1. Field of the Disclosure
The present disclosure relates generally to provisional orthopedic components used to replicate final orthopedic components during a surgical procedure. More particularly, the present disclosure relates to provisional femoral components that assist in determining the proper size of final prosthetic components for replacement of all or part of a natural knee joint.
2. Description of the Related Art
Knee replacement provisional components are positioned on a distal femur and/or a proximal tibia to allow range of motion testing so that a surgeon can verify joint kinematics and/or proper sizing of final prosthetic components. In certain surgical procedures, a surgeon may remove and replace a provisional femoral component of a first size with a provisional femoral component of a second size to adjust the ligament tension of the knee joint and/or to evaluate the M/L (medial/lateral) sizing of the provisional femoral component. For example, a first provisional femoral component having a first size can correspond to a standard sized femoral prosthesis and a second provisional femoral component having a second size can correspond to a narrow sized femoral prosthesis. Such systems require a provisional femoral component for each different sized femoral prosthesis. During knee surgery, a surgeon may selectively remove and replace a provisional femoral component of a first size with a provisional femoral component of a second size to adjust the ligament tension of the knee joint and/or to evaluate the M/L sizing of the provisional femoral component and determine which femoral prosthesis should be selected for final implantation in a knee joint.
The present disclosure provides a provisional femoral component which, in one embodiment, includes at least one first visual indicator and at least one second visual indicator, the first and second visual indicators providing indicating means for simultaneously visually representing a first profile of a first femoral prosthesis and a second profile of a second femoral prosthesis. In the system of the present disclosure, only one provisional femoral component is needed which can simultaneously visually represent two different femoral prosthesis profiles, as opposed to a system that requires a provisional femoral component for each different sized femoral prosthesis. In another embodiment, the present disclosure provides a provisional femoral component including a patellofemoral flange having two sulci and a central ridge between the two sulci. In this manner, the provisional femoral component can be positioned on a resected distal femur surface of both a right and left knee joint. In the system of the present disclosure, only one provisional femoral component is needed which can be positioned on a resected distal femur surface of both a right and left knee joint, as opposed to a system that requires a left provisional femoral component for a left knee and a separate right provisional femoral component for a right knee.
The present disclosure, in one form thereof, comprises a femoral prosthesis system including a first femoral prosthesis including a first condyle defining a first articulating surface and an opposing first bone contacting surface, and a first peripheral wall spanning the first articulating surface and the first bone contacting surface, the first peripheral wall defining a first profile. The femoral prosthesis system further includes a second femoral prosthesis including a second condyle defining a second articulating surface and an opposing second bone contacting surface, and a second peripheral wall spanning the second articulating surface and the second bone contacting surface, the second peripheral wall defining a second profile, wherein the second profile is different than the first profile. The femoral prosthesis system further includes a provisional femoral component including a provisional condyle defining a provisional articulating surface and an opposing provisional bone contacting surface, a provisional peripheral wall spanning the provisional articulating surface and the provisional bone contacting surface, and at least one visual indicator and at least one second visual indicator spaced along the provisional peripheral wall, the at least one first visual indicator visually representing the first profile of the first femoral prosthesis, and the at least one second visual indicator visually representing the second profile of the second femoral prosthesis.
The present disclosure, in another form thereof, comprises a provisional femoral component including a provisional condyle defining a provisional articulating surface sized and shaped to be engageable with a proximal tibia in joint articulating relationship and an opposing provisional bone contacting surface sized and shaped to be engageable with a distal femur, and indicating means for simultaneously visually representing two different femoral prosthesis profiles.
The present disclosure, in a further form thereof, comprises a method of determining a size of a femoral prosthesis for a prosthetic knee joint, the knee joint including a proximal tibia and a distal femur, the method comprising: obtaining a femoral prosthesis system including a first femoral prosthesis including a first condyle defining a first articulating surface and an opposing first bone contacting surface, and a first peripheral wall spanning the first articulating surface and the first bone contacting surface, the first peripheral wall defining a first profile; a second femoral prosthesis including a second condyle defining a second articulating surface and an opposing second bone contacting surface, and a second peripheral wall spanning the second articulating surface and the second bone contacting surface, the second peripheral wall defining a second profile, wherein the second profile is different than the first profile; and a provisional femoral component including a provisional condyle defining a provisional articulating surface and an opposing provisional bone contacting surface, a provisional peripheral wall spanning the provisional articulating surface and the provisional bone contacting surface, and at least one first visual indicator and at least one second visual indicator spaced along the provisional peripheral wall, the at least one first visual indicator visually representing the first profile of first femoral prosthesis, and the at least one second visual indicator visually representing the second profile of the second femoral prosthesis; positioning the provisional bone contacting surface of the provisional femoral component on a resected distal femur surface; and selecting one of the first femoral prosthesis and the second femoral prosthesis for implantation in the knee joint based on one of the at least one first visual indicator and the at least one second visual indicator.
The present disclosure, in another form thereof, comprises a provisional femoral component including a patellofemoral flange including a bone contacting, non-articulating surface and an articulating surface opposite the bone contacting surface, the articulating surface including a first sulcus formed in the patellofemoral flange, a second sulcus formed in the patellofemoral flange, a central ridge disposed between the first sulcus and the second sulcus, the central ridge having a first thickness, and a first anterior flange and a second anterior flange extending along respective medial/lateral peripheries of the patellofemoral flange, the first and second anterior flanges each having a second thickness greater than the first thickness of the central ridge, the central ridge, the first sulcus, and the second sulcus each disposed between the first and second anterior flanges.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following descriptions of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the disclosure, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.
The present disclosure, in one embodiment, provides a femoral prosthesis system for determining the size of a femoral prosthesis for a prosthetic knee joint, the femoral prosthesis system including a provisional femoral component including indicating means for simultaneously visually representing two different femoral prosthesis profiles.
The disclosed embodiments of the present disclosure include a provisional femoral component. For example, provisional femoral component 20A is shown in
The first exemplary embodiment, as illustrated in
In a posterior stabilized femoral component, such as provisional femoral component 20A, cam 42A cooperates with a spine (not shown) formed in a tibial component, such as tibial bearing component 182 shown in
In the exemplary embodiments of
Referring to
Second femoral prosthesis 140 is illustrated in dashed lines in
Second femoral prosthesis 140 and first femoral prosthesis 120 of the present disclosure may be constructed of any biocompatible ceramic or metal, including, but not limited to, titanium, a titanium alloy, cobalt chromium, cobalt chromium molybdenum, porous tantalum, or a combination of these materials, for example. Some or all of the non-articulating portions of first femoral prosthesis 120 and second femoral prosthesis 140 may include a highly porous biomaterial useful as a bone substitute and as cell and tissue receptive material. A highly porous biomaterial may have a porosity as low as 55%, 65%, or 75% or as high as 80%, 85%, or 90%. An example of such a material is produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Ind. Trabecular Metal™ is a trademark of Zimmer, Inc. Such a material may be formed from a reticulated vitreous carbon foam substrate which is infiltrated and coated with a biocompatible metal, such as tantalum, by a chemical vapor deposition (“CVD”) process in the manner disclosed in detail in U.S. Pat. No. 5,282,861 to Kaplan, the entire disclosure of which is expressly incorporated herein by reference. In addition to tantalum, other metals such as niobium, or alloys of tantalum and niobium with one another or with other metals may also be used.
Generally, the porous tantalum structure includes a large plurality of ligaments defining open spaces therebetween, with each ligament generally including a carbon core covered by a thin film of metal such as tantalum, for example. The open spaces between the ligaments form a matrix of continuous channels having no dead ends, such that growth of cancellous bone through the porous tantalum structure is uninhibited. The porous tantalum may include up to 75%, 85%, or more void space therein. Thus, porous tantalum is a lightweight, strong porous structure which is substantially uniform and consistent in composition, and closely resembles the structure of natural cancellous bone, thereby providing a matrix into which cancellous bone may grow to provide fixation of second femoral prosthesis 140 and first femoral prosthesis 120 to the patient's bone.
The porous tantalum structure may be made in a variety of densities in order to selectively tailor the structure for particular applications. In particular, as discussed in the above-incorporated U.S. Pat. No. 5,282,861, the porous tantalum may be fabricated to virtually any desired porosity and pore size, and can thus be matched with the surrounding natural bone in order to provide an improved matrix for bone ingrowth and mineralization.
Referring to
Although in the exemplary embodiment of
In the exemplary embodiments of
Referring to
In one embodiment, one second visual indicator 58A, e.g., one notch including notch interior wall 62A, can be disposed on each facet, i.e., one notch disposed on each of anterior facet 44A, anterior chamfer facet 46A, distal facet 48A, posterior chamfer facet 50A, and posterior facet 52A. In another embodiment, one second visual indicator 58A can be disposed on respective medial/lateral peripheries on each facet, i.e., anterior facet 44A, anterior chamfer facet 46A, distal facet 48A, posterior chamfer facet 50A, and posterior facet 52A. In another embodiment, as illustrated in
In another embodiment, referring to
In one embodiment, one second visual indicator 66B, e.g., one protrusion including protrusion exterior wall 70B, can be disposed on each facet, i.e., one protrusion disposed on each of anterior facet 44B, anterior chamfer facet 46B, distal facet 48B, posterior chamfer facet 50B, and posterior facet 52B. In another embodiment, one second visual indicator 66B can be disposed on respective medial/lateral peripheries on each facet, i.e., anterior facet 44B, anterior chamfer facet 46B, distal facet 48B, posterior chamfer facet 50B, and posterior facet 52B. In another embodiment, as illustrated in
Referring to
Referring to
Referring to
In another embodiment, the present disclosure provides a provisional femoral component including a patellofemoral flange having two sulci and a central ridge between the two sulci. Accordingly, the provisional femoral component of the present disclosure is capable of being positioned on a resected distal femur surface of both a right and left knee. Although in the exemplary embodiment of
Referring to
For purposes of this disclosure, patellofemoral flange 34A is defined as a flange sized to fit on a distal femur and which articulates with the patella of a knee joint during normal articulation of the knee joint through a normal range of motion. For example, articulating surface 74A of patellofemoral flange 34A is sized and shaped for articulating with a natural or prosthetic patella during normal articulation of a knee joint through a normal range of motion. First sulcus 76A and second sulcus 78A are each defined as a sulcus or patellofemoral groove of patellofemoral flange 34A sized and shaped to provide a groove to receive a natural or prosthetic patella of a knee joint during normal articulation of the knee joint through a normal range of motion.
In one embodiment, as illustrated in
Referring to
Patellofemoral flange 34A can also be used on a right distal femur of a right knee joint. For example, with patellofemoral flange 34A positioned adjacent a right distal femur of a right knee joint, second anterior flange 84A of right lateral portion 86A simulates a lateral aspect of patellofemoral flange 34A and central ridge 80A simulates a medial aspect of patellofemoral flange 34A. In this manner, the surgeon can track the patella through range of motion testing and receive feedback when the patella is dislocating medially, i.e., when the patella rides over central ridge 80A and out of second sulcus 78A. In this embodiment, first anterior flange 82A simulates a medial aspect of patellofemoral flange 34A.
Patellofemoral flange 34A of the present disclosure may be used with a patellofemoral system designed to provide a partial knee replacement in which only the patellofemoral compartment of the distal femur receives a prosthesis. In another embodiment, patellofemoral flange 34A of the present disclosure can be used with provisional femoral component 20A as illustrated in
Referring to
Referring to
Referring to
In one embodiment, referring to
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 13/161,624, filed on Jun. 16, 2011, the benefit of priority of which is claimed hereby, and which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4081866 | Upshaw et al. | Apr 1978 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4944756 | Kenna | Jul 1990 | A |
4950298 | Gustilo et al. | Aug 1990 | A |
4959071 | Brown et al. | Sep 1990 | A |
5007933 | Sidebotham et al. | Apr 1991 | A |
5035700 | Kenna | Jul 1991 | A |
5061271 | Van Zile | Oct 1991 | A |
5133758 | Hollister | Jul 1992 | A |
5226915 | Bertin | Jul 1993 | A |
5282861 | Kaplan | Feb 1994 | A |
5282869 | Miyajima et al. | Feb 1994 | A |
5326361 | Hollister | Jul 1994 | A |
5549686 | Johnson et al. | Aug 1996 | A |
5609643 | Colleran et al. | Mar 1997 | A |
5871546 | Colleran et al. | Feb 1999 | A |
5879354 | Haines et al. | Mar 1999 | A |
5879393 | Whiteside et al. | Mar 1999 | A |
5935173 | Roger et al. | Aug 1999 | A |
6039764 | Pottenger et al. | Mar 2000 | A |
6074424 | Perrone, Jr. et al. | Jun 2000 | A |
6106529 | Techiera | Aug 2000 | A |
6152960 | Pappas | Nov 2000 | A |
6197064 | Haines et al. | Mar 2001 | B1 |
6264697 | Walker | Jul 2001 | B1 |
6364911 | Schmotzer et al. | Apr 2002 | B1 |
6540787 | Biegun et al. | Apr 2003 | B2 |
6589283 | Metzger et al. | Jul 2003 | B1 |
6699291 | Augoyard et al. | Mar 2004 | B1 |
6743258 | Keller | Jun 2004 | B1 |
6893467 | Bercovy | May 2005 | B1 |
7081137 | Servidio | Jul 2006 | B1 |
7297164 | Johnson et al. | Nov 2007 | B2 |
7306609 | Schmotzer et al. | Dec 2007 | B2 |
7413577 | Servidio | Aug 2008 | B1 |
7442196 | Fisher et al. | Oct 2008 | B2 |
7465320 | Kito et al. | Dec 2008 | B1 |
7678152 | Suguro et al. | Mar 2010 | B2 |
8062377 | Haines | Nov 2011 | B2 |
8088167 | Haines | Jan 2012 | B2 |
8551179 | Jones et al. | Oct 2013 | B2 |
8932365 | Parisi et al. | Jan 2015 | B2 |
9060868 | Parisi et al. | Jun 2015 | B2 |
9308095 | Parisi et al. | Apr 2016 | B2 |
9629723 | Parisi et al. | Apr 2017 | B2 |
20030153924 | Kana et al. | Aug 2003 | A1 |
20030158606 | Coon et al. | Aug 2003 | A1 |
20030225458 | Donkers et al. | Dec 2003 | A1 |
20040039450 | Griner et al. | Feb 2004 | A1 |
20040243245 | Plumet et al. | Dec 2004 | A1 |
20050055102 | Tornier et al. | Mar 2005 | A1 |
20050143832 | Carson | Jun 2005 | A1 |
20050177169 | Fisher et al. | Aug 2005 | A1 |
20050283249 | Carson | Dec 2005 | A1 |
20060265078 | Mcminn | Nov 2006 | A1 |
20060265080 | Mcminn | Nov 2006 | A1 |
20060287733 | Bonutti | Dec 2006 | A1 |
20070135925 | Walker | Jun 2007 | A1 |
20070135926 | Walker | Jun 2007 | A1 |
20070150066 | McMinn | Jun 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070260323 | Earl et al. | Nov 2007 | A1 |
20080058947 | Earl et al. | Mar 2008 | A1 |
20080058948 | Biegun et al. | Mar 2008 | A1 |
20080097615 | Lipman et al. | Apr 2008 | A1 |
20080114463 | Auger et al. | May 2008 | A1 |
20080119940 | Otto et al. | May 2008 | A1 |
20080140212 | Metzger et al. | Jun 2008 | A1 |
20080243258 | Sancheti | Oct 2008 | A1 |
20080288080 | Sancheti | Nov 2008 | A1 |
20090036992 | Tsakonas | Feb 2009 | A1 |
20090043395 | Hotokebuchi et al. | Feb 2009 | A1 |
20090062924 | Kito et al. | Mar 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090265011 | Mandell | Oct 2009 | A1 |
20090265013 | Mandell | Oct 2009 | A1 |
20090306787 | Crabtree et al. | Dec 2009 | A1 |
20090319047 | Walker | Dec 2009 | A1 |
20090319048 | Shah et al. | Dec 2009 | A1 |
20090319049 | Shah et al. | Dec 2009 | A1 |
20090326663 | Dun | Dec 2009 | A1 |
20090326665 | Wyss et al. | Dec 2009 | A1 |
20090326666 | Wyss et al. | Dec 2009 | A1 |
20090326667 | Williams et al. | Dec 2009 | A1 |
20100036499 | Pinskerova | Feb 2010 | A1 |
20100036500 | Heldreth et al. | Feb 2010 | A1 |
20100042224 | Otto et al. | Feb 2010 | A1 |
20100161067 | Saleh et al. | Jun 2010 | A1 |
20100211179 | Angibaud et al. | Aug 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110022179 | Andriacchi et al. | Jan 2011 | A1 |
20110093083 | Earl et al. | Apr 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110218541 | Bailey et al. | Sep 2011 | A1 |
20110307067 | Dees | Dec 2011 | A1 |
20120089234 | Mouillet et al. | Apr 2012 | A1 |
20120323334 | Jones et al. | Dec 2012 | A1 |
20120323335 | Parisi et al. | Dec 2012 | A1 |
20120323336 | Parisi et al. | Dec 2012 | A1 |
20120323337 | Parisi et al. | Dec 2012 | A1 |
20130006370 | Wogoman et al. | Jan 2013 | A1 |
20130006371 | Wogoman et al. | Jan 2013 | A1 |
20130006376 | Wogoman et al. | Jan 2013 | A1 |
20130006378 | Wogoman | Jan 2013 | A1 |
20130204380 | Mouillet et al. | Aug 2013 | A1 |
20130211532 | Samuelson et al. | Aug 2013 | A1 |
20150081031 | Parisi et al. | Mar 2015 | A1 |
20150265410 | Parisi et al. | Sep 2015 | A1 |
20160220379 | Parisi et al. | Aug 2016 | A1 |
20170189193 | Parisi et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
101330883 | Dec 2008 | CN |
101522137 | Sep 2009 | CN |
101642394 | Feb 2010 | CN |
101658446 | Mar 2010 | CN |
101664347 | Mar 2010 | CN |
101669844 | Mar 2010 | CN |
101627930 | Oct 2010 | CN |
101879099 | Nov 2010 | CN |
101959475 | Jan 2011 | CN |
102006839 | Apr 2011 | CN |
102006840 | Apr 2011 | CN |
102076283 | May 2011 | CN |
103118633 | May 2013 | CN |
103732186 | Apr 2014 | CN |
103732187 | Apr 2014 | CN |
103732188 | Apr 2014 | CN |
103747762 | Apr 2014 | CN |
103732188 | May 2016 | CN |
103732186 | Sep 2016 | CN |
103747762 | Sep 2016 | CN |
106214293 | Dec 2016 | CN |
202007014128 | Jan 2008 | DE |
0303467 | Feb 1989 | EP |
0546726 | Jun 1993 | EP |
0376658 | Jun 1994 | EP |
0381352 | Jun 1994 | EP |
0722721 | Jul 1996 | EP |
0567705 | Jul 1997 | EP |
0993812 | Apr 2000 | EP |
1013232 | Jun 2000 | EP |
1285638 | Feb 2003 | EP |
1033117 | Jun 2004 | EP |
0975286 | Aug 2004 | EP |
1477142 | Nov 2004 | EP |
1477143 | Nov 2004 | EP |
1013232 | Oct 2005 | EP |
1285638 | Nov 2005 | EP |
1719478 | Nov 2006 | EP |
1722721 | Nov 2006 | EP |
1354571 | Jun 2007 | EP |
1862150 | Dec 2007 | EP |
2004099 | Dec 2008 | EP |
1867302 | Sep 2009 | EP |
2147660 | Jan 2010 | EP |
2158878 | Mar 2010 | EP |
1555962 | Feb 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2720646 | Apr 2014 | EP |
64068255 | Mar 1989 | JP |
341694 | Sep 1991 | JP |
2003513706 | Apr 2003 | JP |
2004166802 | Jun 2004 | JP |
2008502393 | Jan 2008 | JP |
2008503327 | Feb 2008 | JP |
4077041 | Apr 2008 | JP |
2008523962 | Jul 2008 | JP |
5571863 | Jul 2014 | JP |
2014522290 | Sep 2014 | JP |
2014522291 | Sep 2014 | JP |
2014522292 | Sep 2014 | JP |
2014522671 | Sep 2014 | JP |
2015164599 | Sep 2015 | JP |
5792898 | Oct 2015 | JP |
WO-9535074 | Dec 1995 | WO |
WO-0023010 | Apr 2000 | WO |
WO-2004016204 | Feb 2004 | WO |
WO-2005037147 | Apr 2005 | WO |
WO-2005051240 | Jun 2005 | WO |
WO-2005122967 | Dec 2005 | WO |
WO-2006002296 | Jan 2006 | WO |
WO-2006058057 | Jun 2006 | WO |
WO-2006069260 | Jun 2006 | WO |
WO-2007007841 | Jan 2007 | WO |
WO-2007109641 | Sep 2007 | WO |
WO-2008054389 | May 2008 | WO |
WO-2009088234 | Jul 2009 | WO |
WO-2009088236 | Jul 2009 | WO |
WO-2009088238 | Jul 2009 | WO |
WO-2009105495 | Aug 2009 | WO |
WO-2010008803 | Jan 2010 | WO |
WO-2010075365 | Jul 2010 | WO |
WO-2010108550 | Sep 2010 | WO |
WO-2011072235 | Jun 2011 | WO |
WO-2012112698 | Aug 2012 | WO |
WO-2012173704 | Dec 2012 | WO |
WO-2012173706 | Dec 2012 | WO |
WO-2012173740 | Dec 2012 | WO |
Entry |
---|
“U.S. Appl. No. 13/161,624, Notice of Allowance dated Mar. 12, 2013”, 11 pgs. |
“U.S. Appl. No. 13/161,624, Response filed Feb. 26, 2013 to Restriction Requirement dated Sep. 26, 2012”, 9 pgs. |
“U.S. Appl. No. 13/161,624, Restriction Requirement dated Sep. 26, 2012”, 8 pgs. |
“U.S. Appl. No. 13/459,060, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“U.S. Appl. No. 13/459,061, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“U.S. Appl. No. 13/459,064, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“Extramedullary/Intramedullary Tibial Resector: Surgical Technique”, Nexgen Complete Knee Solution, Zimmer, Inc. 97-5997-02 Rev 1, (2000, 2002), 25 pgs. |
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs. |
“Gender Solutions Natural-Knee Flex System: Surgical Technique”, Zimmer, Inc., (2007, 2008, 2009), 36 pgs. |
“Gender Solutions Patello-Femoral Joint (PFJ) System: Surgical Technique”, Zimmer Inc., (2008, 2009), 38 pgs. |
“International Application Serial No. PCT/US2012/035688, Partial Search Report dated Jul. 3, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035688, Search Report dated Sep. 17, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035688, Written Opinion dated Sep. 17, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/035691, Partial Search Report dated Sep. 10, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035691, Search Report dated Sep. 17, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035691, Written Opinion dated Sep. 17, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/035693, Partial Search Report dated Jun. 27, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035693, Search Report dated Oct. 9, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035693, Written Opinion dated Oct. 9, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/038531, Search Report dated Oct. 8, 2012”, 14 pgs. |
“International Application Serial No. PCT/US2012/038531, Written Opinion dated Oct. 8, 2012”, 10 pgs. |
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs. |
“NexGen LPS Fixed Knee: Surgical Technique”, Zimmer Inc., (2002, 2008), 44 pgs. |
“NexGen LPS-Flex Mobile and LPS-Mobile Bearing Knees”, Zimmer, Inc., (2007, 2008), 4 pgs. |
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs. |
“Unicompartmental High Flex Knee: Intramedullary, Spacer Block Option and Extramedullary Minimally Invasive Surgical Techniques”, Zimmer, Inc., (2004, 2009, 2010), 62 pgs. |
“U.S. Appl. No. 13/459,060, Restriction Requirement dated Nov. 4, 2013”, 6 pgs. |
“U.S. Appl. No. 13/459,060, Non Final Office Action dated Mar. 14, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Jan. 3, 2014 to Restriction Requirement dated Nov. 4, 2013”, 25 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Jul. 14, 2014 to Non-Final Office Action dated Mar. 14, 2014”, 30 pgs. |
“U.S. Appl. No. 13/459,061, Final Office Action dated Jul. 23, 2014”, 10 pgs. |
“U.S. Appl. No. 13/459,061, Non Final Office Action dated Mar. 26, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Jan. 10, 2014 to Restriction Requirement dated Nov. 12, 2013”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Jun. 25, 2014 to Non Final Office Action dated Mar. 26, 2014”, 11 pgs. |
“U.S. Appl. No. 13/459,061, Restriction Requirement dated Nov. 12, 2013”, 5 pgs. |
“U.S. Appl. No. 13/459,064, Final Office Action dated Jun. 13, 2014”, 10 pgs. |
“U.S. Appl. No. 13/459,064, Non Final Office Action dated Mar. 6, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Jan. 27, 2014 to Restriction Requirement dated Nov. 25, 2013”, 13 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Jun. 3, 2014 to Non-Final Office action dated Mar. 6, 2014”, 13 pgs. |
“U.S. Appl. No. 13/459,064, Restriction Requirement dated Nov. 25, 2013”, 5 pgs. |
“Australian Application Serial No. 2012271153, Amendment filed Jan. 16, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035688, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035691, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035693, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/038531, International Preliminary Report on Patentability dated Jan. 3, 2014”, 12 pgs. |
U.S. Appl. No. 14/731,013, filed Jun. 4, 2015, Femoral Component for a Knee Prosthesis With Bone Compacting Ridge. |
U.S. Appl. No. 14/553,034, U.S. Pat. No. 9,629,723, filed Nov. 25, 2014, Femoral Component for a Knee Prosthesis With Improved Articular Characteristics. |
U.S. Appl. No. 15/462,742, filed Mar. 17, 2017, Femoral Component for a Knee Prosthesis With Improved Articular Characteristics. |
U.S. Appl. No. 15/092,107, Apr. 6, 2016, Femoral Component for a Knee Prostesis with Improved Articular Characteristics. |
“U.S. Appl. No. 13/459,060, Advisory Action dated Jun. 8, 2015”, 3 pgs. |
“U.S. Appl. No. 13/459,060, Final Office Action dated Apr. 1, 2015”, 11 pgs. |
“U.S. Appl. No. 13/459,060, Non Final Office Action dated Oct. 9, 2014”, 11 pgs. |
“U.S. Appl. No. 13/459,060, Notice of Allowance dated Dec. 7, 2015”, 7 pgs. |
“U.S. Appl. No. 13/459,060, PTO Response to Rule 312 Communication dated Mar. 3, 2016”, 2 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Feb. 18, 2015 to Non-Final Office Action dated Oct. 9, 2014”, 23 pgs. |
“U.S. Appl. No. 13/459,060, Response filed May. 28, 2015 to Final Office Action dated Apr. 1, 2015”, 21 pgs. |
“U.S. Appl. No. 13/459,061, Advisory Action dated Sep. 30, 2014”, 3 pgs. |
“U.S. Appl. No. 13/459,061, Non Final Office Action dated Nov. 10, 2014”, 9 pgs. |
“U.S. Appl. No. 13/459,061, Notice of Allowance dated Feb. 27, 2015”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Feb. 10, 2015 to Non Final Office Action dated Nov. 10, 2014”, 12 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Sep. 19, 2014 to Final Office Action dated Jul. 23, 2014”, 9 pgs. |
“U.S. Appl. No. 13/459,064, Notice of Allowance dated Aug. 28, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,064, PTO Response to Rule 312 Communication dated Dec. 15, 2014”, 2 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Aug. 13, 2014 to Final Office Action dated Jun. 13, 2014”, 13 pgs. |
“U.S. Appl. No. 14/553,034, Final Office Action dated Sep. 27, 2016”, 7 pgs. |
“U.S. Appl. No. 14/553,034, Non Final Office Action dated Apr. 20, 2016”, 15 pgs. |
“U.S. Appl. No. 14/553,034, Notice of Allowance dated Dec. 21, 2016”, 5 pgs. |
“U.S. Appl. No. 14/553,034, Preliminary Amendment filed Mar. 13, 2015”, 10 pgs. |
“U.S. Appl. No. 14/553,034, Response filed Aug. 22, 2016 to Non Final Office Action dated Apr. 20, 2016”, 10 pgs. |
“U.S. Appl. No. 14/553,034, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 27, 2016”, 9 pgs. |
“U.S. Appl. No. 14/731,013, Advisory Action dated Oct. 25, 2017”, 3 pgs. |
“U.S. Appl. No. 14/731,013, Final Office Action dated Aug. 14, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Non Final Office Action dated Apr. 20, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Non Final Office Action dated Nov. 28, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Preliminary Amendment dated Jun. 4, 2015”, 7 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Jul. 20, 2017 to Non Final Office Action dated Apr. 20, 2017”, 10 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Oct. 16, 2017 to Final Office Actio dated Aug. 14, 2017”, 11 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Nov. 14, 2017 to Advisor Action dated Aug. 14, 2017”, 11 pgs. |
“U.S. Appl. No. 14/731,013, Supplemental Preliminary Amendment filed Jun. 18, 2015”, 5 pgs. |
“U.S. Appl. No. 15/092,107, Preliminary Amendment filed Apr. 7, 2016”, 11 pgs. |
“U.S. Appl. No. 15/092,107, Response filed Jan. 9, 2018 to Restriction Requirement dated Nov. 17, 2017”, 16 pgs. |
“U.S. Appl. No. 15/092,107, Restriction Requirement dated Nov. 17, 2017”, 7 pgs. |
“Australian Application Serial No. 2012271186, First Examiner Report dated Dec. 15, 2015”, 3 pgs. |
“Australian Application Serial No. 2012271186, Response filed Jun. 24, 2016 to First Examiner Report dated Dec. 15, 2015”, 14 pgs. |
“Australian Application Serial No. 2012271186, Subsequent Examiners Report dated Aug. 2, 2016”, 3 pgs. |
“Australian Application Serial No. 2012271243, Office Action dated Apr. 1, 2015”, 2 pgs. |
“Australian Application Serial No. 2012271243, Response filed Apr. 08, 2015 to Office Action dated Apr. 1, 2015”, 4 pgs. |
“Australian Application Serial No. 2012271243, Response filed Apr. 15, 2015 to Office Action dated Apr. 13, 2015”, 1 pg. |
“Australian Application Serial No. 2012271243, Subsequent Examiners Report dated Apr. 13, 2015”, 2 pgs. |
“Australian Application Serial No. 2012271244, First Examiner Report dated Dec. 15, 2015”, 3 pgs. |
“Australian Application Serial No. 2012271244, Response filed Jun. 24, 2016 to First Examiner Report dated Dec. 15, 2015”, 13 pgs. |
“Australian Application Serial No. 2016202865, First Examination Report dated Jun. 26, 2017”, 2 pgs. |
“Australian Application Serial No. 2016202865, Response filed Aug. 16, 2017 to First Examination Report dated Jun. 26, 2017”, 22pgs. |
“Canadian Application Serial No. 294408, Voluntary Amendment filed Sep. 18, 2015”, 6 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated Mar. 30, 2015”, (W/ English Translation), 2 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated May 10, 2016”, w/English Translation, 8 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated May 28, 2015”, (W/ English Translation), 12 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated Dec. 3, 2015”, wlEnglish Translation, 8 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed Feb. 1, 2016 to Office Action dated Dec. 3, 2015”, w/English Claims, 24 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed May 31, 2016 to Office Action dated May 10, 2016”, (W/ English Translation), 34 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed Sep. 7, 2015 to Office Action dated May 28, 2015”, (W/ English Translation), 72 pgs. |
“Chinese Application Serial No. 201280039705.3, Office Action dated Mar. 20, 2015”, (W/ English Translation), 15 pgs. |
“Chinese Application Serial No. 201280039705.3, Response filed Aug. 6, 2015 to Office Action dated Mar. 20, 2015”, (W/ English translation of claims), 11 pgs. |
“Chinese Application Serial No. 201280039705.3, Voluntary Amendment filed Jul. 22, 2014”, w/English Claims, 9 pgs. |
“Chinese Application Serial No. 201280039706.8, Office Action dated Feb. 26, 2016”, W/ English Translation, 4 pgs. |
“Chinese Application Serial No. 201280039706.8, Office Action dated May 19, 2015”, (W/ English Translation), 14 pgs. |
“Chinese Application Serial No. 201280039706.8, Response filed May 11, 2016 to Office Action dated Feb. 26, 2016”, W/ English Translation of Claims, 9 pgs. |
“Chinese Application Serial No. 201280039706.8, Response filed Nov. 16, 2015 to Office Action dated May 19, 2015”, W/ English Translation of Claims, 16 pgs. |
“Chinese Application Serial No. 201280039714.2, Office Action dated May 4, 2015”, (W/ English Translation), 19 pgs. |
“Chinese Application Serial No. 201280039714.2, Office Action dated Dec. 3, 2015”, (W/ English Translation), 7 pgs. |
“Chinese Application Serial No. 201280039714.2, Response filed Feb. 1, 2016 to Office Action dated Dec. 3, 2015”, w/English Claims, 8 pgs. |
“Chinese Application Serial No. 201280039714.2, Response filed Sep. 18, 2015 to Office Action dated May 4, 2015”, (W/ English Translation of Claims), 9 pgs. |
“Chinese Application Serial No. 201610697089.0, Office Action dated Jul. 25, 2017”, With English Translation, 30 pgs. |
“Chinese Application Serial No. 201610697089.0, Response filed Nov. 1, 2017 to Office Action dated Jul. 25, 2017”, w/English Claims, 11 pgs. |
“European Application Serial No. 12720354.5, Decision of Grant dated Dec. 3, 2015”, 3 pgs. |
“European Application Serial No. 12720354.5, Examination Notification Art. 94(3) dated Oct. 22, 2014”, 4 pgs. |
“European Application Serial No. 12720354.5, Office Action dated Jun. 17, 2015”, 96 pgs. |
“European Application Serial No. 12720354.5, Response filed Aug. 21, 2014 to Communication pursuant to Rules 161(2) and 162 EPC dated Feb. 14, 2014”, 17 pgs. |
“European Application Serial No. 12720354.5, Response filed Dec. 24, 2014 to Examination Notification Art. 94(3) dated Oct. 22, 2014”, 13 pgs. |
“European Application Serial No. 12722967.2, Examination Notification Art. 94(3) dated Oct. 22, 2014”, 4 pgs. |
“European Application Serial No. 12724484.6, Communication Pursuant to Article 94(3) EPC dated May 2, 2016”, 5 pgs. |
“European Application Serial No. 12724484.6, Examination Notification Art. 94(3) dated Dec. 3, 2014”, 5 pgs. |
“European Application Serial No. 12724484.6, Response filed Apr. 13, 2015 to Examination Notification Art. 94(3) dated Dec. 3, 2014”, 16 pgs. |
“European Application Serial No. 12724484.6, Response filed Aug. 20, 2014 to Communication pursuant to Rules 161(1) and 162 EPC dated Feb. 14, 2014”, 10 pgs. |
“European Application Serial No. 12724484.6, Response filed Sep. 12, 2016 to Communication Pursuant to Article 94(3) EPC dated May 2, 2016”, 29 pgs. |
“European Application Serial No. 14200265.8, Extended European Search Report dated Aug. 22, 2016”, 23 pgs. |
“European Application Serial No. 14200265.8, Response filed on Mar. 21, 2017 to Extended European Search Report dated Aug. 22, 2016”, 18 pgs. |
“European Application Serial No. 15180629.6, Communication Pursuant to Article 94(3) EPC dated Jul. 5, 2017”, 4 pgs. |
“European Application Serial No. 15180629.6, Extended European Search Report dated Aug. 24, 2016”, 8 pgs. |
“European Application Serial No. 15180629.6, Response filed Jan. 15, 2018 to Communication Pursuant to Article 94(3) EPC dated Jul. 5, 2017”, 14 pgs. |
“European Application Serial No. 15191778.8, Extended European Search Report dated Oct. 13, 2016”, 7 pgs. |
“Japanese Application Serial No. 2014-515819, Notice of Allowance dated Dec. 15, 2015”, (W/ English Translation), 13 pgs. |
“Japanese Application Serial No. 2014-515819, Office Action dated Feb. 3, 2015”, (W/ English Translation), 15 pgs. |
“Japanese Application Serial No. 2014-515819, Response filed Jul. 29, 2015 to Office Action dated Feb. 3, 2015”, (W/ English translation of claims), 11 pgs. |
“Japanese Application Serial No. 2014-515820, Office Action dated Dec. 2, 2014”, (W/ English Translation), 8 pgs. |
“Japanese Application Serial No. 2014-515831, Office Action dated Dec. 16, 2014”, (W/ English Translation), 12 pgs. |
“Japanese Application Serial No. 2015-124808, Amendment filed Jul. 16, 2015”, (W/ English Translation), 8 pgs. |
“Japanese Application Serial No. 2015-124808, Office Action dated Jun. 7, 2016”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2015-124808, Response filed Sep. 7, 2016 to Office Action dated Jun. 7, 2016”, W/ English Translation of Claims, 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20130345821 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13161624 | Jun 2011 | US |
Child | 14014737 | US |