 2012 A1
20120296437 Wyss et al. Nov 2012 A1
20120310246 Belcher et al. Dec 2012 A1
20120310361 Zubok et al. Dec 2012 A1
20120323335 Parisi et al. Dec 2012 A1
20120323336 Parisi et al. Dec 2012 A1
20130013076 Fisher et al. Jan 2013 A1
20130024001 Wentorf et al. Jan 2013 A1
20130079671 Stein et al. Mar 2013 A1
20130096567 Fisher et al. Apr 2013 A1
20130102929 Haight et al. Apr 2013 A1
20130103038 Fischer et al. Apr 2013 A1
20130131816 Parisi et al. May 2013 A1
20130131817 Parisi et al. May 2013 A1
20130131818 Parisi et al. May 2013 A1
20130131819 Parisi et al. May 2013 A1
20130131820 Wentorf et al. May 2013 A1
20130017301 Irwin Jul 2013 A1
20130226305 Donno et al. Aug 2013 A1
20130253378 Claypool et al. Sep 2013 A1
20130261504 Claypool et al. Oct 2013 A1
20130261757 Claypool et al. Oct 2013 A1
20130261758 Claypool et al. Oct 2013 A1
20130345820 Maloney et al. Dec 2013 A1
20140025175 Wentorf et al. Jan 2014 A1
20140025176 Wentorf Jan 2014 A1
20140025177 Wentorf et al. Jan 2014 A1
20140052268 Sanford et al. Feb 2014 A1
20140052269 Claypool et al. Feb 2014 A1
20140156015 Parisi et al. Jun 2014 A1
20140163687 Parisi et al. Jun 2014 A1
20140249641 Wentorf et al. Sep 2014 A1
20140257505 Parisi et al. Sep 2014 A1
20140257506 Sanford et al. Sep 2014 A1
20140296859 Claypool et al. Oct 2014 A1
20150005890 Parisi et al. Jan 2015 A1
20150025644 Heggendorn et al. Jan 2015 A1
20150066150 Dai et al. Mar 2015 A1
20150088140 Toler et al. Mar 2015 A1
20150190243 Claypool et al. Jul 2015 A1
20150282936 Parisi et al. Oct 2015 A1
20150320564 Parisi et al. Nov 2015 A1
20150359642 Claypool et al. Dec 2015 A1
20160030053 Yager et al. Feb 2016 A1
20160038294 Parisi et al. Feb 2016 A1
20160045322 Parisi et al. Feb 2016 A1
20160135959 Sanford et al. May 2016 A1
20160158019 Grey et al. Jun 2016 A1
20160184107 Parisi et al. Jun 2016 A1
20160287397 Wentorf Oct 2016 A1
20160324647 Claypool et al. Nov 2016 A1
20170079801 Drury et al. Mar 2017 A1
20170143324 Toler et al. May 2017 A1
20170156736 Claypool et al. Jun 2017 A1
20170231773 Lu Aug 2017 A1
20170266011 Wentorf et al. Sep 2017 A1
20170281354 Soffiatti et al. Oct 2017 A1
20180000601 Sanford et al. Jan 2018 A1
20180000602 Wentorf et al. Jan 2018 A1
20180000612 Claypool et al. Jan 2018 A1
20180021143 Parisi et al. Jan 2018 A1
20180021144 Parisi et al. Jan 2018 A1
20180085225 Wentorf et al. Mar 2018 A1
20180161166 Dai et al. Jun 2018 A1
20180256346 Byrd et al. Sep 2018 A1
20180325684 Croll Nov 2018 A1
20190142594 Yager May 2019 A1
20190209333 Drury et al. Jul 2019 A1
20190328535 Drury et al. Oct 2019 A1
20190350718 Parisi et al. Nov 2019 A1
20200030106 Wentorf et al. Jan 2020 A1
20200113702 Sanford et al. Apr 2020 A1
20200146830 Dai et al. May 2020 A1
20200237518 Byrd et al. Jul 2020 A1
20210022875 Drury et al. Jan 2021 A1
20210113340 Parisi et al. Apr 2021 A1
Foreign Referenced Citations (229)
Number Date Country
2011343440 Apr 2014 AU
2011286306 Oct 2014 AU
2190029 Nov 1995 CA
2856070 Jul 2016 CA
687584 Jan 1997 CH
1087506 Jun 1994 CN
1174498 Feb 1998 CN
1179709 Apr 1998 CN
1440262 Sep 2003 CN
1549695 Nov 2004 CN
2768715 Apr 2006 CN
1780594 May 2006 CN
1874738 Dec 2006 CN
101214175 Jul 2008 CN
101222886 Jul 2008 CN
101288597 Oct 2008 CN
101347359 Jan 2009 CN
201175391 Jan 2009 CN
101361684 Feb 2009 CN
101401750 Apr 2009 CN
101426453 May 2009 CN
101522136 Sep 2009 CN
101646392 Feb 2010 CN
101658446 Mar 2010 CN
101683289 Mar 2010 CN
101711701 May 2010 CN
101795643 Aug 2010 CN
101835441 Sep 2010 CN
102018584 Apr 2011 CN
102048594 May 2011 CN
102058446 May 2011 CN
102058448 May 2011 CN
102917670 Feb 2013 CN
103118634 May 2013 CN
103118635 May 2013 CN
103118636 May 2013 CN
103370025 Oct 2013 CN
103379880 Oct 2013 CN
103732186 Apr 2014 CN
104039273 Sep 2014 CN
104066402 Sep 2014 CN
104093380 Oct 2014 CN
104135969 Nov 2014 CN
104203160 Dec 2014 CN
104321263 Jan 2015 CN
104379094 Feb 2015 CN
104736105 Jun 2015 CN
105055052 Nov 2015 CN
105167889 Dec 2015 CN
103118634 Aug 2016 CN
103118636 Aug 2016 CN
104093380 Aug 2016 CN
103370025 Nov 2016 CN
106073949 Nov 2016 CN
106214292 Dec 2016 CN
108135701 Jun 2018 CN
106073949 Dec 2018 CN
109310504 Feb 2019 CN
110022798 Jul 2019 CN
110402123 Nov 2019 CN
113317912 Aug 2021 CN
0021421 Jan 1981 EP
0303467 Feb 1989 EP
0327495 Aug 1989 EP
0340919 Nov 1989 EP
340919 Nov 1989 EP
0372811 Jun 1990 EP
0306744 Apr 1992 EP
0495340 Jul 1992 EP
0636353 Feb 1995 EP
0672397 Sep 1995 EP
0552950 Sep 1996 EP
0536457 Jan 1997 EP
0642328 Dec 1998 EP
0592750 Jan 1999 EP
0903125 Mar 1999 EP
0956836 Nov 1999 EP
0956836 Nov 1999 EP
1025818 Aug 2000 EP
1097679 May 2001 EP
0709074 Dec 2002 EP
1327424 Jul 2003 EP
1378216 Jan 2004 EP
1477143 Nov 2004 EP
1568336 Aug 2005 EP
1719478 Nov 2006 EP
1722721 Nov 2006 EP
1354571 Jun 2007 EP
1396240 Apr 2008 EP
1604623 Jun 2008 EP
1996122 Dec 2008 EP
0927009 Jan 2009 EP
2011455 Jan 2009 EP
1696835 Feb 2009 EP
1132063 Sep 2009 EP
1591082 Sep 2009 EP
2140838 Jan 2010 EP
2140839 Jan 2010 EP
2143403 Jan 2010 EP
2237177 Oct 2010 EP
1555962 Feb 2011 EP
2319460 May 2011 EP
2324799 May 2011 EP
2335654 Jun 2011 EP
2347733 Jul 2011 EP
0689808 Sep 2012 EP
2595573 May 2013 EP
2782525 Oct 2014 EP
2830543 Feb 2015 EP
2830544 Feb 2015 EP
2830544 Sep 2016 EP
2918235 Jan 2017 EP
3143964 Mar 2017 EP
2595574 May 2017 EP
3111894 Dec 2018 EP
2728782 Jul 1996 FR
2736819 Jan 1997 FR
2747914 Oct 1997 FR
2778332 Nov 1999 FR
2788964 Aug 2000 FR
2824260 Nov 2002 FR
2852819 Oct 2004 FR
2926719 Jul 2009 FR
225347 Dec 1924 GB
2253147 Sep 1992 GB
2345446 Jul 2000 GB
7145DELNP2014 Apr 2015 IN
61247449 Nov 1986 JP
62270153 Nov 1987 JP
06203576 Jul 1994 JP
09289998 Nov 1997 JP
09511668 Nov 1997 JP
2000000255 Jan 2000 JP
2000245758 Sep 2000 JP
2003516183 May 2003 JP
2004166802 Jun 2004 JP
2004254811 Sep 2004 JP
3734270 Jan 2006 JP
2007054488 Mar 2007 JP
2007509709 Apr 2007 JP
2007222616 Sep 2007 JP
2009082713 Apr 2009 JP
2009245619 Oct 2009 JP
2010022827 Feb 2010 JP
2010188051 Sep 2010 JP
2010240406 Oct 2010 JP
2010259808 Nov 2010 JP
2011092738 May 2011 JP
2012500667 Jan 2012 JP
2012531265 Dec 2012 JP
2015512307 Apr 2013 JP
2013535276 Sep 2013 JP
2013536005 Sep 2013 JP
2013536006 Sep 2013 JP
2013536007 Sep 2013 JP
2014505517 Mar 2014 JP
2014508554 Apr 2014 JP
2014522292 Sep 2014 JP
2014239900 Dec 2014 JP
2015502203 Jan 2015 JP
2015504333 Feb 2015 JP
2015504759 Feb 2015 JP
2015513966 May 2015 JP
2015231566 Dec 2015 JP
2016028729 Mar 2016 JP
5980341 Aug 2016 JP
2016195841 Nov 2016 JP
2017221732 Dec 2017 JP
2021142355 Sep 2021 JP
WO-9305729 Apr 1993 WO
WO-9409725 May 1994 WO
WO-9514444 Jun 1995 WO
WO-9514446 Jun 1995 WO
WO-9530389 Nov 1995 WO
WO-9535074 Dec 1995 WO
WO-9934755 Jul 1999 WO
WO-0141680 Jun 2001 WO
WO-200141680 Jun 2001 WO
WO-03099106 Dec 2003 WO
WO-2004058108 Jul 2004 WO
WO-2005037147 Apr 2005 WO
WO-2005051240 Jun 2005 WO
WO-2005122967 Dec 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006092167 Sep 2006 WO
WO-2007108804 Sep 2007 WO
WO-2007109641 Sep 2007 WO
WO-2007119173 Oct 2007 WO
WO-2009029631 Mar 2009 WO
WO-2009088235 Jul 2009 WO
WO-2009088236 Jul 2009 WO
WO-2009088238 Jul 2009 WO
WO-2009105495 Aug 2009 WO
WO-2010001010 Jan 2010 WO
WO-2010008803 Jan 2010 WO
WO-2010011590 Jan 2010 WO
WO-2010022272 Feb 2010 WO
WO-2010023062 Mar 2010 WO
WO-2010045537 Apr 2010 WO
WO-2010075365 Jul 2010 WO
WO-2011043955 Apr 2011 WO
WO-2011063123 May 2011 WO
WO-201 1072235 Jun 2011 WO
WO-2011071979 Jun 2011 WO
WO-2011110865 Sep 2011 WO
WO-2012004580 Jan 2012 WO
WO-2012018563 Feb 2012 WO
WO-2012018564 Feb 2012 WO
WO-2012018565 Feb 2012 WO
WO-2012018566 Feb 2012 WO
WO-2012018567 Feb 2012 WO
WO-2012020460 Feb 2012 WO
WO-2012082628 Jun 2012 WO
WO-2012083280 Jun 2012 WO
WO-2012112698 Aug 2012 WO
WO-2012173706 Dec 2012 WO
WO-2013003433 Jan 2013 WO
WO-2013013094 Jan 2013 WO
WO-2013074142 May 2013 WO
WO-2013074143 May 2013 WO
WO-2013074144 May 2013 WO
WO-2013074145 May 2013 WO
WO-2013077919 May 2013 WO
WO-2013115849 Aug 2013 WO
WO-2013148954 Oct 2013 WO
WO-2013148960 Oct 2013 WO
WO-2017053196 Mar 2017 WO
WO-2018165442 Sep 2018 WO
WO-2018208612 Nov 2018 WO
Non-Patent Literature Citations (883)
Entry
“U.S. Appl. No. 15/971,743, Notice of Allowance dated Aug. 6, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/031177, International Search Report dated Jul. 31, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/031177, Written Opinion dated Jul. 31, 2018”, 6 pgs.
“U.S. Appl. No. 13/087,610, Non Final Office Action dated Feb. 26, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Jun. 28, 2013”, 6 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Oct. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Response filed May 24, 2013 to Non Final Office Action dated Feb. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/189,324, Examiner Interview Summary dated Jan. 13, 2014”, 4 pgs.
“U.S. Appl. No. 13/189,324, Final Office Action dated Jul. 16, 2013”, 19 pgs.
“U.S. Appl. No. 13/189,324, Non Final Office Action dated Dec. 11, 2012”, 19 pgs.
“U.S. Appl. No. 13/189,324, Notice of Allowance dated Feb. 20, 2014”, 8 pgs.
“U.S. Appl. No. 13/189,324, PTO Response to 312 Amendment dated May 29, 2014”, 2 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jan. 15, 2014 to Final Office Action dated Jul. 16, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jun. 10, 2013 to Non Final Office Action dated Dec. 11, 2012”, 24 pgs.
“U.S. Appl. No. 13/189,328, Non Final Office Action dated Mar. 19, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,328, Notice of Allowance dated Oct. 8, 2013”, 12 pgs.
“U.S. Appl. No. 13/189,328, PTO Response to 312 Amendment dated Dec. 13, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jan. 10, 2013 to Restriction Requirement dated Dec. 10, 2012”, 9 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jul. 18, 2013 to Non Final Office Action dated Mar. 19, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,328, Restriction Requirement dated Dec. 10, 2012”, 6 pgs.
“U.S. Appl. No. 13/189,336, Notice of Allowance dated Sep. 13, 2013”, 30 pgs.
“U.S. Appl. No. 13/189,336, PTO Response to 312 Amendment dated Nov. 25, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,336, Response filed Apr. 15, 2013 to Restriction Requirement dated Jan. 30, 2013”, 21 pgs.
“U.S. Appl. No. 13/189,336, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 20 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jan. 30, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,338, Notice of Allowance dated Sep. 23, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,338, Response filed Apr. 15, 2013 to Restriction Requirement dated Feb. 14, 2013”, 18 pgs.
“U.S. Appl. No. 13/189,338, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Feb. 14, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Notice of Allowance dated Sep. 20, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,339, Response filed Apr. 15, 2013 to Restriction Requirement dated Mar. 6, 2013”, 11 pgs.
“U.S. Appl. No. 13/189,339, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Jun. 17, 2013”, 7 pgs.
“U.S. Appl. No. 13/229,103, Applicant Interview Summary dated Sep. 23, 2013”, 2 pgs.
“U.S. Appl. No. 13/229,103, Examiner Interview Summary dated Sep. 13, 2013”, 3 pgs.
“U.S. Appl. No. 13/229,103, Non Final Office Action dated Apr. 1, 2013”, 18 pgs.
“U.S. Appl. No. 13/229,103, Notice of Allowance dated Sep. 18, 2013”, 9 pgs.
“U.S. Appl. No. 13/229,103, Response filed Jul. 1, 2013 to Non Final Office Action dated Apr. 1, 2013”, 19 pgs.
“U.S. Appl. No. 13/229,103, Supplemental Notice of Allowability dated Oct. 18, 2013”, 2 pgs.
“U.S. Appl. No. 13/459,037, Final Office Action dated Sep. 23, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Non Final Office Action dated Apr. 23, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,037, Notice of Allowance dated Jun. 13, 2014”, 9 pgs.
“U.S. Appl. No. 13/459,037, Preliminary Amendment filed Apr. 27, 2012”, 3 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 21, 2014 to Final Office Action dated Sep. 23, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 28, 2013 to Restriction Requirement dated Feb. 26, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Response filed Jul. 23, 2013 to Non Final Office Action dated Apr. 23, 2013”, 19 pgs.
“U.S. Appl. No. 13/459,037, Restriction Requirement dated Feb. 26, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Jan. 15, 2014”, 16 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Sep. 9, 2014”, 14 pgs.
“U.S. Appl. No. 13/459,041, Notice of Allowance dated Apr. 2, 2015”, 10 pgs.
“U.S. Appl. No. 13/459,041, Preliminary Amendment dated Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,041, PTO Response to Rule 312 Communication dated Jun. 9, 2015”, 2 pgs.
“U.S. Appl. No. 13/459,041, Response filed May 15, 2014 to Non-Final Office Action dated Jan. 15, 2014”, 24 pgs.
“U.S. Appl. No. 13/459,041, Response filed Sep. 23, 2013 to Restriction Requirement dated Jul. 25, 2013”, 18 pgs.
“U.S. Appl. No. 13/459,041, Response filed Dec. 9, 2014 to Non-Final Office Action dated Sep. 9, 2014”, 23 pgs.
“U.S. Appl. No. 13/459,041, Restriction Requirement dated Jul. 25, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,048, Non Final Office Action dated Jul. 11, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,048, Notice of Allowance dated Nov. 26, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,048, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,048, Response filed Nov. 11, 2013 to Non-Final Office Action dated Jul. 11, 2013”, 16 pgs.
“U.S. Appl. No. 13/459,056, Examiner Interview Summary dated Dec. 26, 2013”, 3 pgs.
“U.S. Appl. No. 13/459,056, Non Final Office Action dated Jul. 25, 2013”, 11 pgs.
“U.S. Appl. No. 13/459,056, Notice of Allowance dated Feb. 20, 2014”, 5 pgs.
“U.S. Appl. No. 13/459,056, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,056, PTO Response to Rule 312 Communication dated May 22, 2014”, 2 pgs.
“U.S. Appl. No. 13/459,056, Response filed Jan. 24, 2014 to Non-Final office Action dated Jul. 25, 2013”, 27 pgs.
“U.S. Appl. No. 13/459,056, Response filed Apr. 8, 2013 to Restriction Requirement dated Mar. 6, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,056, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/593,339, Non Final Office Action dated Oct. 4, 2013”, 7 pgs.
“U.S. Appl. No. 13/593,339, Notice of Allowance dated Feb. 14, 2014”, 9 pgs.
“U.S. Appl. No. 13/593,339, Preliminary Amendment filed Aug. 23, 2012”, 6 pgs.
“U.S. Appl. No. 13/593,339, Response filed Jan. 31, 2014 to Non-Final Office Action dated Oct. 4, 2013”, 19 pgs.
“U.S. Appl. No. 13/593,339, Response filed Aug. 30, 2013 to Restriction Requirement dated Aug. 1, 2013”, 14 pgs.
“U.S. Appl. No. 13/593,339, Restriction Requirement dated Aug. 1, 2013”, 5 pgs.
“U.S. Appl. No. 13/593,339, Supplemental Notice of Allowability dated Mar. 31, 2014”, 2 pgs.
“U.S. Appl. No. 13/594,543, Corrected Notice of Allowance dated Mar. 16, 2016”, 2 pgs.
“U.S. Appl. No. 13/594,543, Examiner Interview Summary dated Jan. 22, 2016”, 3 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Jul. 17, 2014”, 12 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Nov. 20, 2015”, 28 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Jun. 19, 2015”, 30 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Dec. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/594,543, Non-Final Office Action dated Jan. 9, 2015”, 23 pgs.
“U.S. Appl. No. 13/594,543, Notice of Allowance dated Mar. 1, 2016”, 9 pgs.
“U.S. Appl. No. 13/594,543, Preliminary Amendment filed Aug. 24, 2012”, 4 pgs.
“U.S. Appl. No. 13/594,543, Response filed Feb. 8, 2016 to Final Office Action dated Nov. 20, 2015”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Apr. 7, 2015 to Non-Final Office Action dated Jan. 9, 2015”, 27 pgs.
“U.S. Appl. No. 13/594,543, Response filed May 7, 2014 to Non-Final office Action dated Dec. 26, 2013”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Sep. 21, 2015 to Non-Final Office Action dated Jun. 19, 2015”, 25 pgs.
“U.S. Appl. No. 13/594,543, Response filed Oct. 11, 2013 to Restriction Requirement dated Sep. 12, 2013”, 8 pgs.
“U.S. Appl. No. 13/594,543, Response filed Dec. 17, 2014 to Final Office Action dated Jul. 17, 2014”, 15 pgs.
“U.S. Appl. No. 13/594,543, Restriction Requirement dated Sep. 12, 2013”, 5 pgs.
“U.S. Appl. No. 13/819,116, Advisory Action dated Jan. 5, 2016”, 3 pgs.
“U.S. Appl. No. 13/819,116, Corrected Notice of Allowance dated Oct. 21, 2016”, 2 pgs.
“U.S. Appl. No. 13/819,116, Examiner Interview Summary dated Apr. 18, 2016”, 11 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Jul. 26, 2016”, 6 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Oct. 21, 2015”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Feb. 17, 2016”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Jun. 2, 2015”, 14 pgs.
“U.S. Appl. No. 13/819,116, Notice of Allowance dated Sep. 29, 2016”, 5 pgs.
“U.S. Appl. No. 13/819,116, Preliminary Amendment filed Feb. 26, 2013”, 8 pgs.
“U.S. Appl. No. 13/819,116, Response filed Mar. 27, 2015 to Restriction Requirement dated Feb. 12, 2015”, 11 pgs.
“U.S. Appl. No. 13/819,116, Response filed Apr. 29, 2016 to Non Final Office Action dated Feb. 17, 2016”, 17 pgs.
“U.S. Appl. No. 13/819,116, Response filed Jul. 16, 2015 to Non Final Office Action dated Jun. 2, 2015”, 22 pgs.
“U.S. Appl. No. 13/819,116, Response filed Sep. 14, 2016 Final Office Action dated Jul. 26, 2016”, 10 pgs.
“U.S. Appl. No. 13/819,116, Response filed Dec. 15, 2015 to Final Office Action dated Oct. 21, 2015”, 16 pgs.
“U.S. Appl. No. 13/819,116, Restriction Requirement dated Feb. 12, 2015”, 7 pgs.
“U.S. Appl. No. 13/836,586, Express Abandonment filed May 30, 2014”, 1 pg.
“U.S. Appl. No. 13/836,665, Examiner Interview Summary dated Jul. 17, 2014”, 4 pgs.
“U.S. Appl. No. 13/836,665, Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Non Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/836,665, Notice of Allowance dated Jun. 9, 2015”, 10 pgs.
“U.S. Appl. No. 13/836,665, Response filed Jan. 23, 2015 to Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Response filed May 30, 2014 to Non-Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Apr. 25, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Non Final Office Action dated Dec. 10, 2015”, 8 pgs.
“U.S. Appl. No. 13/837,294, Notice of Allowance dated Aug. 25, 2016”, 5 pgs.
“U.S. Appl. No. 13/837,294, Response filed Mar. 4, 2016 to Non Final Office Action dated Dec. 10, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,294, Response filed Aug. 3, 2016 to Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Response filed Oct. 12, 2015 to Restriction Requirement dated Aug. 24, 2015”, 9 pgs.
“U.S. Appl. No. 13/837,294, Restriction Requirement dated Aug. 24, 2015”, 6 pgs.
“U.S. Appl. No. 13/837,774, Examiner Interview Summary dated Jul. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Mar. 17, 2016”, 14 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Jul. 28, 2014”, 17 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Feb. 10, 2014”, 33 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Sep. 18, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jan. 28, 2015 to Final Office Action dated Jul. 28, 2014”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jun. 10, 2014 to Non-Final Office Action dated Feb. 20, 2014”, 29 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jul. 7, 2015 to Restriction Requirement dated May 20, 2015”, 10 pgs.
“U.S. Appl. No. 13/837,774, Response filed Dec. 16, 2015 to Non Final Office Action dated Sep. 18, 2015”, 17 pgs.
“U.S. Appl. No. 13/837,774, Restriction Requirement dated May 20, 2015”, 6 pgs.
“U.S. Appl. No. 14/034,076, Appeal Brief Filed Apr. 18, 2016”, 21 pgs.
“U.S. Appl. No. 14/034,076, Final Office Action dated Dec. 21, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Non Final Office Action dated Jun. 24, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Notice of Allowance dated Oct. 28, 2016”, 7 pgs.
“U.S. Appl. No. 14/034,076, Response filed Nov. 16, 2015 to Non Final Office Action dated Jun. 24, 2015”, 13 pgs.
“U.S. Appl. No. 14/034,937, Appeal Brief Filed Sep. 9, 2015”, 41 pgs.
“U.S. Appl. No. 14/034,937, Appeal Decision mailed May 30, 2017”, 34 pgs.
“U.S. Appl. No. 14/034,937, Final Office Action dated Jun. 5, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,937, Non Final Office Action dated Jan. 2, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,937, Notice of Allowance dated Aug. 30, 2017”, 14 pgs.
“U.S. Appl. No. 14/034,937, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,937, PTO Response to Rule 312 Communication dated Oct. 10, 2017”, 2 pgs.
“U.S. Appl. No. 14/034,937, Response filed Mar. 30, 2015 to Non-Final Office Action”, 24 pgs.
“U.S. Appl. No. 14/034,937, Response filed Oct. 27, 2014 to Restriction Requirement dated Sep. 11, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,937, Restriction Requirement dated Sep. 11, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,937, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,944, Non Final Office Action dated Mar. 3, 2015”, 16 pgs.
“U.S. Appl. No. 14/034,944, Notice of Allowance dated Aug. 28, 2015”, 7 pgs.
“U.S. Appl. No. 14/034,944, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,944, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 3, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,944, Response filed Dec. 15, 2014 to Restriction Requirement dated Oct. 14, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,944, Restriction Requirement dated Oct. 14, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,944, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,954, Advisory Action dated Aug. 25, 2015”, 3 pgs.
“U.S. Appl. No. 14/034,954, Final Office Action dated Jun. 1, 2015”, 26 pgs.
“U.S. Appl. No. 14/034,954, Non Final Office Action dated Dec. 19, 2014”, 25 pgs.
“U.S. Appl. No. 14/034,954, Notice of Allowance dated Nov. 20, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,954, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,954, Response filed Mar. 17, 2015 to Non Final Office Action dated Dec. 19, 2014”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 3, 2015 to Final Office Action dated Jun. 1, 2015”, 19 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 31, 2015 to Advisory Action dated Aug. 25, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Oct. 27, 2014 to Restriction Requirement dated Aug. 25, 2014”, 11 pgs.
“U.S. Appl. No. 14/034,954, Restriction Requirement dated Aug. 25, 2014”, 7 pgs.
“U.S. Appl. No. 14/034,954, Supplemental Preliminary Amendment filed Oct. 25, 2013”, 8 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Apr. 13, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Oct. 13, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Jul. 1, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Nov. 21, 2014”, 19 pgs.
“U.S. Appl. No. 14/034,963, Notice of Allowance dated Dec. 18, 2015”, 5 pgs.
“U.S. Appl. No. 14/034,963, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,963, Response filed Mar. 20, 2015 to Non-Final Office Action dated Nov. 21, 2014”, 20 pgs.
“U.S. Appl. No. 14/034,963, Response filed Jun. 19, 2015 to Final Office Action dated Apr. 13, 2015”, 17 pgs.
“U.S. Appl. No. 14/034,963, Response filed Sep. 30, 2015 to Non Final Office Action dated Jul. 1, 2015”, 14 pgs.
“U.S. Appl. No. 14/034,963, Response filed Nov. 20, 2015 to Final Office Action dated Oct. 13, 2015”, 12 pgs.
“U.S. Appl. No. 14/063,032, Non Final Office Action dated Jun. 20, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Notice of Allowance dated Dec. 19, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,032, Response filed Oct. 20, 2014 to Non-Final Office Action dated Jun. 20, 2014”, 9 pgs.
“U.S. Appl. No. 14/063,593, Advisory Action dated Aug. 19, 2016”, 3 pgs.
“U.S. Appl. No. 14/063,593, Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Jan. 25, 2016”, 9 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Nov. 30, 2016”, 12 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 2, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 25, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,593, Response filed Jan. 4, 2016 to Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/063,593, Response filed Feb. 24, 2017 to Non Final Office Action dated Nov. 30, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Apr. 20, 2016 to Non Final Office Action dated Jan. 25, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Aug. 11, 2016 to Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/181,033, Non Final Office Action dated May 1, 2015”, 5 pgs.
“U.S. Appl. No. 14/181,033, Notice of Allowance dated Jul. 17, 2015”, 10 pgs.
“U.S. Appl. No. 14/181,033, Response filed Jun. 22, 2015 to Non-Final Office Action dated May 1, 2015”, 11 pgs.
“U.S. Appl. No. 14/278,805, Notice of Allowance dated Dec. 1, 2015”, 8 pgs.
“U.S. Appl. No. 14/278,805, Supplemental Notice of Allowability dated Jan. 21, 2016”, 2 pgs.
“U.S. Appl. No. 14/284,028, Non Final Office Action dated Jul. 7, 2015”, 17 pgs.
“U.S. Appl. No. 14/284,028, Notice of Allowance dated Nov. 6, 2015”, 5 pgs.
“U.S. Appl. No. 14/284,028, Response filed Oct. 6, 2015 to Non Final Office Action dated Jul. 7, 2015”, 15 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Notice of Allowability dated Feb. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Preliminary Amendment filed Jul. 8, 2014”, 13 pgs.
“U.S. Appl. No. 14/284,144, Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Non Final Office Action dated Mar. 25, 2015”, 26 pgs.
“U.S. Appl. No. 14/284,144, Notice of Allowance dated Oct. 29, 2015”, 8 pgs.
“U.S. Appl. No. 14/284,144, Preliminary Amendment filed May 21, 2014”, 3 pgs.
“U.S. Appl. No. 14/284,144, Response filed Oct. 9, 2015 to Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 25, 2015”, 22 pgs.
“U.S. Appl. No. 14/284,144, Supplemental Preliminary Amendment filed Jul. 3, 2014”, 10 pgs.
“U.S. Appl. No. 14/304,009, Notice of Allowance dated Nov. 16, 2016”, 7 pgs.
“U.S. Appl. No. 14/304,009, Preliminary Amendment Filed Jul. 31, 2014”, 7 pgs.
“U.S. Appl. No. 14/471,440, Notice of Allowance dated Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/471,440, Response filed Aug. 16, 2017 to Restriction Requirement dated Jun. 30, 2017”, 8 pgs.
“U.S. Appl. No. 14/471,440, Restriction Requirement dated Jun. 30, 2017”, 6 pgs.
“U.S. Appl. No. 14/490,153, Final Office Action dated Apr. 15, 2015”, 18 pgs.
“U.S. Appl. No. 14/490,153, Non Final Office Action dated Nov. 12, 2014”, 9 pgs.
“U.S. Appl. No. 14/490,153, Notice of Allowance dated Aug. 14, 2015”, 10 pgs.
“U.S. Appl. No. 14/490,153, Preliminary Amendment filed Sep. 18, 2014”, 3 pgs.
“U.S. Appl. No. 14/490,153, Response filed Feb. 18, 2015 to Non-Final Office Action dated Nov. 12, 2014”, 14 pgs.
“U.S. Appl. No. 14/490,153, Response filed Jul. 7, 2015 to Final Office Action dated Apr. 15, 2015”, 14 pgs.
“U.S. Appl. No. 14/660,217, Corrected Notice of Allowance dated May 26, 2016”, 3 pgs.
“U.S. Appl. No. 14/660,217, Non Final Office Action dated Dec. 17, 2015”, 8 pgs.
“U.S. Appl. No. 14/660,217, Notice of Allowance dated Apr. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/660,217, Preliminary Amendment filed Mar. 18, 2015”, 9 pgs.
“U.S. Appl. No. 14/660,217, Response filed Mar. 23, 2016 to Non Final Office Action dated Dec. 17, 2015”, 14 pgs.
“U.S. Appl. No. 14/740,690, Non Final Office Action dated Dec. 7, 2016”, 19 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowability dated Aug. 29, 2017”, 2 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowance dated Jun. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/740,690, Response filed Mar. 3, 2017 to Non Final Office Action dated Dec. 7, 2016”, 14 pgs.
“U.S. Appl. No. 14/791,952, Corrected Notice of Allowance dated Jul. 21, 2017”, 2 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Mar. 31, 2017”, 8 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Sep. 1, 2016”, 17 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Apr. 21, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Notice of Allowance dated May 30, 2017”, 7 pgs.
“U.S. Appl. No. 14/791,952, Preliminary Amendment filed Jul. 7, 2015”, 7 pgs.
“U.S. Appl. No. 14/791,952, Response filed Mar. 20, 2017 to Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Response filed May 17, 2017-to Final Office Action dated Mar. 31, 2017”, 10 pgs.
“U.S. Appl. No. 14/791,952, Response filed Jul. 15, 2016 to Non Final Office Action dated Apr. 21, 2016”, 18 pgs.
“U.S. Appl. No. 14/791,952, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 1, 2016”, 15 pgs.
“U.S. Appl. No. 14/833,385, Examiner Interview Summary dated Dec. 27, 2017”, 3 pgs.
“U.S. Appl. No. 14/833,385, Final Office Action dated Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/833,385, Non Final Office Action dated Jun. 19, 2017”, 10 pgs.
“U.S. Appl. No. 14/833,385, Preliminary Amendment filed Aug. 25, 2015”, 6 pgs.
“U.S. Appl. No. 14/833,385, Response filed May 12, 2017 to Restriction Requirement dated Mar. 17, 2017”, 8 pgs.
“U.S. Appl. No. 14/833,385, Response filed Sep. 18, 2017 to Non Final Office Action dated Jun. 19, 2017”, 14 pgs.
“U.S. Appl. No. 14/833,385, Restriction Requirement dated Mar. 17, 2017”, 6 pgs.
“U.S. Appl. No. 14/918,721, Final Office Action dated Oct. 20, 2016”, 5 pgs.
“U.S. Appl. No. 14/918,721, Non Final Office Action dated Jun. 16, 2016”, 6 pgs.
“U.S. Appl. No. 14/918,721, Notice of Allowance dated Feb. 1, 2017”, 9 pgs.
“U.S. Appl. No. 14/918,721, Preliminary Amendment filed Oct. 23, 2015”, 8 pgs.
“U.S. Appl. No. 14/918,721, PTO Response to Rule 312 Communication dated Mar. 17, 2017”, 2 pgs.
“U.S. Appl. No. 14/918,721, Response filed Sep. 12, 2016 to Non Final Office Action dated Jun. 16, 2016”, 12 pgs.
“U.S. Appl. No. 14/918,721, Response filed Dec. 13, 2016 to Final Office Action dated Oct. 20, 2016”, 9 pgs.
“U.S. Appl. No. 14/926,281, Non Final Office Action dated Jun. 21, 2017”, 17 pgs.
“U.S. Appl. No. 14/926,281, Notice of Allowance dated Nov. 16, 2017”, 9 pgs.
“U.S. Appl. No. 14/926,281, Preliminary Amendment filed Oct. 30, 2015”, 8 pgs.
“U.S. Appl. No. 14/926,281, Response filed Sep. 18, 2017 to Non Final Office Action dated Jun. 21, 2017”, 11 pgs.
“U.S. Appl. No. 15/003,091, Preliminary Amendment filed Jan. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/003,091, Non Final Office Action dated Jun. 20, 2017”, 14 pgs.
“U.S. Appl. No. 15/003,091, Notice of Allowance dated Nov. 6, 2017”, 8 pgs.
“U.S. Appl. No. 15/003,091, PTO Response to Rule 312 Communication dated Jan. 23, 2018”, 2 pgs.
“U.S. Appl. No. 15/003,091, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 20, 2017”, 17 pgs.
“U.S. Appl. No. 15/045,799, Non Final Office Action dated Nov. 1, 2016”, 8 pgs.
“U.S. Appl. No. 15/045,799, Notice of Allowance dated Mar. 10, 2017”, 10 pgs.
“U.S. Appl. No. 15/045,799, Preliminary Amendment filed Feb. 18, 2016”, 9 pgs.
“U.S. Appl. No. 15/045,799, PTO Response to Rule 312 Communication dated Apr. 18, 2017”, 2 pgs.
“U.S. Appl. No. 15/045,799, Response filed Feb. 1, 2017 to Non Final Office Action dated Nov. 1, 2016”, 15 pgs.
“U.S. Appl. No. 15/062,252, Preliminary Amendment filed Mar. 9, 2016”, 8 pgs.
“U.S. Appl. No. 15/062,262, Non Final Office Action dated Jul. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/062,262, Notice of Allowance dated Jan. 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/062,262, PTO Response to Rule 312 Communication dated Mar. 7, 2017”, 2 pgs.
“U.S. Appl. No. 15/062,262, Response filed Oct. 24, 2016 to Non Final Office Action dated Jul. 22, 2016”, 13 pgs.
“U.S. Appl. No. 15/177,734, Non Final Office Action dated Feb. 10, 2017”, 21 pgs.
“U.S. Appl. No. 15/177,734, Notice of Allowance dated May 17, 2017”, 7 pgs.
“U.S. Appl. No. 15/177,734, Preliminary Amendment filed Jun. 22, 2016”, 8 pgs.
“U.S. Appl. No. 15/177,734, Response filed Apr. 19, 2017 to Non Final Office Action dated Feb. 10, 2017”, 22 pgs.
“U.S. Appl. No. 15/211,812, Non Final Office Action dated Jan. 27, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Notice of Allowance dated May 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Preliminary Amendment filed Sep. 8, 2016”, 8 pgs.
“U.S. Appl. No. 15/211,812, Response filed Apr. 19, 2017 to Non Final Office Action dated Jan. 27, 2017”, 9 pgs.
“U.S. Appl. No. 15/267,793, Non Final Office Action dated Jun. 14, 2018”, 12 pgs.
“U.S. Appl. No. 15/267,793, Notice of Allowability dated Jan. 17, 2019”, 2 pgs.
“U.S. Appl. No. 15/267,793, Notice of Allowance dated Dec. 21, 2018”, 5 pgs.
“U.S. Appl. No. 15/267,793, Response Filed Apr. 11, 2018 to Restriction Requirement dated Feb. 16, 2018”, 8 pgs.
“U.S. Appl. No. 15/267,793, Response filed Aug. 22, 2018 Non Final Office Action dated Jun. 14, 2018”, 16 pgs.
“U.S. Appl. No. 15/267,793, Restriction Requirement dated Feb. 16, 2018”, 7 pgs.
“U.S. Appl. No. 15/424,328, Non Final Office Action dated Jun. 23, 2017”, 5 pgs.
“U.S. Appl. No. 15/424,328, Notice of Allowance dated Oct. 16, 2017”, 6 pgs.
“U.S. Appl. No. 15/424,328, Preliminary Amendment filed Feb. 28, 2017”, 10 pgs.
“U.S. Appl. No. 15/424,328, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 23, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Non Final Office Action dated Jul. 26, 2017”, 10 pgs.
“U.S. Appl. No. 15/435,620, Notice of Allowance dated Mar. 13, 2018”, 5 pgs.
“U.S. Appl. No. 15/435,620, Preliminary Amendment filed Mar. 20, 2017”, 7 pgs.
“U.S. Appl. No. 15/435,620, Response filed Feb. 12, 2018 to Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Response filed Oct. 25, 2017 to Non Final Office Action dated Jul. 26, 2017”, 13 pgs.
“U.S. Appl. No. 15/616,561, Non Final Office Action dated Aug. 9, 2018”, 8 pgs.
“U.S. Appl. No. 15/616,561, Notice of Allowability dated Feb. 12, 2019”, 2 pgs.
“U.S. Appl. No. 15/616,561, Notice of Allowance dated Dec. 10, 2018”, 7 pgs.
“U.S. Appl. No. 15/616,561, Preliminary Amendment filed Jun. 8, 2017”, 7 pgs.
“U.S. Appl. No. 15/616,561, Response filed Nov. 8, 2018 to Non Final Office Action dated Aug. 9, 2018”, 11 pgs.
“U.S. Appl. No. 15/703,678, Non Final Office Action dated Apr. 8, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,678, Notice of Allowance dated Sep. 17, 2019”, 7 pgs.
“U.S. Appl. No. 15/703,678, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,678, Response Filed Jan. 3, 2019 to Restriction Requirement dated Nov. 5, 2018”, 8 pgs.
“U.S. Appl. No. 15/703,678, Response filed Jul. 3, 2019 to Non-Final Office Action dated Apr. 8, 2019”, 20 pgs.
“U.S. Appl. No. 15/703,678, Restriction Requirement dated Nov. 5, 2018”, 6 pgs.
“U.S. Appl. No. 15/703,692, Corrected Notice of Allowability dated Jul. 8, 2019”, 2 pgs.
“U.S. Appl. No. 15/703,692, Non Final Office Action dated Jan. 14, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,692, Notice of Allowance dated May 7, 2019”, 5 pgs.
“U.S. Appl. No. 15/703,692, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,692, Response filed Apr. 4, 2019 to Non Final Office Action dated Jan. 14, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,698, Corrected Notice of Allowability dated Dec. 18, 2018”, 2 pgs.
“U.S. Appl. No. 15/703,698, Non Final Office Action dated Apr. 6, 2018”, 7 pgs.
“U.S. Appl. No. 15/703,698, Notice of Allowance dated Sep. 12, 2018”, 5 pgs.
“U.S. Appl. No. 15/703,698, Preliminary Amendment filed Sep. 28, 2017”, 8 pgs.
“U.S. Appl. No. 15/703,698, Response filed Jul. 6, 2018 to Non Final Office Action dated Apr. 6, 2018”, 10 pgs.
“U.S. Appl. No. 15/703,713, Non Final Office Action dated Mar. 27, 2018”, 29 pgs.
“U.S. Appl. No. 15/703,713, Notice of Allowance dated Sep. 25, 2018”, 11 pgs.
“U.S. Appl. No. 15/703,713, Response Filed Jun. 15, 2018 to Non-Final Office Action dated Mar. 27, 2018”, 16 pgs.
“U.S. Appl. No. 15/703,713, Preliminary Amendment filed Sep. 28, 2017”, 7 pgs.
“U.S. Appl. No. 15/720,866, Final Office Action dated Feb. 28, 2020”, 10 pgs.
“U.S. Appl. No. 15/720,866, Non Final Office Action dated Sep. 9, 2019”, 12 pgs.
“U.S. Appl. No. 15/720,866, Response filed Jan. 9, 2020 to Non Final Office Action dated Sep. 9, 2019”, 11 pgs.
“U.S. Appl. No. 15/720,866, Response filed Jul. 10, 2019 to Restriction Requirement dated May 14, 2019”, 10 pgs.
“U.S. Appl. No. 15/720,866, Response filed Nov. 13, 2017 to Non Final Office Action dated Sep. 14, 2017”, 10 pgs.
“U.S. Appl. No. 15/720,866, Restriction Requirement dated May 14, 2019”, 7 pgs.
“U.S. Appl. No. 15/720,866, Preliminary Amendment filed Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 15/827,654, Examiner Interview Summary dated Apr. 26, 2019”, 4 pgs.
“U.S. Appl. No. 15/827,654, Final Office Action dated Feb. 19, 2019”, 19 pgs.
“U.S. Appl. No. 15/827,654, Non Final Office Action dated Sep. 7, 2018”, 21 pgs.
“U.S. Appl. No. 15/827,654, Notice of Allowance dated Jul. 8, 2019”, 8 pgs.
“U.S. Appl. No. 15/827,654, Preliminary Amendment filed Dec. 22, 2017”, 11 pgs.
“U.S. Appl. No. 15/827,654, Response Filed May 20, 2019 to Final Office Action dated Feb. 19, 2019”, 17 pgs.
“U.S. Appl. No. 15/827,654, Response filed Jun. 6, 2018 to Restriction Requirement dated Apr. 6, 2018”, 11 pgs.
“U.S. Appl. No. 15/827,654, Response filed to Non Final Office Action dated Sep. 7, 2018”, 24 pgs.
“U.S. Appl. No. 15/827,654, Restriction Requirement dated Apr. 6, 2018”, 6 pgs.
“U.S. Appl. No. 15/890,735, Notice of Allowance dated Oct. 29, 2019”, 11 pgs.
“U.S. Appl. No. 15/915,886, Non Final Office Action dated Aug. 2, 2019”, 9 pgs.
“U.S. Appl. No. 15/915,886, Notice of Allowance dated Jan. 16, 2020”, 9 pgs.
“U.S. Appl. No. 15/915,886, PTO Response to Rule 312 Communication dated May 8, 2020”, 2 pgs.
“U.S. Appl. No. 15/915,886, Response Filed Nov. 4, 2019 to Non-Final Office Action dated Aug. 2, 2019”, 8 pgs.
“U.S. Appl. No. 16/389,381, Non Final Office Action dated Mar. 30, 2020”, 9 pgs.
“U.S. Appl. No. 16/530,423, Preliminary Amendment filed Aug. 28, 2019”, 7 pgs.
“U.S. Appl. No. 16/596,194, Preliminary Amendment Filed Nov. 14, 2019”, 8 pgs.
“U.S. Appl. No. 16/715,092, Preliminary Amendment filed Mar. 19, 2020”, 10 pgs.
“U.S. Appl. No. 16/743,746, Preliminary Amendment filed Mar. 19, 2020”, 8 pgs.
“Australian Application Serial No. 2011286306, First Examiner Report dated Jun. 19, 2013”, 4 pgs.
“Australian Application Serial No. 2011286306, Response filed Jun. 3, 2014 to First Examiner Report dated Jun. 19, 2013”, 16 pgs.
“Australian Application Serial No. 2011286307, First Examiner Report dated Oct. 17, 2013”, 2 pgs.
“Australian Application Serial No. 2011286307, Response filed May 21, 2014 to First Examiner Report dated Oct. 17, 2013”, 16 pgs.
“Australian Application Serial No. 2011286308, First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011286308, Response filed Jun. 6, 2014 First Examiner Report dated Jun. 21, 2013”, 19 pgs.
“Australian Application Serial No. 2011286309, First Examiner Report dated Jun. 21, 2013”, 3 pgs.
“Australian Application Serial No. 2011286309, Response filed Jun. 10, 2014 to First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011343440, First Examiner Report dated Feb. 17, 2014”, 3 pgs.
“Australian Application Serial No. 2011343440, Response filed Mar. 21, 2014 to Office Action dated Feb. 17, 2014”, 1 pg.
“Australian Application Serial No. 2012271243, Office Action dated Apr. 1, 2015”, 2 pgs.
“Australian Application Serial No. 2012271243, Response filed Apr. 8, 2015 to Office Action dated Apr. 1, 2015”, 4 pgs.
“Australian Application Serial No. 2012271243, Response filed Apr. 15, 2015 to Office Action dated Apr. 13, 2015”, 1 pg.
“Australian Application Serial No. 2012271243, Subsequent Examiners Report dated Apr. 13, 2015”, 2 pgs.
“Australian Application Serial No. 2012341026, First Examiner Report dated Jul. 14, 2014”, 2 pgs.
“Australian Application Serial No. 2012341026, Response filed Nov. 21, 2014 to First Examiner Report dated Jul. 14, 2014”, 1 pg.
“Australian Application Serial No. 2012341026, Statement of Proposed Amendment filed Jun. 18, 2014”, 25 pgs.
“Australian Application Serial No. 2012368262, First Examiner Report dated Nov. 2, 2016”, 4 pgs.
“Australian Application Serial No. 2012368262, Response filed Jan. 17, 2017 to Office Action dated Nov. 2, 2016”, 21 pgs.
“Australian Application Serial No. 2012368262, Response filed May 15, 2017 to Subsequent Examiners Report dated Mar. 16, 2017”, 2 pgs.
“Australian Application Serial No. 2012368262, Subsequent Examiners Report dated Mar. 16, 2017”, 3 pgs.
“Australian Application Serial No. 2013238046, First Examiner Report dated Nov. 26, 2015”, 2 pgs.
“Australian Application Serial No. 2013238046, Response filed Feb. 2, 2016 to First Examiner Report dated Nov. 26, 2015”, 1 pg.
“Australian Application Serial No. 2013238054, First Examiner Report dated Oct. 17, 2016”, 4 pgs.
“Australian Application Serial No. 2013238054, Response filed Jan. 18, 2017 to First Examiner Report dated Oct. 17, 2016”, 9 pgs.
“Australian Application Serial No. 2014250709, First Examiner Report dated Dec. 21, 2015”, 3 pgs.
“Australian Application Serial No. 2014250709, Response filed May 4, 2016 to First Examiner Report dated Dec. 21, 2015”, 12 pgs.
“Australian Application Serial No. 2014250709, Subsequent Examiners Report dated May 31, 2016”, 6 pgs.
“Australian Application Serial No. 2014250710, First Examiner Report dated Dec. 11, 2015”, 7 pgs.
“Australian Application Serial No. 2014250710, Response filed Mar. 22, 2016 to First Examiner Report dated Dec. 11, 2015”, 18 pgs.
“Australian Application Serial No. 2014250710, Response filed May 4, 2016 to Subsequent Examiners Report dated Mar. 23, 2016”, 15 pgs.
“Australian Application Serial No. 2014250710, Subsequent Examiners Report dated Mar. 23, 2016”, 3 pgs.
“Australian Application Serial No. 2014250711, First Examiner Report dated Feb. 12, 2016”, 7 pgs.
“Australian Application Serial No. 2014250711, Response filed Apr. 27, 2016 to First Examiner Report dated Feb. 12, 2016”, 32 pgs.
“Australian Application Serial No. 2015201511, First Examination Report dated Apr. 18, 2016”, 2 pgs.
“Australian Application Serial No. 2015201511, Response filed Jun. 30, 2016 to First Examiner Report dated Apr. 18, 2016”, 12 pgs.
“Australian Application Serial No. 2015238820, First Examination Report dated May 30, 2017”, 3 pgs.
“Australian Application Serial No. 2015238820, Response filed Jul. 12, 2017 to First Examination Report dated May 30, 2017”, 12 pgs.
“Australian Application Serial No. 2016225911, First Examiners Report dated Jun. 2, 2017”, 3 pgs.
“Australian Application Serial No. 2016225911, Response filed Aug. 22, 2017 to First Examiners Report dated Jun. 2, 2017”, 18 pgs.
“Australian Application Serial No. 2017235987, First Examination Report dated Nov. 1, 2018”, 4 pgs.
“Australian Application Serial No. 2017251736, First Examiners Report dated Oct. 31, 2017”, 2 pgs.
“Bi-Cruciate Stabilized Knee System”, Design Rationale, Smith & Nephew Journal, (2006), 20 pgs.
“Brazil Application Serial No. BR1120130016698, Office Action dated Aug. 27, 2019”, (W/ English Translation), 8 pages.
“Brazil Application Serial No. BR1120130016698, Response filed Dec. 9, 2019 to Office Action dated Aug. 27, 2019”, w/ English Claims, 22 pgs.
“Brazil Application Serial No. BR1120130016736, Office Action dated Aug. 27, 2019”, (with English translation), 8 pages.
“Brazil Application Serial No. BR1120130016736, Response filed Dec. 9, 2019 to Office Action dated Aug. 27, 2019”, w/ English Claims, 25 pgs.
“Canadian Application Serial No. 2,806,321, Office Action dated Jan. 15, 2018”, 3 pgs.
“Canadian Application Serial No. 2,806,321, Response filed Jan. 22, 2018 to Office Action dated Jan. 15, 2018”, 7 pgs.
“Canadian Application Serial No. 2,806,321, Response filed Dec. 6, 2017 to Office Action dated Jun. 15, 2017”, 12 pgs.
“Canadian Application Serial No. 2,806,325, Office Action dated Mar. 14, 2016”, 4 pgs.
“Canadian Application Serial No. 2,806,325, Response filed Sep. 14, 2016 to Office Action dated Mar. 14, 2016”, 17 pgs.
“Canadian Application Serial No. 2,806,326, Examiner's Rule 30(2) Requisition dated Sep. 20, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Feb. 8, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Jun. 19, 2017”, 3 pgs.
“Canadian Application Serial No. 2,806,326, Response Filed Mar. 20, 2019 to Examiner's Rule 30(2) Requisition dated Sep. 20, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Response filed Jul. 20, 2018 to Office Action dated Feb. 8, 2018”, 12 pgs.
“Canadian Application Serial No. 2,821,927, Office Action dated Jan. 25, 2018”, 6 pgs.
“Canadian Application Serial No. 2,821,927, Response filed Jul. 18, 2018 to Office Action dated Jan. 25, 2018”, 10 pgs.
“Canadian Application Serial No. 2,821,927, Voluntary Amendment dated Jun. 14, 2013”, 7 pgs.
“Canadian Application Serial No. 2,824,527, Office Action dated Mar. 17, 2014”, 2 pgs.
“Canadian Application Serial No. 2,824,527, Response filed Sep. 17, 2014 to Office Action dated Mar. 17, 2014”, 14 pgs.
“Canadian Application Serial No. 2,856,070, Preliminary Amendment filed May 25, 2015”, 27 pgs.
“Canadian Application Serial No. 2,856,571 Response filed Jan. 22, 2015 to Office Action dated Jul. 22, 2014”, 24 pgs.
“Canadian Application Serial No. 2,856,571, Office Action dated Jul. 22, 2014”, 2 pgs.
“Canadian Application Serial No. 2,863,375, Office Action dated Apr. 20, 2018”, 3 pgs.
“Canadian Application Serial No. 2,863,375, Response filed Oct. 22, 2018 Office Action dated Apr. 20, 2018”, 12 pgs.
“Canadian Application Serial No. 2,868,825, Office Action dated Dec. 27, 2018”, 3 pgs.
“Canadian Application Serial No. 2,956,119, Examiner's Rule 30(2) Requisition dated Sep. 27, 2018”, 4 pgs.
“Canadian Application Serial No. 2,956,119, Office Action dated Jan. 22, 2018”, 3 pgs.
“Canadian Application Serial No. 2,956,119, Response Filed Mar. 27, 2019 to Examiner's Rule 30(2) Requisition dated Sep. 27, 2018”, 7 pgs.
“Canadian Application Serial No. 2,989,184, Office Action dated Oct. 1, 2018”, 4 pgs.
“Canadian Application Serial No. 2,989,184, Response filed Apr. 1, 2019 to Office Action dated Oct. 1, 2018”, 10 pgs.
“Canadian Application Serial No. 2,806,321, Office Action dated Jun. 15, 2017”, 3 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Feb. 14, 2016”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Mar. 29, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Aug. 12, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Apr. 19, 2016 to Office Action dated Feb. 14, 2016”, No English Translation, 11 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Jun. 19, 2015 to Office Action dated Mar. 29, 2015”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Oct. 27, 2015 to Office Action dated Aug. 12, 2015”, (W/ English translation of claims), 9 pgs.
“Chinese Application Serial No. 201180045681.8, Office Action dated Jan. 22, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045681.8, Response filed May 14, 2015 to Office Action dated Jan. 22, 2015”, W/ English Claims, 17 pgs.
“Chinese Application Serial No. 201180045683.7, Office Action dated Mar. 9, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045683.7, Response filed Jul. 14, 2015 to Office Action dated Mar. 9, 2015”, (W/ English translation of claims), 30 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Jan. 5, 2015”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Feb. 2, 2016”, w/English Translation, 11 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Aug. 5, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045689.4, Response filed Apr. 7, 2016 to Office Action dated Feb. 2, 2016”, No English Translation, 8 pgs.
“Chinese Application Serial No. 201180045689.4, Response filed May 1, 2015 to Office Action dated Jan. 5, 2015”, W/ English Claims, 13 pgs.
“Chinese Application Serial No. 201180045689.4,Response filed Oct. 21, 2015 to Office Action dated Aug. 5, 2015”, No English Claims.
“Chinese Application Serial No. 201180067430.X, Office Action dated Aug. 28, 2014”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201180067430.X, Response filed Jan. 4, 2015 to Office Action dated Sep. 26, 2014”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Mar. 2, 2015”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Jun. 1, 2016”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Nov. 16, 2015”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jan. 27, 2016 to Office Action dated Nov. 16, 2015”, (W/ English Translation of Claims), 12 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jul. 10, 2015 to Office Action dated Mar. 2, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Aug. 11, 2016 to Office Action dated Jun. 1, 2016”, (W/ English Translation of Claims), 9 pgs.
“Chinese Application Serial No. 201180067757.7, Voluntary Amendment dated Feb. 14, 2014”, (W/ English Translation of Claims), 8 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Feb. 1, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated May 20, 2015”, (W/ English Translation), 15 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Nov. 20, 2015”, W/ English Translation of Claims, 7 pgs.
“Chinese Application Serial No. 201280067473.2, Preliminary Amendment filed Jan. 29, 2015”, No English Translation or Claims Available, 10 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Apr. 7, 2016 to Office Action dated Feb. 1, 2016”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Sep. 7, 2015 to Office Action dated May 20, 2015”, (W/ English translation of claims), 12 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Dec. 4, 2015 to Office Action dated Nov. 20, 2015”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201280067481.7, Office Action dated Sep. 30, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201280071940.9, Office Action dated Jul. 22, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201280071940.9, Preliminary Amendment filed Mar. 23, 2015”, W/ English Claims, 11 pgs.
“Chinese Application Serial No. 201380028572.4, Office Action dated Aug. 13, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Jun. 27, 2016”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Nov. 4, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Dec. 30, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Feb. 8, 2017 to Office Action dated Dec. 30, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Mar. 18, 2016 to Office Action dated Nov. 4, 2015”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Sep. 6, 2016 to Office Action dated Jun. 27, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated May 24, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Aug. 30, 2016”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Nov. 3, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 16, 2017 to Office Action dated Aug. 30, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 18, 2018 to Office Action dated Nov. 3, 2017”, (W/ English Claims), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jul. 10, 2017 to Office Action dated May 24, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510640436.1, Office Action dated Sep. 28, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201510640436.1, Response filed Feb. 16, 2017 to Office Action dated Sep. 28, 2016”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Apr. 20, 2018”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Jun. 21, 2017”, w/English Translation, 9 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Jun. 4, 2018 to Office Action dated Apr. 20, 2018”, (W/ English Translation of Claims), 8 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Nov. 3, 2017 to Office Action dated Jun. 21, 2017”, w/English Claims, 8 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Apr. 10, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Sep. 28, 2017”, (W/ English Translation), 9 pgs.
“Chinese Application Serial No. 201610685172.6, Response filed Dec. 13, 2017 to Office Action dated Sep. 28, 2017”, (W/ English Claims), 13 pgs.
“Chinese Application Serial No. 201680061268.3, Office Action dated Apr. 24, 2019”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201680061268.3, Response filed Aug. 21, 2019 to Office Action dated Apr. 24, 2019”, (W/ English Claims), 8 pgs.
“Complete Knee Solution Surgical Technique for the CR-Flex Fixed Bearing Knee”, Zimmer Nexgen, (2003), 22 pgs.
“European Application Serial No. 11738918.9, Examination Notification Art. 94(3) dated Oct. 23, 2014”, 5 pgs.
“European Application Serial No. 11738918.9, Preliminary Amendment dated Sep. 24, 2013”, 11 pgs.
“European Application Serial No. 11738918.9, Response filed Mar. 2, 2015 to Examination Notification Art. 94(3) dated Oct. 23, 2014”, 14 pgs.
“European Application Serial No. 11738919.7, Examination Notification Art. 94(3) dated Jul. 7, 2014”, 4 pgs.
“European Application Serial No. 11738919.7, Preliminary Amendment filed Nov. 4, 2013”, 25 pgs.
“European Application Serial No. 11738919.7, Response filed Nov. 13, 2014 to Examination Notification Art. 94(3) dated Jul. 7, 2014”, 14 pgs.
“European Application Serial No. 11738920.5, Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 4 pgs.
“European Application Serial No. 11738920.5, Preliminary Amendment dated Sep. 24, 2013”, 9 pgs.
“European Application Serial No. 11738920.5, Response filed Jul. 25, 2016 to Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 6 pgs.
“European Application Serial No. 11738920.5, Response filed Sep. 24, 2013 to Communication pursuant to Rules 161(2) and 162 EPC dated Mar. 15, 2013”, 22 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 3 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 4 pgs.
“European Application Serial No. 11758060.5, Preliminary Amendment filed Nov. 4, 2013”, 15 pgs.
“European Application Serial No. 11758060.5, Response filed Apr. 21, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 16 pgs.
“European Application Serial No. 11758060.5, Response filed Nov. 15, 2016 to Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 23 pgs.
“European Application Serial No. 11802835.6, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2017”, 4 pgs.
“European Application Serial No. 11802835.6, Response filed Apr. 23, 2018 to Office Action dated Dec. 11, 2017”, 16 pgs.
“European Application Serial No. 11808493.8, Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 4 pgs.
“European Application Serial No. 11808493.8, Examination Notification Art. 94(3) dated Feb. 20, 2015”, 6 pgs.
“European Application Serial No. 11808493.8, Response filed Feb. 26, 2014 to Communication pursuant to Rules 161(1) and 162 EPC dated Aug. 16, 2013”, 14 pgs.
“European Application Serial No. 11808493.8, Response filed Apr. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 15 pgs.
“European Application Serial No. 11808493.8, Response filed Jul. 2, 2015 to Examination Notification Art. 94(3) dated Feb. 20, 2015”, 13 pgs.
“European Application Serial No. 11815029.1, Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 4 pgs.
“European Application Serial No. 11815029.1, Extended European Search Report dated Dec. 10, 2013”, 8 pgs.
“European Application Serial No. 11815029.1, Response filed Apr. 10, 2017 to Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 22 pgs.
“European Application Serial No. 11815029.1, Response filed Jul. 21, 2014 Extended European Search Report dated Dec. 10, 2013”, 15 pgs.
“European Application Serial No. 12718882.9, Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Apr. 11, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 12 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 4 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 2 pgs.
“European Application Serial No. 12718883.7, Intention to Grant dated May 20, 2016”, 5 pgs.
“European Application Serial No. 12718883.7, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 16 pgs.
“European Application Serial No. 12718883.7, Response filed Apr. 12, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 30 pgs.
“European Application Serial No. 12719236.7 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12719236.7, Decision to Grant dated Feb. 18, 2016”, 3 pgs.
“European Application Serial No. 12719236.7, Office Action dated Aug. 27, 2015”, 7 pgs.
“European Application Serial No. 12720352.9 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12756058.9, Communication Pursuant to Article 94(3) EPC dated Feb. 18, 2019”, 4 pgs.
“European Application Serial No. 12756058.9, Office Action dated Jan. 17, 2017”, 5 Pgs.
“European Application Serial No. 12756058.9, Preliminary Amendment filed Apr. 20, 2015”, 12 pgs.
“European Application Serial No. 12756058.9, Response filed May 26, 2017 to Office Action dated Jan. 17, 2017”, 16 pgs.
“European Application Serial No. 12756058.9, Response filed Jun. 28, 2019 to Communication Pursuant to Article 94(3) EPC dated Feb. 18, 2019”, 21 pgs.
“European Application Serial No. 12756869.9 Response filed Feb. 10, 2015 to Communication Pursuant to Rule 161(1) and 162 EPC dated Jul. 31, 2014”, 14 pgs.
“European Application Serial No. 12756869.9, Examination Notification Art. 94(3) dated Jul. 2, 2015”, 4 pgs.
“European Application Serial No. 12756869.9, Response filed Nov. 12, 2015 to Examination Notification Art. 94(3) dated Jul. 2, 2015”, 28 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 13716636.9, Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 2 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 24, 2016 to Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 18 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 27, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 15 pgs.
“European Application Serial No. 13716636.9, Response filed Jun. 22, 2015 to Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 10 pgs.
“European Application Serial No. 13716636.9, Response filed Oct. 17, 2016 to Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 14190180.1, Extended European Search Report dated Sep. 24, 2015”, 8 pgs.
“European Application Serial No. 15160934.4, Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 5 pgs.
“European Application Serial No. 15160934.4, Extended European Search Report dated Jun. 1, 2016”, 8 pgs.
“European Application Serial No. 15160934.4, Response filed Aug. 30, 2018 to Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 63 pgs.
“European Application Serial No. 15160934.4, Response filed Dec. 21, 2016 to Extended European Search Report dated Jun. 1, 2016”, 5 pgs.
“European Application Serial No. 15174394.5, Extended European Search Report dated Mar. 21, 2016”, 8 pgs.
“European Application Serial No. 15174394.5, Response filed Nov. 18, 2016 to Extended European Search Report dated Mar. 21, 2016”, 12 pgs.
“European Application Serial No. 15191781.2, Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 4 pgs.
“European Application Serial No. 15191781.2, Extended European Search Report dated Mar. 1, 2017”, 8 pgs.
“European Application Serial No. 15191781.2, Response filed May 17, 2018 to Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 58 pgs.
“European Application Serial No. 15191781.2, Response filed Sep. 28, 2017 to Extended European Search Report dated Mar. 1, 2017”, 14pgs.
“European Application Serial No. 16156228.5, Extended European Search Report dated May 11, 2017”, 5 pgs.
“European Application Serial No. 16183635.8, Extended European Search Report dated Jun. 30, 2017”, 9 pgs.
“European Application Serial No. 16183635.8, Response filed Mar. 27, 2018 to Extended European Search Report dated Jun. 30, 2017”, 8 pgs.
“European Application Serial No. 16189084.3, Extended European Search Report dated Oct. 9, 2017”, 9 pgs.
“European Application Serial No. 16189084.3, Response filed May 10, 2018 to Extended European Search Report dated Oct. 9, 2017”, 20 pgs.
“European Application Serial No. 16770657.1, Communication Pursuant to Article 94(3) EPC dated May 20, 2019”, 3 pgs.
“European Application Serial No. 16770657.1, Response filed Sep. 30, 2019 to Communication Pursuant to Article 94(3) EPC dated May 20, 2019”, 26 pgs.
“European Application Serial No. 16770657.1, Response filed Nov. 26, 2018 to Office Action dated May 14, 2018”, 17 pgs.
“European Application Serial No. 17157909.7, Extended European Search Report dated Jul. 17, 2018”, 7 pgs.
“European Application Serial No. 17157909.7, Response Filed Feb. 15, 2019 to Extended European Search Report dated Jul. 17, 2018”, 37 pgs.
“European Application Serial No. 17163432.2, Extended European Search Report dated May 14, 2018”, 6 pgs.
“European Application Serial No. 17163440.5, Extended European Search Report dated Jan. 3, 2019”, 16 pgs.
“European Application Serial No. 17163440.5, Partial European Search Report dated Jul. 23, 2018”, 15 pgs.
“European Application Serial No. 17163440.5, Response filed Jul. 22, 2019 to Extended European Search Report dated Jan. 3, 2019”, 14 pgs.
“European Application Serial No. 17168095.2, Extended European Search Report dated Jun. 8, 2018”, 8 pgs.
“European Application Serial No. 17168095.2, Response Filed Jan. 17, 2019 Extended European Search Report dated Jun. 8, 2018”, 29 pgs.
“European Application Serial No. 17168308.9, Extended European Search Report dated Jun. 13, 2018”, 8 pgs.
“European Application Serial No. 17168308.9, Response Filed Jan. 17, 2019 to Extended European Search Report dated Jun. 13, 2018”, 24 pgs.
“European Application Serial No. 18206326.3, Extended European Search Report dated Apr. 15, 2019”, 10 pgs.
“European Application Serial No. 18206326.3, Response filed Nov. 22, 2019 to Extended European Search Report dated Apr. 15, 2019”, 15 pgs.
“European Application Serial No. 18711801.3, Response to Communication pursuant to Rules 161(1) and 162 EPC filed May 7, 2020”, 14 pgs.
“European Application Serial No. 19171990.5, Extended European Search Report dated Oct. 16, 2019”, 8 pgs.
“European Application Serial No. 19171990.5, Response filed May 13, 2020 to Extended European Search Report dated Oct. 16, 2019”, 31 pgs.
“Gender Solutions Natural Knee Flex System: Because Men and Women are Different”, Zimmer, Inc., (2007, 2009), 6 pg.
“Gender Solutions Natural Knee Flex System: Surgical Technique”, Zimmer, Inc., (2007, 2008, 2009), 36 pgs.
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs.
“Indian Application Serial No. 1544/DELNP/2013, Office Action dated May 21, 2019”, (W/ English Translation), 10 pgs.
“Indian Application Serial No. 1544/DELNP/2013, Response filed Nov. 18, 2019 to Office Action dated May 21, 2019”, (W/ English Translation), 34 pgs.
“Indian Application Serial No. 1545/DELNP/2013, Office Action dated Dec. 9, 2019”, (with English translation), 8 pages.
“International Application Serial No. PCT/US2011/045077, International Preliminary Report on Patentability dated Jul. 5, 2012”, 23 pgs.
“International Application Serial No. PCT/US2011/045077, International Search Report and Written Opinion dated Jan. 9, 2012”, 15 pgs.
“International Application Serial No. PCT/US2011/045078, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045078, International Search Report and Written Opinion dated Jan. 9, 2012”, 14 pgs.
“International Application Serial No. PCT/US2011/045080, International Preliminary Report on Patentability dated Feb. 7, 2013”, 13 pgs.
“International Application Serial No. PCT/US2011/045080, International Search Report dated Jan. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/045080, Written Opinion dated Jan. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Search Report dated Jan. 9, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/045082, Written Opinion dated Jan. 9, 2012”, 10 pgs.
“International Application Serial No. PCT/US2011/045083, International Preliminary Report on Patentability dated Feb. 7, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/045083, International Search Report dated Dec. 7, 2011”, 2 pgs.
“International Application Serial No. PCT/US2011/045083, Written Opinion dated Dec. 7, 2011”, 6 pgs.
“International Application Serial No. PCT/US2011/051021, International Preliminary Report on Patentability dated Mar. 21, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/051021, International Search Report dated Nov. 23, 2011”, 12 pgs.
“International Application Serial No. PCT/US2011/051021, Written Opinion dated Nov. 23, 2011”, 7 pgs.
“International Application Serial No. PCT/US2011/064435, International Preliminary Report on Patentability dated Jun. 27, 2013”, 9 pgs.
“International Application Serial No. PCT/US2011/064435, Search Report dated Jun. 21, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/064435, Written Opinion dated Jun. 21, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/065683, International Preliminary Report on Patentability dated Jun. 27, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/065683, International Search Report dated Apr. 24, 2012”, 12 pgs.
“International Application Serial No. PCT/US2011/065683, Written Opinion dated Apr. 24, 2012”, 10 pgs.
“International Application Serial No. PCT/US2012/035679, International Preliminary Report on Patentability dated May 30, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/035679, International Search Report dated Jun. 8, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/035679, Written Opinion dated Jun. 8, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, International Preliminary Report on Patentability dated May 30, 2014”, 13 pgs.
“International Application Serial No. PCT/US2012/035680, Search Report dated Oct. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, Written Opinion dated Oct. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2012/035683, International Preliminary Report on Patentability dated May 30, 2014”, 9 pgs.
“International Application Serial No. PCT/US2012/035683, International Search Report and Written Opinion dated Jun. 5, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/035684, International Preliminary Report on Patentability dated May 30, 2014”, 14 pgs.
“International Application Serial No. PCT/US2012/035684, International Search Report dated Aug. 8, 2012”, 9 pgs.
“International Application Serial No. PCT/US2012/035684, Written Opinion dated Jun. 8, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Preliminary Report on Patentability dated Jun. 5, 2014”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Search Report dated Jan. 10, 2013”, 5 pgs.
“International Application Serial No. PCT/US2012/052132, Invitation to Pay Additional Fees and Partial Search Report dated Nov. 15, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/052132, Written Opinion dated Jan. 10, 2013”, 10 pgs.
“International Application Serial No. PCT/US2012/052340, International Preliminary Report on Patentability dated Aug. 14, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/052340, Search Report dated Oct. 12, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/052340, Written Opinion dated Oct. 12, 2012”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, International Preliminary Report on Patentability dated Oct. 9, 2014”, 8 pgs.
“International Application Serial No. PCT/US2013/034286, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, Written Opinion dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, International Preliminary Report on Patentability dated Oct. 9, 2014”, 9 pgs.
“International Application Serial No. PCT/US2013/034293, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, Written Opinion dated Jun. 25, 2013”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, International Preliminary Report on Patentability dated Apr. 5, 2018”, 10 pgs.
“International Application Serial No. PCT/US2016/052163, International Search Report dated Jan. 20, 2017”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, Invitation to Pay Add'l Fees and Partial Search Report dated Nov. 7, 2016”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, Written Opinion dated Jan. 20, 2017”, 8 pgs.
“International Application Serial No. PCT/US2018/021571, International Preliminary Report on Patentability dated Sep. 19, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/021571, International Search Report dated Jun. 7, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/021571, Written Opinion dated Jun. 7, 2018”, 6 pgs.
“Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-102, Rev. 1, (1995,1997,1998), 36 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Jun. 28, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-521854, Notice of Reason for Rejection dated Sep. 16, 2014”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521854, Response filed Dec. 16, 2014 to Notice of Reason for Rejection dated Sep. 16, 2014”, W/ English Claims, 11 pgs.
“Japanese Application Serial No. 2013-521855, Amendment filed Jul. 22, 2014”, (W/ English Translation), 20 pgs.
“Japanese Application Serial No. 2013-521855, Office Action dated Mar. 24, 2015”, W/ English Translation, 8 pgs.
“Japanese Application Serial No. 2013-521856, Notice of Allowance dated Jan. 5, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521856, Office Action dated Sep. 1, 2015”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2013-521856, Response filed Dec. 1, 2015 to Office Action dated Sep. 1, 2015”, w/English Translation, 9 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Allowance dated Feb. 9, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521857, Preliminary Amendment filed May 18, 2014”, (W/ English translation of claims), 9 pgs.
“Japanese Application Serial No. 2013-521857, Response filed Jan. 25, 2016 to Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 17 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Mar. 8, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Sep. 29, 2015”, (W/ English Translation), 7 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jan. 4, 2016 to Office Action dated Sep. 29, 2015”, (English Translation of Claims), 14 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jul. 14, 2016 to Office Action dated Mar. 8, 2016”, (w/ English Translation of Claims), 13 pgs.
“Japanese Application Serial No. 2013-544858, Request for Examination filed Feb. 4, 2014”, (With English Translation), 14 pgs.
“Japanese Application Serial No. 2014-121515, Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2014-121515, Office Action dated Jun. 2, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-121515, Response filed May 11, 2016 to Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation of Claims), 11 pgs.
“Japanese Application Serial No. 2014-121515, Response filed Aug. 20, 2015 to Office Action dated Jun. 2, 2015”, (W/ English Translation of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated May 31, 2016”, (W/ English Translation of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Jun. 30, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Nov. 24, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Feb. 23, 2016 to Office Action dated Nov. 24, 2015”, (W/ English Translation of Claims), 15 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Jun. 8, 2016 to Office Action dated May 31, 2016”, (W/ English Translation of Claims), 14 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Sep. 28, 2015 to Office Action dated Jun. 30, 2015”, (W/ English Translation of Claims), 16 pgs.
“Japanese Application Serial No. 2014-542301, Office Action dated May 12, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-542301, Response filed Aug. 10, 2015 to Office Action dated May 12, 2015”, (W/ English translation of claims), 21 pgs.
“Japanese Application Serial No. 2014-554709, Office Action dated Jul. 5, 2016”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-554709, Preliminary Amendment filed Jul. 29, 2015”, (W/ English translation of claims), 8 pgs.
“Japanese Application Serial No. 2014-554709, Response filed Dec. 19, 2016 to Office Action dated Jul. 5, 2016”, (W/ English Translation of Claims), 11 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Nov. 29, 2016”, (W/ English Translation), 3 pgs.
“Japanese Application Serial No. 2015-162707, Response filed Jan. 26, 2017 to Office Action dated Nov. 27, 2016”, (W/ English Translation), 16 pgs.
“Japanese Application Serial No. 2015-199496, Office Action dated Sep. 6, 2016”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2015-199496, Response filed Dec. 5, 2016 to Office Action dated Sep. 6, 2016”, (W/ English Translation of Claims), 9 pgs.
“Japanese Application Serial No. 2015-503563, Office Action dated Dec. 20, 2016”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2015-503563, Response Filed Mar. 13, 2017 to Office Action dated Dec. 20, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2016-145390, Office Action dated Apr. 25, 2017”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2016-145390, Response filed Jul. 3, 2017 to Office Action dated Apr. 25, 2017”, (W/ English Translation of Claims), 16 pgs.
“Japanese Application Serial No. 2017-161246, Office Action dated May 15, 2018”, (W/ English Translation), 6 pgs.
“Journey II XR, Bi-Cruciate Retaining Knee System”, Smith & Nephew, Surgical Technique, (2015), 40 pgs.
“Legacy Implant Options”, Nexgen Complete Knee Solution, (2002), 8 pgs.
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs.
“Mexican Application Serial No. MX/a/201 3/000988, Office Action dated Mar. 18, 2015”, w/English Claims, 17 pgs.
“Mexican Application Serial No. MX/a/2013/000988, Response filed Jun. 1, 2015 to Office Action dated Mar. 18, 2015”, (W/ English Translation), 12 pgs.
“Mexican Application Serial No. MX/A/2013/000988. Office Action dated Jun. 5, 2015”, w/ summary in English, 6 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Final Office Action dated Feb. 4, 2016”, w/ summary in English, 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Office Action dated Feb. 19, 2015”, (W/ English Translation), 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Response filed Apr. 29, 2015 to Office Action dated Feb. 19, 2015”, W/ English Claims, 18 pgs.
“MIS Minimally invasive Solution, The M/G Unicompartmental Knee Minimally Invasive Surgical Technique”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5791-02, (Aug. 14, 2008), 27 pgs.
“Multi-Reference 4-in-1 Femoral Instrumentation Surgical Technique for NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-402 Rev. 1, (1998, 2000), 18 pgs.
“Natural-Knee II Primary System Surgical Technique”, Zimmer, Inc., (2005), 48 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-002-00 Rev. 2, (2000, 2008, 2009), 28 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/iniramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-02 Rev 1, (2000), 26 pgs.
“Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer Surgical Technique, 97-5964-102-00, (2004, 2007), 12 pgs.
“NexGen Complete Knee Solution, Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc., (1995, 1997, 1998), 1-33.
“NexGen Implant Options Surgeon-Specific”, Zimmer Inc., (2000), 16 pgs.
“NexGen LPS Fixed Knee: Surgical Technique”, Zimmer Inc., (2002, 2008), 44 pgs.
“NexGen LPS-Flex Mobile and LPS-Mobile Bearing Knees”, Zimmer, Inc., (2007, 2008), 4 pgs.
“NexGen Trabecular Metal Modular Plates”, Zimmer Inc., (2007), 19 pgs.
“Persona “Medial Congruent Articular Surface” System Overview”, Zimmer, Inc., (2015), 6 pgs.
“Persona “The Personalized Knee System””, Medial Congruent Sales Training, Zimmer, Inc., (Jul. 2015), 53 pgs.
“Persona “The Personalized Knee System” Medial Congruent Advanced Bearings”, Zimmer, Inc., (2015), 2 pgs.
“Persona “The Personalized Knee System” Medial Congruent Articular Surface Design Rationale”, Zimmer, Inc., (2015), 20 pgs.
“Persona “The Personalized Knee System” Persona Medial Congruent”, Mar. 24-28, 2015 at the American Academy of Orthopaedic Surgeons (AAOS) Annual Meeting., (Mar. 2015), 1 pg.
“Persona “The Personalized Knee System” Surgical Technique”, Zimmer, Inc., (2015), 72 pgs.
“Persona Medial Congruent Articular Surface”, Sales Training, Zimmer Biomet, (Jan. 2016), 71 pgs.
“PFC Sigma Knee System with Rotating Platform Technical/ Monograph”, Depuy RFC Sigma RP, 0611-29-050 (Rev. 3), (1999), 70 pgs.
“Primary/Revision Surgical Technique for NexGen Rotating Hinge Knee (RHK)”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5880-02, (2002), 116 pgs.
“Revision Instrumentation Surgical Technique for Legacy Knee Constrained Condylar Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5994-202, (2001), 61 pgs.
“Russian Application Serial No. 2013106942, Office Action dated Apr. 16, 2015”, W/ English Translation, 5 pgs.
“Russian Application Serial No. 2013106942, Response filed Jul. 15, 2015 Office Action dated Apr. 16, 2015”, (W/ English translation of claims), 146 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Jul. 1, 2015”, (W/ English Translation), 6 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Dec. 28, 2015”, w/ partial English Translation, 6 pgs.
“Russian Application Serial No. 2013106943, Response filed Apr. 28, 2016 to Office Action dated Dec. 28, 2015”, (W/ English translation of claims), 19 pgs.
“Russian Application Serial No. 2013106943, Response filed Oct. 30, 2015 to Office Action dated Jul. 1, 2015”, (W/ English translation of claims), 21 pgs.
“South African Application Serial No. 2013/01327, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“South African Application Serial No. 2013/01328, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“Surgical Technique for Cruciate Retaining Knees and Revision Instrumentation Surgical Technique for Cruciate Retaining Augmentable Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5970-202, (2002), 130 pgs.
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs.
“Surgical Technique for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5964-02, Rev. 1, (2000, 2002), 15 pgs.
“Surgical Technique for the Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5996-02, (2002), 43 pgs.
“Surgical Technique—Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc., (2004, 2007), 12 pgs.
“The Zimmer Institute Surgical Technique MIS Quad-Sparing Surgical Technique for Total Knee Arthroplasty”, NExGen Complete Knee Solution, (2004), 55 pgs.
“Tibial Baseplate: Pocket Guide (United States Version)”, Zimmer, Inc.,, (2009), 17 pgs.
“Trabecular Metal Monoblock Tibial Components”, Zimmer, Inc., (2007), 4 pgs.
“Trabecular Metal Monoblock Tibial Components Surgical Technique Addendum”, Nexgen Zimmer, Inc., (2005, 2007), 12 pgs.
“Trabecular Metal Tibial Tray: Surgical Technique”, NexGen Zimmer, Inc., (2007, 2009), 16 pgs.
“Turkish Application Serial No. 11808493.8, Working Requirements mailed Feb. 17, 2020”, 3 pgs.
“Turkish Application Serial No. 12718882.9, Working Requirements mailed Feb. 13, 2020”, 3 pgs.
“Vanguard® ID Total Knee, Surgical Technique”, Zimmer Biomet; 0682.1-GLBL-en-REV0317, (2017), 36 pgs.
“Zimmer MIS Intramedullary Instrumentation Surgical Technique for NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, printed 2005, 2009, Zimmer, Inc., (2009), 45 pgs.
“Zimmer Nexgen Cruciate Retaining (CR) and Legacy Knee Posterior Stabilized (LPS) Trabecular Metal Monoblock Tibias”, Zimmer, Inc Surgical Technique Addendum, 97-7253-34, Rev. 3, (2004), 11 pgs.
“Zimmer NexGen CR-Flex and LPS-Flex Knees Surgical Technique with posterior Referencing Instrumentation.”, Zimmer Inc., (2010, 2011), 48 pgs.
“Zimmer NexGen LCCK Surgical Technique for use with LCCK 4-in-1 Instrumentation”, Zimmer, Inc.; copyright 2009, 2010, 2011, (May 2011), 52 pgs.
“Zimmer NexGen MIS Modular Tibial Plate and Keel Cemented Surgical Technique”, Zimmer Inc., (2006, 2011), 26 pgs.
“Zimmer NexGen MIS Tibial Component”, Brochure-97-5950-001-00 7.5mm, (2005, 2006), 8 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer, Inc, #97-5950-002-00 Rev.1 1.5ML, (2005), 14 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer Inc., (2005, 2006, 2008, 2009, 2010), 16 pgs.
“Zimmer NexGen Trabecular Metal Augments—Abbreviated Surgical Technique”, Zimmer, Inc., (2004, 2006), 6 pgs.
“Zimmer NexGen Trabecular Metal Augments Surgical Technique for LCCK & Rotating Hing Knee Trabecular Metal Augments”, Zimmer, Inc. 97-5448-02, Rev. 1, (2004), 6 pgs.
“Zimmer NexGen Trabecular Metal Primary Patella Surgical Technique”, Zimmer. Inc., 97-7255-112-00, (2005), 10 pgs.
“Zimmer NexGen Trabecular Metal Tibial Tray”, Surgical Technique, Zimmer, Inc., (2007, 2009), 16 pgs.
“Zimmer Patient Specific Instruments”, Surgical Techniques for NexGen Complete Knee Solution Zimmer, Inc., (2010), 16 pgs.
Annayappa, Ramesh, “Tibial Prosthesis”, U.S. Appl. No. 13/189,328, filed Jul. 22, 2011, 82 pgs.
Annayappa, Ramesh, et al., “Tibial Prosthesis”, U.S. Appl. No. 13/189,324, filed Jul. 22, 2011, 50 pgs.
Bellemans, Johan, et al., “Is Neutral Mechanical Alignment Normal for All Patients?”, Clinical Orthopaedics and Related Research; DOI 10.1007/s11999-011-1936-5, (Jun. 9, 2011), 9 pgs.
Ding, M., et al., “Age-related variations in the microstructure of human tibial cancellous bone”, Journal of Orthopaedic Research, 20(3), (2002), 615-621.
Ding, M., et al., “Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis”, Journal of Bone & Joint Surgery (British), 85-B(6), (Aug. 2003), 906-912.
Doyle, et al., “Comparative Analysis of Human Trabecular Bone and Polyurethane Foam”, Purdue University., 1 pg.
Dunbar, M. J., et al., “Fixation of a Trabecular Metal Knee Arthroplasty Component: A Prospective Randomized Study”, The Journal of Bone & Joint Surgery (American), vol. 91-A(7), (Jul. 2009), 1578-1586.
Edwards, Andrew, et al., “The Attachments of the Fiber Bundles of the Posterior Cruciate ligament: An Anatomic Study”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 23, No. 3, (Mar. 2008), 284-290.
Freeman, M.A.R., et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging”, Advanced Bearings—Clinical Orthopedics & Related Research 2003, (2003), 1 pg.
Hofmann, Aaron A, et al., “Posterior Stabilization in Total Knee Arthroplasty with Use of an Ultracongruent Polyethylene”, The Journal of Arthroplasty vol. 15, No. 5, (2000), 576-583.
Hutt, Jonathan, et al., “Functional joint line obliquity after kinematic total knee arthroplasty”, International Orthopaedics; DOI 10.1007/s00264-015-2733-7, (Mar. 21, 2015), 6 pgs.
Hvid, Ivan, et al., “Trabecular bone Strength Patterns at the Proximal Tibial Epiphysis”, Journal of Orthopaedic Research, vol. 3, No. 4, (1985), 464-472.
Klostermann, et al., “Distribution of bone mineral density with age and gender in the proximal tibia”, Clinical Biomechanics 19, 376-376.
Lorenz, Stephan, et al., “Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament”, Knee Surg Sports Traumatol Arthosc, vol. 17, (2009), 683-690.
Moorman, Claude, et al., “Tibial Insertion of the Posterior Cruciate Ligament: A Sagittal Plane Analysis Using Gross, Histologic, and Radiographic Methods”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 24, No. 3, (Mar. 2008), 269-275.
Parisi, Raymond C, “Motion Facilitating Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/229,103, filed Sep. 9, 2011, 46 pgs.
Partovi, Hamid, “Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements”, Proceedings of the IEEE International Solid-State Circuits Conference, Digest of Technical Papers and Slide Supplement, NexGen Inc., Milpitas, CA, (1996), 40 pgs.
Siggelkow, Eik, et al., “Impact of Tibia Bearing Surface and Femoral Component Design on Flexion Kinematics During Lunge”, Mar. 28-31, 2015 at the Orthopaedic Research Society (ORS) Annual Meeting (Poster #1645), (Mar. 2015), 1 pg.
Siggelkow, Eik, et al., “Impact of Tibia Bearing Surface Design on Deep Knee Bend Kinematics”, Mar. 24-28, 2015 at the AAOS Conference (Poster #P142), (Mar. 2015), 1 pg.
Stilling, et al., “Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh”, Acta Orthopaedica., (2011), 177-186.
Victor, Jan M. K., et al., “Constitutional Varus Does Not Affect Joint Line Orientation in the Coronal Plane”, Joint Line Orientation in the Coronal Plane; 472; DOI 10.1007/s11999-013-2898-6, (Jun. 4, 2013), pp. 98-104.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,338, filed Jul. 22, 2011, 58 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,339, filed Jul. 22, 2011, 52 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,336, filed Jul. 22, 2011, 60 pgs.
U.S. Appl. No. 13/087,610 U.S. Pat. No. 8,603,101, filed Apr. 15, 2011, Provisional Tibial Prosthesis System.
U.S. Appl. No. 14/063,032 U.S. Pat. No. 9,011,459, filed Oct. 25, 2013, Provisional Tibial Prosthesis System.
U.S. Appl. No. 14/660,217 U.S. Pat. No. 9,427,337, filed Mar. 17, 2015, Provisional Tibial Prosthesis System.
U.S. Appl. No. 15/211,812 U.S. Pat. No. 9,763,807, filed Jul. 15, 2016, Provisional Tibial Prosthesis System.
U.S. Appl. No. 15/703,698 U.S. Pat. No. 10/188,530, filed Sep. 13, 2017, Provisional Tibial Prosthesis System.
U.S. Appl. No. 13/189,324 U.S. Pat. No. 8,764,840, filed Jul. 22, 2011, Tibial Prosthesis.
U.S. Appl. No. 14/284,144 U.S. Pat. No. 9,283,082, filed May 21, 2014, Methods Related to Seating of Bearing Component on Tibial Tray.
U.S. Appl. No. 15/003,091 U.S. Pat. No. 9,918,844, filed Jan. 21, 2016, Tibial Prosthesis With a Fixed Bearing Component.
U.S. Appl. No. 14/034,937 U.S. Pat. No. 9,861,490, filed Sep. 24, 2013, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/189,336 U.S. Pat. No. 8,613,775, filed Jul. 22, 2011, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 15/827,654 U.S. Pat. No. 10/470,889, filed Nov. 30, 2017, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 16/596,194, filed Oct. 8, 2019, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/189,328 U.S. Pat. No. 8,628,580, filed Jul. 22, 2011, Tibial Prosthesis.
U.S. Appl. No. 14/063,593 U.S. Pat. No. 9,763,794, filed Oct. 25, 2013, Tibial Prosthesis.
U.S. Appl. No. 15/703,678 U.S. Pat. No. 10,543,099, filed Sep. 13, 2017, Tibial Prosthesis.
U.S. Appl. No. 16/715,092, filed Dec. 16, 2019, Tibial Prosthesis.
U.S. Appl. No. 13/229,103 U.S. Pat. No. 8,591,594, filed Sep. 9, 2011, Motion Facilitating Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 14/034,963 U.S. Pat. No. 9,314,343, filed Sep. 24, 2013, Motion Facilitating Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 14/791,952 U.S. Pat. No. 9,763,795, filed Jul. 6, 2015, Motion Facilitating Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 15/703,692 U.S. Pat. No. 10,413,415, filed Sep. 13, 2017, Motion Facilitating Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 16/530,423, filed Aug. 2, 2019, Motion Facilitating Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/189,338 U.S. Pat. No. 8,568,486, filed Jul. 22, 2011, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 14/034,944 U.S. Pat. No. 9,192,480, filed Sep. 24, 2013, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/189,339 U.S. Pat. No. 8,574,304, filed Jul. 22, 2011, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 14/034,954 U.S. Pat. No. 9,295,557, filed Sep. 24, 2013, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/593,339 U.S. Pat. No. 8,758,444, filed Aug. 23, 2012, Tibial Baseplate With Asymmetric Placement of Fixation Structures.
U.S. Appl. No. 14/278,805 U.S. Pat. No. 9,308,095, filed May 15, 2014, Tibial Baseplate With Asymmetric Placement of Fixation Structures.
U.S. Appl. No. 15/045,799 U.S. Pat. No. 9,707,089, filed Feb. 17, 2016, Tibial Baseplate With Asymmetric Placement of Fixation Structures.
U.S. Appl. No. 15/616,561 U.S. Pat. No. 10,265,181, filed Jun. 7, 2017, Tibial Baseplate With Asymmetric Placement of Fixation Structures.
U.S. Appl. No. 13/459,037 U.S. Pat. No. 8,858,643, filed Apr. 27, 2012, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/490,153 U.S. Pat. No. 9,204,970, filed Sep. 18, 2014, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/926,281 U.S. Pat. No. 9,925,050, filed Oct. 29, 2015, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 13/594,543 U.S. Pat. No. 9,381,090, filed Aug. 24, 2012, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 15/177,734 U.S. Pat. No. 9,763,796, filed Jun. 9, 2016, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 15/703,713 U.S. Pat. No. 10,195,041, filed Sep. 13, 2017, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 13/459,041 U.S. Pat. No. 9,072,607, filed Apr. 27, 2012, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/740,690 U.S. Pat. No. 9,788,954, filed Jun. 16, 2015, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 15/720,866, filed Sep. 29, 2017, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 13/459,048 U.S. Pat. No. 8,690,954, filed Apr. 27, 2012, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/181,033 U.S. Pat. No. 9,186,255, filed Feb. 14, 2014, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/918,721 U.S. Pat. No. 9,655,728, filed Oct. 21, 2015, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 13/459,056 U.S. Pat. No. 8,764,838, filed Apr. 27, 2012, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/284,028 U.S. Pat. No. 9,295,558, filed May 21, 2014, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 15/062,262 U.S. Pat. No. 9,655,729, filed Mar. 7, 2016, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 14/471,440 U.S. Pat. No. 9,925,052, filed Aug. 28, 2014, Method for Optimizing Implant Designs.
U.S. Appl. No. 15/890,735 U.S. Pat. No. 10,575,959, filed Feb. 7, 2018, Method for Optimizing Implant Designs.
U.S. Appl. No. 16/743,746, filed Jan. 15, 2020, Method for Optimizing Implant Designs.
U.S. Appl. No. 15/267,793 U.S. Pat. No. 10,278,827, filed Sep. 16, 2016, Prosthesis System Including Tibial Bearing Component.
U.S. Appl. No. 16/352,287, filed Mar. 13, 2019, Prosthesis System Including Tibial Bearing Component.
U.S. Appl. No. 15/915,886 U.S. Pat. No. 10,675,153, filed Mar. 8, 2018, Tibial Prosthesis With Tibial Bearing Component Securing Feature.
U.S. Appl. No. 16/849,394, filed Apr. 15, 2020, Tibial Prosthesis With Tibial Bearing Component Securing Feature.
U.S. Appl. No. 16/179,201, filed Nov. 2, 2018, Implants for Adding Joint Inclination to a Knee Arthroplasty.
U.S. Appl. No. 16/389,381, filed Apr. 19, 2019, Posterior Stabilized Prosthesis System.
“U.S. Appl. No. 15/720,866, Notice of Allowance dated Sep. 23, 2020”, 7 pgs.
“U.S. Appl. No. 15/720,866, PTO Response to Rule 312 Communication dated Nov. 20, 2020”, 2 pgs.
“U.S. Appl. No. 15/720,866, Response filed May 27, 2020 to Final Office Action dated Feb. 28, 2020”, 13 pgs.
“U.S. Appl. No. 16/179,201, Advisory Action dated Jun. 25, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Feb. 8, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Final Office Action dated Apr. 20, 2021”, 11 pgs.
“U.S. Appl. No. 16/179,201, Non Final Office Action dated Nov. 2, 2020”, 15 pgs.
“U.S. Appl. No. 16/179,201, Response filed Jan. 28, 2021 to Non Final Office Action dated Nov. 2, 2020”, 16 pgs.
“U.S. Appl. No. 16/179,201, Response filed Jun. 18, 2021 to Final Office Action dated Apr. 20, 2021”, 16 pgs.
“U.S. Appl. No. 16/179,201, Response filed Oct. 5, 2020 to Restriction Requirement dated Aug. 7, 2020”, 9 pgs.
“U.S. Appl. No. 16/179,201, Restriction Requirement dated Aug. 7, 2020”, 10 pgs.
“U.S. Appl. No. 16/179,201, Supplemental Amendment & Response Filed Feb. 19, 2021 to Non-Final Office Action Filed Nov. 2, 2020”, 17 pgs.
“U.S. Appl. No. 16/352,287, Final Office Action dated May 25, 2021”, 8 pgs.
“U.S. Appl. No. 16/352,287, Non Final Office Action dated Dec. 10, 2020”, 12 pgs.
“U.S. Appl. No. 16/352,287, Notice of Allowance dated Jun. 30, 2021”, 7 pgs.
“U.S. Appl. No. 16/352,287, Response filed Feb. 22, 2021 to Non Final Office Action dated Dec. 10, 2020”, 14 pgs.
“U.S. Appl. No. 16/352,287, Response filed Jun. 18, 2021 to Final Office Action dated May 25, 2021”, 8 pgs.
“U.S. Appl. No. 16/352,287, Response filed Oct. 12, 2020 to Restriction Requirement dated Aug. 17, 2020”, 8 pgs.
“U.S. Appl. No. 16/389,381, Restriction Requirement dated Aug. 17, 2020”, 6 pgs.
“U.S. Appl. No. 16/389,381, Notice of Allowance dated Jul. 16, 2020”, 5 pgs.
“U.S. Appl. No. 16/389,381, Response filed Jun. 19, 2020 to Non Final Office Action dated Mar. 30, 2020”, 9 pgs.
“U.S. Appl. No. 16/530,423, Non Final Office Action dated May 17, 2021”, 10 pgs.
“U.S. Appl. No. 16/596,194, Final Office Action dated May 20, 2021”, 21 pgs.
“U.S. Appl. No. 16/596,194, Non Final Office Action dated Jan. 22, 2021”, 19 pgs.
“U.S. Appl. No. 16/596,194, Response filed Apr. 12, 2021 to Non Final Office Action dated Jan. 22, 2021”, 15 pgs.
“U.S. Appl. No. 16/715,092, Restriction Requirement dated Jun. 25, 2021”, 6 pgs.
“U.S. Appl. No. 16/849,394, Preliminary Amendment filed Jun. 3, 2020”, 7 pgs.
“U.S. Appl. No. 17/068,435, Preliminary Amendment filed Nov. 13, 2020”, 7 pgs.
“U.S. Appl. No. 17/134,885, Preliminary Amendment filed Jan. 18, 2021”, 10 pgs.
“Australian Application Serial No. 2020204019, First Examination Report dated Jun. 18, 2021”, 7 pgs.
“Brazilian Application Serial No. BR1120130016736, Response filed Oct. 5, 2020 to Office Action dated Jun. 10, 2020”, (W/ English Translation of Claims), 91 pgs.
“Canadian Application Serial No. 3,063,415, Office Action dated Jul. 13, 2020”, 3 pgs.
“Canadian Application Serial No. 3,063,415, Response filed Nov. 12, 2020 to Office Action dated Jul. 13, 2020”, 15 pgs.
“Chinese Application Serial No. 201880016775.4, Office Action dated Jan. 22, 2021”, with English translation, 15 pages.
“Chinese Application Serial No. 201880031319.7, Office Action dated May 15, 2020”, (W/ English Translation), 12 pgs.
“Chinese Application Serial No. 201880031319.7, Office Action dated Nov. 18, 2020”, (W/ English Translation), 9 pgs.
“Chinese Application Serial No. 201880031319.7, Response filed Jan. 18, 2021 to Office Action dated Nov. 18, 2020”, (W/ English Claims), 16 pgs.
“Chinese Application Serial No. 201880031319.7, Response filed Jul. 22, 2020 to Office Action dated May 15, 2020”, (W/ English Claims), 10 pgs.
“European Application Serial No. 18726670.5, Response to Communication pursuant to Rules 161(1) and 162 EPC filed Jul. 20, 2020”, 9 pgs.
“European Application Serial No. 16189084.3, Communication Pursuant to Article 94(3) EPC dated Jul. 1, 2021”, 6 pgs.
“European Application Serial No. 20175535.2, Partial European Search Report dated May 18, 2021”, 18 pgs.
“Indian Application Serial No. 1545/DELNP/2013, Response filed Jun. 9, 2020 to Office Action dated Dec. 9, 2019”, (W/ English Claims), 78 pgs.
“Japanese Application Serial No. 2019-562605, Notification of Reasons for Refusal dated Jun. 16, 2020”, (W/ English Translation), 7 pgs.
“Japanese Application Serial No. 2019-562605, Notification of Reasons for Refusal dated Nov. 10, 2020”, with English translation, 5 pages.
“Japanese Application Serial No. 2019-562605, Response filed Feb. 9, 2021 to Notification of Reasons for Refusal dated Nov. 10, 2020”, (W/ English Claims), 19 pgs.
“Japanese Application Serial No. 2019-562605, Response filed Sep. 15, 2020 to Notification of Reasons for Refusal dated Jun. 16, 2020”, (W/ English Claims), 15 pgs.
“Australian Application Serial No. 2018266322, First Examination Report dated Dec. 19, 2019”, 2 pgs.
“International Application Serial No. PCT/US2018/031177, International Preliminary Report on Patentability dated Nov. 21, 2019”, 8 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Nov. 9, 2021”, 4 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Nov. 17, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Non Final Office Action dated Sep. 22, 2021”, 11 pgs.
“U.S. Appl. No. 16/530,423, Final Office Action dated Nov. 4, 2021”, 11 pgs.
“U.S. Appl. No. 16/530,423, Response filed Aug. 11, 2021 to Non Final Office Action dated May 17, 2021”, 15 pgs.
“U.S. Appl. No. 16/596,194, Notice of Allowance dated Sep. 9, 2021”, 10 pgs.
“U.S. Appl. No. 16/596,194, Response filed Aug. 18, 2021 to Final Office Action dated May 20, 2021”, 15 pgs.
“U.S. Appl. No. 16/715,092, Non Final Office Action dated Sep. 22, 2021”, 8 pgs.
“U.S. Appl. No. 16/715,092, Response filed Aug. 9, 2021 to Restriction Requirement dated Jun. 25, 2021”, 7 pgs.
“Australian Application Serial No. 2020204019, Response filed Aug. 19, 2021 to First Examination Report dated Jun. 18, 2021”, 3 pgs.
“Australian Application Serial No. 2020204919, Response filed Oct. 15, 2021 to Subsequent Examiners Report dated Sep. 2, 2021”, 22 pgs.
“Australian Application Serial No. 2020204019, Subsequent Examiners Report dated Sep. 2, 2021”, 4 pgs.
“Chinese Application Serial No. 201880016775.4, Decision of Rejection dated Jul. 12, 2021”, (W/ English Translation), 13 pgs.
“European Application Serial No. 16189084.3, Response filed Nov. 8, 2021 to Communication Pursuant to Article 94(3) EPC dated Jul. 1, 2021”, 61 pgs.
“European Application Serial No. 20175535.2, Extended European Search Report dated Aug. 18, 2021”, 16 pgs.
“Mexican Application Serial No. 2016/001734, Response filed Aug. 31, 2021 to Office Action dated Jun. 7, 2021”, (W/ English Translation of Claims), 29 pgs.
“U.S. Appl. No. 16/179,201, Response filed Dec. 3, 2021 to Non Final Office Action dated Sep. 22, 2021”, 11 pages.
“U.S. Appl. No. 16/596,194, Amendment Under 1.312 Filed Dec. 7, 2021”, 9 pages.
“Australian Application Serial No. 2020204019, Subsequent Examiners Report dated Nov. 16, 2021”, 3 pages.
“U.S. Appl. No. 16/715,092, Response filed Dec. 10, 2021 to Non Final Office Action dated Sep. 22, 2021”, 14 pages.
“U.S. Appl. No. 16/596,194, PTO Response to Rule 312 Communication dated Dec. 13, 2021”, 2 pages.
Related Publications (1)
Number Date Country
20200069433 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62505322 May 2017 US
Continuations (1)
Number Date Country
Parent 15971743 May 2018 US
Child 16675938 US