1. Technical Field
The present disclosure relates to orthopaedic prostheses and, more particularly, to femoral prosthetic components with enhanced patello-femoral articulation characteristics.
2. Description of the Related Art
Orthopaedic prostheses are commonly utilized to repair and/or replace damaged bone and tissue in the human body. For example, a knee prosthesis may include a femoral component which replaces the articular surface of one or both of the natural femoral condyles, and/or the natural femoral sulcus. The femoral sulcus (also referred to as a patellar or trochlear groove) articulates with the patella during flexion and extension of the knee.
In some partial knee arthroplasty (PKA) procedures, natural bone may only be resected in the area of the patellar groove, and a prosthetic femoral sulcus component may be inserted in place of the resected bone for articulation with a natural or prosthetic patella. In a total knee arthroplasty (TKA) procedure, anterior, distal, and posterior portions of the natural femur are resected. A knee prosthesis including distal and posterior condyles, joined together by an anterior patellar flange, is then installed in place of the resected bone. In a TKA procedure, the patellar flange includes a prosthetic patellar groove.
A common goal of PKA and TKA procedures is to reproduce natural knee kinematics using the associated prosthetic components and, more generally, to produce kinematic characteristics of the knee prosthesis that promote favorable patient outcomes including minimized pain, enhanced biomechanical efficiency, reproduction of intact knee Patello-Femoral (PF) and Tibio-Femoral (TF) kinematics, short recovery times, decreased risk of joint subluxation, and long prosthetic component surface lives. To these ends, substantial design efforts have focused on providing prosthetic components which account for differences in natural bone structure and joint kinematics among various patient groups, such as gender, ethnicity, patient size, and the like. Other considerations which figure into the design and function of prosthetic knee components include balancing of soft tissue (i.e., ligaments, tendons and the like) near the prosthetic components, special articulation characteristics of the knee such as internal/external rotation and femoral lateral rollback, and hyperextension and deep flexion considerations, for example.
Design efforts have included producing “asymmetric” femoral components for knee prostheses, in which a particular asymmetry of the component seeks to provide enhanced articular PF and TF characteristics. With respect to a patellar groove of such asymmetric components, a groove angled laterally upward with respect to a femoral mid-plane axis has previously been employed.
The present disclosure provides an alternative prosthetic femoral component for an orthopaedic prosthesis with a canted patellar groove adapted for optimal patella/component interaction, in which the component is configurable with a medial or lateral cant depending upon the method of implantation.
The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles.
In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove.
On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane. The anatomic transverse plane is perpendicular to the anatomic axis of the femur from a sagittal view, and is inclusive of a line connecting the distal-most points of the natural femoral condyles before resection. Where the femoral component is configured to be “anatomically oriented” in this way, the component has a non-canted or slightly laterally canted patellar groove.
The term “perpendicular,” as used herein to describe the relationship between a plane and a line or axis, implies only a two-dimensional relationship in which the line forms a right angle to the plane from a particular perspective. Thus, an axis may he perpendicular to a plane in one perspective (i.e. as viewed when facing a sagittal plane), but may be angled from another perspective (i.e., as viewed when facing a coronal plane). In contrast, the term “normal,” as used herein to describe the relationship between a plane and a line or axis, implies a three-dimensional relationship in which the line forms a right angle to the plane from all perspectives.
The present disclosure is based on the general concept of orienting the patellar groove of the femoral component such that a reproduction of the natural femur morphology as well as of the natural knee PF and TF kinematics is sought, and that at the same time the implantation method, i.e. “mechanical” or “anatomic”, is taken into account. Specifically, the implantation method-dependent orientation of the patellar groove according to the present disclosure aligns the femoral component advantageously with the femoral head of the femur. In particular, a patellar axis (as defined below) may be approximately oriented such that the patellar axis lies in a plane which goes through the femoral head, in particular thereby at least approximately intersecting the geometric center of the femoral head. Stated another way, the patellar axis “aims” or “points” toward the center of the femoral head. In order to achieve this aim, the orientation of the patellar groove, and in particular the cant of a suitably defined patellar axis, may be chosen depending on the respective method of implantation.
In use, a component having a patellar axis adapted to point toward the center of femoral head 7 is implanted upon an appropriately resected surface, in which the choice of component and the choice of resection technique cooperate to ensure that the patellar axis will be properly oriented (e.g., within plus-or-minus 2 to 3 degrees) toward the center of head 7. To find the center of femoral head 7, the surgeon may move the patient's leg through a wide range of motion, while palpating the femoral head through the skin. Based on the detected movement of femoral head 7, the surgeon can estimate the size and location of femoral head 7 and therefore can estimate the location of the center of femoral head 7. Alternatively, a surgeon may use pre-operative imagine (discussed above) to visually estimate the location of the center of femoral head 7.
By providing a femoral component made in accordance with the present disclosure and implanting such femoral component as described herein, it is possible for the first time for such femoral components to compensate for the effect of the so-called “external rotation” of the femur (external rotation being a phenomenon that is well-known in the art). More particularly, the patellar groove of a femoral component may be oriented with respect to the femoral head, taking into account the implantation method intended for that femoral component, such that the femoral component accommodates the “external rotation” of the femur. Advantageously, this accommodation promotes natural PF and TF knee kinematics.
In the illustrated embodiments of the disclosure, the varus/valgus angle, or “knee inclination” measured in a coronal plane, is taken to be equal to the internal/external rotation angle of the knee, as measured in a transverse plane. Moreover, the femoral prosthesis and associated bone resections may cooperate to preserve this angular equality throughout the range of flexion, such that the femoral component promotes balanced ligament tension throughout the range of motion.
In one form thereof, the present invention provides a femoral component adapted to mount to a femur, the femur defining a mechanical axis and an anatomic axis, the component having a bone-contacting surface and an opposed articulation surface, the component further having proximal, distal, anterior and posterior portions, the component comprising: a pair of condyles including a medial condyle and a lateral condyle, each of the condyles defining respective distal-most points and posterior-most points; a patellar groove proximate the anterior portion of the component; a transverse plane tangent to each of the distal-most points of the condyles; a coronal plane perpendicular to the transverse plane and tangent to at least one of the posterior-most points of the condyles; a sagittal plane perpendicular to the transverse plane and disposed between the lateral condyle and the medial condyle, the sagittal plane inclusive of a distal-most point of the patellar groove, the sagittal plane including a component midline that is normal to the transverse plane and inclusive of the distal-most point of the patellar groove, the patellar groove defining a medially canted patellar axis when viewed from an anterior side of the component, the patellar axis medially diverging from the component midline as the patellar axis extends proximally to define a medially canted angle between the patellar axis and the component midline.
In another form thereof, the present invention provides a femoral component adapted to mount to a femur, the femur having a mechanical axis, an anatomic axis and medial and lateral condyles defining distal-most points, an anatomic transverse plane tangent to the distal-most points of the medial and lateral condyles of the femur, the component having a bone-contacting surface and an opposed articulation surface, the component comprising: a pair of condyles including a medial condyle and a lateral condyle, each of the condyles defining respective distal-most points when the component is mounted to the femur, the condyles further defining respective posterior-most points when the component is mounted to the femur; a transverse plane inclusive of a line connecting the distal-most points of the condyles, the transverse plane oriented to be parallel with the anatomic transverse plane when the component is mounted to the femur; a coronal plane perpendicular to the transverse plane and tangent to at least one of the posterior-most points of the condyles; a sagittal plane perpendicular to the transverse plane and bisecting the component, the sagittal plane defining a component midline in the coronal plane, the component midline equidistant from a lateral edge of the lateral condyle and a medial edge of the medial condyle; and a patellar groove defining a laterally canted patellar axis when viewed from an anterior side of the component, wherein the patellar axis laterally diverges from the component midline as the patellar axis extends proximally to define a laterally canted angle between the patellar axis and the component midline, the laterally canted angle between about zero degrees and about 4 degrees.
In yet another form thereof, the present invention provides a set of femoral components adapted to mount to a femur having an anatomic axis and a mechanical axis, the femur having lateral and medial condyles with respective distal-most points before resection, the femur defining a mechanical transverse plane normal to the mechanical axis and an anatomic transverse plane tangent to each of the distal-most points, the set comprising: a first femoral component having a first lateral condyle, a first medial condyle opposite the first lateral condyle, such that a path from the first lateral condyle toward the first medial condyle defines a medial direction, and a first anterior flange joining the first lateral condyle to the first medial condyle, the first anterior flange defining a medially canted patellar groove extending in the medial direction as the medially canted patellar groove extends proximally; and a second femoral component having a second lateral condyle, a second medial condyle opposite the second lateral condyle, such that a path from the second medial condyle toward the second lateral condyle defines a lateral direction, and a second anterior flange joining the second lateral condyle to the second medial condyle, the second anterior flange defining a laterally canted patellar groove extending in the lateral direction as the laterally canted patellar groove extends proximally.
In still another form thereof, the present invention provides a femoral component adapted to be mounted to a femur according to a mechanical implantation method or according to an anatomic implantation method, the femur defining a mechanical axis and an anatomic axis, the component having a bone-contacting surface and an opposed articulation surface, the component further having proximal, distal, anterior and posterior portions, the component comprising: a pair of condyles including a medial condyle and a lateral condyle, each of the condyles defining respective distal-most points and posterior-most points; a patellar groove proximate the anterior portion of the component; a transverse plane tangent to each of the distal-most points of the condyles; a coronal plane perpendicular to the transverse plane and tangent to at least one of the posterior-most points of the condyles; a sagittal plane perpendicular to the transverse plane and disposed between the lateral condyle and the medial condyle, the sagittal plane inclusive of a distal-most point of the patellar groove, the sagittal plane including a component midline that is normal to the transverse plane and inclusive of the distal-most point of the patellar groove, the patellar groove defining a medially canted patellar axis when viewed from an anterior side of the component, the patellar axis medially diverging from the component midline as the patellar axis extends proximally to define a medially canted angle between the patellar axis and the component midline, or the patellar groove defining a laterally canted patellar axis when viewed from an anterior side of the component, the patellar axis laterally diverging from the component midline as the patellar axis extends proximally to define a laterally canted angle between the patellar axis and the component midline, the medially or laterally canted patellar axis lying in a plane which intersects a femoral head of the femur, in particular which approximately intersects a center of the femoral head of the femur, when the femoral component is properly mounted to the femur according to the mechanical implantation method or the anatomic implantation method, respectively.
In yet another form thereof, the present invention provides a method of implanting a femoral component onto a distal end of a femur, the method comprising: determining the location of a center of a femoral head of the femur, resecting the distal end of the femur to create a resected distal surface; providing a femoral component comprising a patellar groove proximate an anterior portion of the component, the patellar groove defining a patellar axis when viewed from an anterior side of the component; and implanting the femoral component onto the resected distal surface such that the patellar axis is oriented toward the center of the femoral head, such that the patellar axis substantially intersects the center of the femoral head.
In yet another form thereof, the present invention provides a method of implanting a femoral component onto a distal end of a femur, the method comprising: determining the alignment and orientation of a mechanical axis of the femur; providing a femoral component, the component comprising: a pair of condyles including a medial condyle and a lateral condyle each defining respective distal-most points; a patellar groove proximate an anterior portion of the component, the patellar groove defining a patellar axis as viewed from an anterior side of the component; and implanting the femoral component such that the patellar axis defines a medially canted angle between the patellar axis and the mechanical axis, as projected onto a coronal plane.
In still another form thereof, the present invention provides a method of implanting a femoral component onto a distal end of a femur, the method comprising: determining the alignment and orientation of an anatomical axis of the femur; locating the distal-most points of anatomic femoral condyles of the femur; identifying an anatomic transverse plane that is i) perpendicular to the anatomical axis of the femur from a sagittal view and ii) inclusive of a line connecting the distal-most points of the anatomic femoral condyles; providing a femoral component, the component comprising: a pair of condyles including a medial condyle and a lateral condyle each defining respective distal-most points; a patellar groove proximate an anterior portion of the component, the patellar groove defining a patellar axis as viewed from an anterior side of the component; and implanting the femoral component such that the patellar axis forms a laterally canted angle with respect to a line normal to the anatomic transverse plane, as projected onto a coronal plane.
The above mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention, and such exemplifications are not to he construed as limiting the scope of the invention in any manner.
1. Introduction
The present disclosure provides a prosthetic femoral component for use in an orthopaedic knee prosthesis. The prosthetic femoral component defines a transverse plane tangent to the distal-most points of the prosthesis condyles, referred to herein as the “component transverse plane.” The component may be implanted in a “mechanical orientation,” in which the component transverse plane is substantially parallel to a plane normal to the mechanical axis of the femur, referred to herein as the “mechanical transverse plane.” Femoral components mounted in a mechanical orientation include medially canted patellar grooves, such that the patellar groove diverges medially from a midline bisecting the component as the groove extends proximally.
Alternatively, the component may be implanted in an “anatomical orientation,” in which the component transverse plane is substantially parallel to an anteroposterior plane contacting both distal-most points of the natural femoral condyles, referred to herein as the “anatomic transverse plane.” Femoral components mounted in an anatomic orientation include either i) laterally canted patellar grooves, such that the patellar groove diverges laterally from a midline bisecting the component as the groove extends proximally, or ii) non-canted grooves, such that the patellar groove does not diverge either medially or laterally from the midline of the component.
In addition to the medial or lateral cant of the patellar groove, the groove may also be “shifted” medially or laterally, as described in detail below. More particularly, the point of intersection of the projection of the patellar groove in a coronal plane (referred to herein as the “patellar axis,” as discussed below) with the component transverse plane may be shifted medially or laterally from the component-bisecting midline. This medial or lateral “shift” of the patellar groove can be made independently of the medial or lateral cant of the patellar groove angle.
Advantageously, patellar grooves of femoral components made in accordance with the present disclosure may provide enhanced articular characteristics, including minimized patient discomfort in the anterior knee after knee arthroplasty, minimized risk of patella subluxation during extension and flexion of the knee, and prolonged service life of the prosthetic femoral component and natural or prosthetic patella.
2. Definitions and Lexicon
Referring to
Component transverse plane TPC is tangent to the distal-most points of condyles 12, 14 of femoral component 10, and extends generally mediolaterally and anteroposteriorly. Transverse plane TPC is perpendicular to anatomic axis AA of femur F when component 10 is properly mounted to femur F (as described below). Moreover, the distal-most points of condyles 12, 14, taken in the abstract, will generally correspond to the distal-most points of condyles 12, 14 with respect to anatomic axis AA when femoral component 10 is mounted to femur F.
While it is contemplated that a surgeon has some flexibility in the manner and method with which femoral component 10 is implanted onto femur F, the actual distal-most points of condyles 12, 14 after component implantation will only vary slightly. For example, the surgeon is limited in making a posterior cut on femur F by the extent to which natural femoral condyles 3, 4 extend posteriorly past the femoral cortex, because the surgeon will traditionally seek to avoid resection of any portion of the femoral shaft. An anterior cut is similarly limited, and is typically nearly parallel to the posterior cut. Finally the distal cut is typically performed to resect no more bone than necessary. In view of these physical constraints on the resection of femur F, any variability in the actual distal-most points of condyles 12, 14 arising from surgeon discretion during implantation of femoral component 10 will have a negligible effect on the overall medial or lateral cant and/or shift. In the illustrated embodiment, transverse plane TPC is parallel with bone-contacting surface 13 of component 10 (
Moreover, a surgeon will recognize, with a high degree of certainty and precision, which points on a prosthetic femoral component will correspond to the distal-most and posterior-most points after implantation. Taken in conjunction with a surgical technique proposed by manufacturers of such components, the location of distal-most and posterior-most points on the component can be determined even more exactly.
Coronal plane CP is generally perpendicular to transverse plane TPC and sagittal plane SP, and is anteroposteriorly positioned to be coincident with at least one posterior-most point on condyles 12, 14 of component 10 (
It is contemplated that coronal plane CP may be defined as an anatomic coronal plane CP or a mechanical coronal plane CP. The anatomic coronal plane CP is tangent to both posterior-most points of condyles 3,4 in a natural knee, and is tangent to the posterior-most points of condyles 12, 14 in a knee which has component 10 implanted. The anatomic plane is therefore inclusive of articular line LA (
Sagittal plane SP is generally perpendicular to transverse plane TPC and is mediolaterally positioned to bisect condyles 12, 14. In the illustrated embodiment of
Referring now to
Once either mechanical axis MA or anatomical axis AA is determined, a surgeon may infer the location of the other by the knowledge that angle Θ (
Femur F defines two transverse planes, each of which is referenced to different anatomical structures defined by femur F. Mechanical transverse plane TPM is normal to mechanical axis MA of femur F. In the illustrated embodiment, mechanical transverse plane TPM is coincident with distal-most point 2 of condyle 4, though other vertical locations are contemplated.
The other transverse plane of femur F is anatomic transverse plane TPA, which includes a line extending from distal-most point 1 of lateral condyle 3 to distal-most point 2 of medial condyle 4 and is perpendicular to coronal plane CP. As noted below, coronal plane CP is parallel to anatomic axis AA of femur F, so that anatomic transverse plane TPA is perpendicular to anatomic axis AA from a sagittal perspective. Alternatively, anatomic transverse plane TPA may be defined as a plane tangent to distal-most points 1, 2 of condyles 3, 4. For the above methods of defining plane TPA, distal-most points 1, 2 may be defined as the distal-most points on an undamaged femur F. In yet another alternative, transverse plane TPA may be defined as having a fixed angle with mechanical transverse plane TPM, with the fixed angle chosen to render plane TPA nearly tangent to distal-most points 1, 2 for a statistically substantial portion of the patient population (i.e., based on analysis of empirical patient data).
In an exemplary embodiment, resection of femur F may leave a distal resected surface parallel to mechanical transverse plane TPM to facilitate a “mechanical orientation” of component 10 after implantation. Such a “mechanical” resection allows the use of a femoral component with uniform thickness between distal bone-contacting surface and the articular surfaces of both medial condyle 12 and lateral condyle 14. On the other hand, resection of femur F may leave a distal resected surface parallel to anatomic transverse plane TPA. Such “anatomic” resection facilitates an “anatomic orientation” of a component having similarly constant condylar thickness. However, it is contemplated that any resection may be used with a femoral component made in accordance with the present disclosure, as required or desired for a particular design.
Referring still to
Turning back to
Referring to
Referring to
3. Femoral Component Construction
Referring again to
Anterior flange 15 includes patellar groove 16, which forms the anterior articular surface of component 10 for articulation with a natural or prosthetic patella. Patellar groove 16 extends from a generally anterior and proximal starting point to a generally posterior and distal terminus. Patellar groove 16 is adapted to articulate with a natural patella or prosthetic patellar component during the early stages of knee flexion, after which the patella articulates with the inner surfaces of condyles 12, 14 near intercondylar fossa 24. For purposes of the present disclosure, the posterior and distal end of patellar groove 16 generally coincides with the anterior terminus of intercondylar fossa 24 formed between medial and lateral condyles 12, 14. Because a natural or prosthetic patella articulates with the inner surfaces of condyles 12, 14 in deep flexion, however, patellar groove 16 may be said to extend into the distal portion of femoral component 10 near intercondylar fossa 24.
In the illustrated embodiment, femoral component 10 further includes fixation pegs 26 and posterior cam 28 in accordance with a “posterior stabilizing” femoral component design. However, it is contemplated that these structures may be eliminated or modified as required or desired for a particular application such as, for example, a “cruciate retaining” femoral component design with no posterior cam.
Femoral component 10 has several potential configurations to accommodate and account for natural variation among femurs of different patients. Such variations may arise from different bone sizes and geometries, and correspondingly different natural knee articulation characteristics, among patients of different gender, size, age, ethnicity, build or the like. In addition, the configuration of femoral component 10, and particularly of patellar groove 16, may be varied to account for and/or correct varus or valgus deformities in a particular patient.
As illustrated in
For a female patient with a mechanically oriented femoral component 10 (
For a male patient with a mechanically oriented femoral component 10 (
Referring again to
A gender-neutral or “universal” angle βU may be formed between laterally canted patellar axis 18C and component midline LM when femoral component 10 is configured for an anatomic implantation. The universality of angle βU is made possible because a desirable articulation profile between a natural or prosthetic patella and patellar groove 16 of femoral component 10 has been found to be relatively angle-independent for both male and female patients. More particularly, the optimal angle between axis 18 and mechanical axis MA is only slightly variable for males versus females (as discussed in detail below), with the variation being small enough to enable femoral component 10 to have the same laterally canted patellar axis for both male and female components without compromising the fit, function or other advantages conferred by pairing laterally canted patellar axis 18C of femoral component 10 with an anatomical orientation upon implantation of component 10. In an exemplary embodiment, βU may be as little as 0° (i.e., patellar groove 16 defines a patellar axis 18C that is parallel to, or coincident with, component midline LM) and as much as 4°, for example. In the illustrative embodiment of
The gender neutrality of component 10 with a laterally canted patellar groove 16 is related to anatomic varus/valgus angle α. As discussed above, angle α is the angular disparity between mechanical transverse plane TPM and anatomic transverse plane TPA, and is measured in an extension orientation of the knee. Thus, referring to
However, α is also a relevant angular value throughout flexion of the knee when component 10 is mounted to femur F in an anatomic orientation. Referring now to
In view of the general concept underlying the present disclosure and as explained above, it may be noted that the anatomic varus/valgus angle α is at least roughly related to certain values of the cant angles as disclosed herein and which have found to be advantageous. Specifically, it has been found that the average sum of an advantageous medial cant angle (e.g. approximately between 3 degrees and 7 degrees) and an advantageous lateral cant angle (e.g. approximately between zero degrees and 4 degrees) corresponds roughly to an anatomic varus/valgus angle α. Exemplary embodiments of femoral component 10 include medially or laterally canted patellar grooves 18A, 18B, 18C which correspond to one such average sum equal to about 7 degrees. These exemplary components represent an ideal prosthesis/anatomy match that is expected to correspond to the largest possible proportion of anatomic structures found among patient populations.
Referring back to
It is contemplated that other characteristics of femoral component 10 may vary depending on whether femoral component 10 is adapted for an anatomic or mechanical implantation. For example, it is contemplated that elevation E may be smaller for femoral component 10 adapted for anatomic implantation (
In addition to the medial or lateral cant of patellar axis 18 (which may be one of patellar axes 18A, 18B and 18C, as noted above), patellar axis 18 may also be medially or laterally shifted or “translated” on anterior flange 15 of femoral component 10. For example, referring to
On the other hand, the illustrative embodiment of
Although femoral component 10 is described above as being a single component having several varying configurations, it is contemplated that a set or kit of femoral components 10 may be provided for use in either a mechanical or anatomic orientation of component 10 after implantation thereof. Each kit may include a plurality of implant sizes for various different sizes of femur F, as may be encountered in various individual patients. In the case of femoral component 10 adapted for use in a mechanical implantation, a first full set or kit may be provided for female patients, while a second full set or kit may be provided for male patients. These two gender-specific kits are provided because femoral component 10 is configured differently for male and female patients when mechanically oriented (i.e., femoral component 10 includes either male medially canted patellar axis 18A or female medially canted patellar axis 18B, as shown in
On the other hand, where femoral component 10 has lateralized patellar axis 18C adapted for use in an anatomic implantation, a single kit may be provided for both male and female patients. This single, gender-neutral kit of anatomically oriented components will generally include a larger number of components as compared to a gender-specific kit of mechanically-oriented component, because the gender-neutral kit will include a wider range of component sizes to accommodate the size disparities between male and female femur populations.
Advantageously, femoral components made in accordance with the present disclosure may be provided as kits or sets which are gender specific, particularly where a mechanical implantation is intended, while also integrating any number of other technologies and features now known or later discovered. Moreover, a patellar groove in accordance with the present disclosure may be integrated into a wide range of other existing femoral component designs, such that the components offer the benefits of a medially canted or laterally canted patellar groove 16 as described above, while also providing other unique features, articular characteristics and/or kinematic profiles. Thus, the patello-femoral benefits and advantages, discussed above, may be obtained for a wide variety of patient populations while also benefitting from other orthopaedic technologies such as particular condyle designs, component affixation designs and methods, advanced materials, and the like.
Also advantageously, femoral components 10 are adapted to be implanted in mechanical and anatomic orientations, respectively, to substantially reproduce or mimic the natural kinematic profile of healthy femur/patella interaction in a natural knee. As described below, analysis of healthy patient patellar grooves and other characteristics of healthy patient femurs confirms that a medially canted patellar axis, used in conjunction with a mechanical implantation of femoral component 10, can be used to achieve enhanced articular characteristics (such as, for example, patello-femoral articular characteristics) in a knee prosthesis. Similarly, this analysis further confirms that enhanced articular characteristics can be gained from the use of femoral components having a laterally canted patellar axis in conjunction with an anatomic implantation of femoral component 10. In each case, femoral components made in accordance with the present disclosure have been found to produce desirable articular characteristics while using a patellar groove that is canted and/or oriented in a manner contrary to conventional wisdom in the art of orthopaedic femoral prostheses.
Advantageously, the enhanced patello-femoral joint articulation provided by femoral component 10 may include, among other benefits: minimized anterior knee pain following a TKA procedure; maintenance of appropriate tension in the retinaculum, thereby minimizing risk to same during surgical procedures; promotion of appropriate/optimum intraoperative surgical decisions regarding the relative size and geometry of the lateral femoral condyle; minimization or elimination of external rotation of the femoral component with respect to the femur; minimized risk of patella subluxation during articulation of the knee prosthesis, particularly at extreme extension and extreme flexion ranges of motion; and greater longevity of components in the knee prosthesis, such as femoral component 10, a natural or prosthetic patella and/or a tibial component, for example.
Yet another advantage of femoral component 10 in accordance with the present disclosure is that the articulation between a natural or prosthetic patella and patellar groove of femoral component 10 facilitates femoral lateral rollback in deep flexion.
A procedure to mount femoral components 10 with medially canted patellar axes 18A or 18B to femur F will now be described. Prior to resection of femur F, the alignment and orientation of mechanical axis MA and anatomical axis AA for femur F is determined and noted. A resection is performed using conventional methods and instruments. In an exemplary embodiment, the resection creates a distal cut surface normal to mechanical axis MA (and, concomitantly, parallel to mechanical transverse plane TPM), though other cut geometries may be used. Corresponding anterior, posterior, anterior chamfer and/or posterior chamfer cuts are also made as necessary.
The surgeon then provides femoral component 10 for implantation onto femur F. As used herein, “providing” femoral component 10 refers to procurement thereof, such as from a kit or operating-room container or storage receptacle. Prior to the step of providing component 10, the surgeon may or may not be involved with acquisition from the manufacturer, receipt of shipments, inventorying, or other procurement activities occurring outside the operating room environment.
Femoral component 10 having one of medialized groove 18A or 18B (depending on the gender of the patient, as described herein) is then mounted to femur F so that component transverse plane TPC is parallel to and/or coincident with mechanical transverse plane TPM. The fixation of femoral component 10 to femur F is accomplished using conventional fixation methods and structures, such as bone cement, bone-ingrowth material and/or fixation pegs 26, for example. A prosthetic patellar component may also be implanted to cooperate with femoral component 10, or the natural patella may be retained for such articulation. Range of motion may be analyzed, including observation and analysis of patello-femoral kinematic and articular characteristics. When the surgeon is satisfied with the location and placement of femoral component 10 and any other associated components of the knee prosthesis, surgery is completed in accordance with conventional methods.
The procedure to mount femoral components 10 with laterally canted patellar axes 18C to femur F is similar to the corresponding procedure for components 10 with medially canted patellar axes 18A, 18B described above. However, rather than selecting component 10 with medially canted axes 18A, 18B and implanting such component 10 so that component transverse plane TPC is parallel to and/or coincident with mechanical transverse plane TPM, component 10 is selected with laterally canted patellar axis 18C and is implanted such that component transverse plane TPC is parallel to and/or coincident with anatomic transverse plane TPA, as described above.
While this invention has been described as having an exemplary design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This patent application is a continuation of U.S. patent application Ser. No. 14/845,522, filed on Sep. 4, 2015, which is a continuation of U.S. patent application Ser. No. 13/819,528, filed on May 13, 2013, which is a U.S. national Stage Filing under 35 U.S.C. § 371 of International Patent Application Serial No. PCT/EP2011/004556, filed on Sep. 9, 2011 and published on Mar. 15, 2012 as WO2012/031774 A1, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 61/381,803, filed on Sep. 10, 2010, the benefit of priority of each of which is claimed hereby and each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4081866 | Upshaw et al. | Apr 1978 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4662889 | Zichner et al. | May 1987 | A |
4888020 | Horber | Dec 1989 | A |
4944756 | Kenna | Jul 1990 | A |
4950298 | Gustilo et al. | Aug 1990 | A |
4959071 | Brown et al. | Sep 1990 | A |
5007933 | Sidebotham et al. | Apr 1991 | A |
5035700 | Kenna | Jul 1991 | A |
5061271 | Van Zile | Oct 1991 | A |
5133758 | Hollister | Jul 1992 | A |
5133760 | Petersen et al. | Jul 1992 | A |
5137536 | Koshino | Aug 1992 | A |
5226915 | Bertin | Jul 1993 | A |
5282861 | Kaplan | Feb 1994 | A |
5282869 | Miyajima et al. | Feb 1994 | A |
5326361 | Hollister | Jul 1994 | A |
5330532 | Ranawat | Jul 1994 | A |
5445642 | McNulty et al. | Aug 1995 | A |
5549686 | Johnson et al. | Aug 1996 | A |
5549688 | Ries | Aug 1996 | A |
5609643 | Colleran et al. | Mar 1997 | A |
5681354 | Eckhoff | Oct 1997 | A |
5688279 | McNulty et al. | Nov 1997 | A |
5702460 | Carls et al. | Dec 1997 | A |
5728162 | Eckhoff | Mar 1998 | A |
5776201 | Colleran et al. | Jul 1998 | A |
5824105 | Ries | Oct 1998 | A |
5871546 | Colleran et al. | Feb 1999 | A |
5879354 | Haines et al. | Mar 1999 | A |
5879393 | Whiteside et al. | Mar 1999 | A |
5935173 | Roger et al. | Aug 1999 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6039764 | Pottenger et al. | Mar 2000 | A |
6074424 | Perrone, Jr. et al. | Jun 2000 | A |
6096082 | Stegmuller et al. | Aug 2000 | A |
6106529 | Techiera | Aug 2000 | A |
6152960 | Pappas | Nov 2000 | A |
6197064 | Haines et al. | Mar 2001 | B1 |
6217619 | Keller | Apr 2001 | B1 |
6235060 | Kubein-Meesenburg et al. | May 2001 | B1 |
6264697 | Walker | Jul 2001 | B1 |
6325828 | Dennis et al. | Dec 2001 | B1 |
6364911 | Schmotzer et al. | Apr 2002 | B1 |
6540786 | Chibrac et al. | Apr 2003 | B2 |
6540787 | Biegun et al. | Apr 2003 | B2 |
6589283 | Metzger et al. | Jul 2003 | B1 |
6616696 | Merchant | Sep 2003 | B1 |
6699291 | Augoyard et al. | Mar 2004 | B1 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6743258 | Keller | Jun 2004 | B1 |
6770099 | Andriacchi et al. | Aug 2004 | B2 |
6802865 | Biegun et al. | Oct 2004 | B2 |
6846329 | Mcminn | Jan 2005 | B2 |
6893467 | Bercovy | May 2005 | B1 |
7081137 | Servidio | Jul 2006 | B1 |
7297164 | Johnson et al. | Nov 2007 | B2 |
7306609 | Schmotzer et al. | Dec 2007 | B2 |
7364590 | Siebel | Apr 2008 | B2 |
7413577 | Servidio | Aug 2008 | B1 |
7442196 | Fisher et al. | Oct 2008 | B2 |
7465320 | Kito et al. | Dec 2008 | B1 |
7678152 | Suguro et al. | Mar 2010 | B2 |
7691150 | Cronin et al. | Apr 2010 | B2 |
7695520 | Metzger et al. | Apr 2010 | B2 |
7806897 | Bonutti | Oct 2010 | B1 |
8062377 | Haines | Nov 2011 | B2 |
8075626 | Dun | Dec 2011 | B2 |
8088167 | Haines | Jan 2012 | B2 |
8211181 | Walker | Jul 2012 | B2 |
8292964 | Walker | Oct 2012 | B2 |
8298288 | Walker | Oct 2012 | B2 |
8357202 | Heggendorn | Jan 2013 | B2 |
8377141 | Mcminn | Feb 2013 | B2 |
8394147 | Otto et al. | Mar 2013 | B2 |
8409293 | Howard et al. | Apr 2013 | B1 |
8480753 | Collazo et al. | Jul 2013 | B2 |
8480754 | Bojarski | Jul 2013 | B2 |
8500816 | Dees, Jr. et al. | Aug 2013 | B2 |
8551179 | Jones et al. | Oct 2013 | B2 |
8603101 | Claypool et al. | Dec 2013 | B2 |
8721732 | Samuelson et al. | May 2014 | B2 |
8911502 | Li | Dec 2014 | B2 |
8932365 | Parisi et al. | Jan 2015 | B2 |
9060868 | Parisi et al. | Jun 2015 | B2 |
9173744 | Donno et al. | Nov 2015 | B2 |
9308095 | Parisi | Apr 2016 | B2 |
9592127 | Earl | Mar 2017 | B2 |
9629723 | Parisi et al. | Apr 2017 | B2 |
9839521 | Todd | Dec 2017 | B2 |
9867708 | Donno et al. | Jan 2018 | B2 |
9956048 | Bojarski | May 2018 | B2 |
10045850 | Parisi et al. | Aug 2018 | B2 |
20030153924 | Kana et al. | Aug 2003 | A1 |
20030158606 | Coon et al. | Aug 2003 | A1 |
20030225458 | Donkers et al. | Dec 2003 | A1 |
20040039450 | Griner et al. | Feb 2004 | A1 |
20040172137 | Blaylock et al. | Sep 2004 | A1 |
20040204766 | Siebel | Oct 2004 | A1 |
20040243245 | Plumet et al. | Dec 2004 | A1 |
20040249467 | Meyers et al. | Dec 2004 | A1 |
20050055102 | Tornier et al. | Mar 2005 | A1 |
20050102032 | Beynnon et al. | May 2005 | A1 |
20050107884 | Johnson et al. | May 2005 | A1 |
20050143832 | Carson | Jun 2005 | A1 |
20050177169 | Fisher et al. | Aug 2005 | A1 |
20050283249 | Carson | Dec 2005 | A1 |
20050283250 | Coon et al. | Dec 2005 | A1 |
20050283251 | Coon et al. | Dec 2005 | A1 |
20050283252 | Coon et al. | Dec 2005 | A1 |
20050283253 | Coon et al. | Dec 2005 | A1 |
20060028773 | Shimazawa et al. | Feb 2006 | A1 |
20060129246 | Steffensmeier | Jun 2006 | A1 |
20060142774 | Metzger | Jun 2006 | A1 |
20060200163 | Roger et al. | Sep 2006 | A1 |
20060224244 | Thomas et al. | Oct 2006 | A1 |
20060235541 | Hodorek | Oct 2006 | A1 |
20060235542 | Hodorek et al. | Oct 2006 | A1 |
20060241634 | Tuttle et al. | Oct 2006 | A1 |
20060265078 | Mcminn | Nov 2006 | A1 |
20060265080 | Mcminn | Nov 2006 | A1 |
20060287733 | Bonutti | Dec 2006 | A1 |
20070088444 | Hodorek et al. | Apr 2007 | A1 |
20070123984 | Hodorek | May 2007 | A1 |
20070135925 | Walker | Jun 2007 | A1 |
20070135926 | Walker | Jun 2007 | A1 |
20070150066 | McMinn et al. | Jun 2007 | A1 |
20070179607 | Hodorek et al. | Aug 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070260323 | Earl | Nov 2007 | A1 |
20080058947 | Earl et al. | Mar 2008 | A1 |
20080058948 | Biegun et al. | Mar 2008 | A1 |
20080097615 | Lipman | Apr 2008 | A1 |
20080097616 | Meyers et al. | Apr 2008 | A1 |
20080114463 | Auger et al. | May 2008 | A1 |
20080119940 | Otto et al. | May 2008 | A1 |
20080140212 | Metzger et al. | Jun 2008 | A1 |
20080188855 | Brown et al. | Aug 2008 | A1 |
20080188937 | Ribic | Aug 2008 | A1 |
20080188942 | Brown et al. | Aug 2008 | A1 |
20080243258 | Sancheti | Oct 2008 | A1 |
20080281428 | Meyers et al. | Nov 2008 | A1 |
20080288080 | Sancheti | Nov 2008 | A1 |
20090036992 | Tsakonas | Feb 2009 | A1 |
20090043395 | Hotokebuchi et al. | Feb 2009 | A1 |
20090062924 | Kito et al. | Mar 2009 | A1 |
20090105772 | Seebeck et al. | Apr 2009 | A1 |
20090132055 | Ferro | May 2009 | A1 |
20090149963 | Sekel | Jun 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090265011 | Mandell | Oct 2009 | A1 |
20090265013 | Mandell | Oct 2009 | A1 |
20090306786 | Samuelson | Dec 2009 | A1 |
20090306787 | Crabtree et al. | Dec 2009 | A1 |
20090319047 | Walker | Dec 2009 | A1 |
20090319048 | Shah et al. | Dec 2009 | A1 |
20090319049 | Shah et al. | Dec 2009 | A1 |
20090326663 | Dun | Dec 2009 | A1 |
20090326665 | Wyss et al. | Dec 2009 | A1 |
20090326666 | Wyss et al. | Dec 2009 | A1 |
20090326667 | Williams et al. | Dec 2009 | A1 |
20100036499 | Pinskerova | Feb 2010 | A1 |
20100036500 | Heldreth et al. | Feb 2010 | A1 |
20100042224 | Otto et al. | Feb 2010 | A1 |
20100161067 | Saleh | Jun 2010 | A1 |
20100191298 | Earl et al. | Jul 2010 | A1 |
20100211179 | Angibaud et al. | Aug 2010 | A1 |
20100305708 | Lang | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110022179 | Andriacchi et al. | Jan 2011 | A1 |
20110029091 | Bojarski | Feb 2011 | A1 |
20110093083 | Earl et al. | Apr 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110218541 | Bailey et al. | Sep 2011 | A1 |
20110307067 | Dees | Dec 2011 | A1 |
20120089234 | Mouillet et al. | Apr 2012 | A1 |
20120203350 | Hagen et al. | Aug 2012 | A1 |
20120310362 | Li et al. | Dec 2012 | A1 |
20120323334 | Jones et al. | Dec 2012 | A1 |
20120323335 | Parisi et al. | Dec 2012 | A1 |
20120323336 | Parisi et al. | Dec 2012 | A1 |
20120323337 | Parisi et al. | Dec 2012 | A1 |
20130006370 | Wogoman et al. | Jan 2013 | A1 |
20130006371 | Wogoman et al. | Jan 2013 | A1 |
20130006376 | Wogoman et al. | Jan 2013 | A1 |
20130006378 | Wogoman | Jan 2013 | A1 |
20130024001 | Wentorf et al. | Jan 2013 | A1 |
20130035765 | Dacus | Feb 2013 | A1 |
20130197653 | Hawkins | Aug 2013 | A1 |
20130204380 | Mouillet et al. | Aug 2013 | A1 |
20130211532 | Samuelson et al. | Aug 2013 | A1 |
20130218284 | Eickmann et al. | Aug 2013 | A1 |
20130226305 | Donno et al. | Aug 2013 | A1 |
20130345821 | Jones et al. | Dec 2013 | A1 |
20140025081 | Lorio et al. | Jan 2014 | A1 |
20140128973 | Howard et al. | May 2014 | A1 |
20140142713 | Wright et al. | May 2014 | A1 |
20140228851 | Guloy, Jr. et al. | Aug 2014 | A1 |
20150045801 | Axelson, Jr. et al. | Feb 2015 | A1 |
20150081031 | Parisi et al. | Mar 2015 | A1 |
20150265410 | Parisi et al. | Sep 2015 | A1 |
20150374500 | Donno et al. | Dec 2015 | A1 |
20160030053 | Yager et al. | Feb 2016 | A1 |
20160220379 | Parisi et al. | Aug 2016 | A1 |
20160270856 | Park | Sep 2016 | A1 |
20160278873 | Fisher et al. | Sep 2016 | A1 |
20170086982 | Yager | Mar 2017 | A1 |
20170156872 | Earl | Jun 2017 | A1 |
20170189193 | Parisi et al. | Jul 2017 | A1 |
20180064543 | Wright | Mar 2018 | A1 |
20180125584 | Lang | May 2018 | A1 |
20180140440 | Jackson | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2006325787 | Oct 2013 | AU |
2641966 | Nov 2016 | CA |
101330883 | Dec 2008 | CN |
101522137 | Sep 2009 | CN |
101642394 | Feb 2010 | CN |
101658446 | Mar 2010 | CN |
101664347 | Mar 2010 | CN |
101669844 | Mar 2010 | CN |
101627930 | Oct 2010 | CN |
101879099 | Nov 2010 | CN |
101959475 | Jan 2011 | CN |
102006839 | Apr 2011 | CN |
102006840 | Apr 2011 | CN |
102076283 | May 2011 | CN |
101330883 | Mar 2013 | CN |
103118633 | May 2013 | CN |
103732186 | Apr 2014 | CN |
103732187 | Apr 2014 | CN |
103732188 | Apr 2014 | CN |
103747762 | Apr 2014 | CN |
203657640 | Jun 2014 | CN |
103732188 | May 2016 | CN |
103732186 | Sep 2016 | CN |
103747762 | Sep 2016 | CN |
106214293 | Dec 2016 | CN |
202007014128 | Jan 2008 | DE |
0303467 | Feb 1989 | EP |
0546726 | Jun 1993 | EP |
0376658 | Jun 1994 | EP |
0381352 | Jun 1994 | EP |
0722721 | Jul 1996 | EP |
0567705 | Jul 1997 | EP |
0993812 | Apr 2000 | EP |
1013232 | Jun 2000 | EP |
1285638 | Feb 2003 | EP |
1033117 | Jun 2004 | EP |
0975286 | Aug 2004 | EP |
1477142 | Nov 2004 | EP |
1477143 | Nov 2004 | EP |
1013232 | Oct 2005 | EP |
1285638 | Nov 2005 | EP |
1719478 | Nov 2006 | EP |
1722721 | Nov 2006 | EP |
1354571 | Jun 2007 | EP |
1862150 | Dec 2007 | EP |
2004099 | Dec 2008 | EP |
1867302 | Sep 2009 | EP |
2147660 | Jan 2010 | EP |
2158878 | Mar 2010 | EP |
1555962 | Feb 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2720646 | Apr 2014 | EP |
2901996 | Dec 2007 | FR |
3008605 | Jan 2015 | FR |
64068255 | Mar 1989 | JP |
341694 | Sep 1991 | JP |
3267055 | Nov 1991 | JP |
0553501 | Mar 1993 | JP |
0568987 | Mar 1993 | JP |
9149908 | Jun 1997 | JP |
11504226 | Apr 1999 | JP |
11511347 | Oct 1999 | JP |
2003513706 | Apr 2003 | JP |
3469972 | Nov 2003 | JP |
3495161 | Feb 2004 | JP |
2004166802 | Jun 2004 | JP |
2005532089 | Oct 2005 | JP |
2008502393 | Jan 2008 | JP |
2008503327 | Feb 2008 | JP |
4077041 | Apr 2008 | JP |
2008523962 | Jul 2008 | JP |
2009519781 | May 2009 | JP |
4820547 | Nov 2011 | JP |
5571863 | Jul 2014 | JP |
2014522290 | Sep 2014 | JP |
2014522291 | Sep 2014 | JP |
2014522292 | Sep 2014 | JP |
2014522671 | Sep 2014 | JP |
2015164599 | Sep 2015 | JP |
5792898 | Oct 2015 | JP |
WO-9014806 | Dec 1990 | WO |
WO-9535074 | Dec 1995 | WO |
WO-9603939 | Feb 1996 | WO |
WO-0023010 | Apr 2000 | WO |
WO-03094782 | Nov 2003 | WO |
WO-2004016204 | Feb 2004 | WO |
WO-2004084740 | Oct 2004 | WO |
WO-2005037147 | Apr 2005 | WO |
WO-2005051240 | Jun 2005 | WO |
WO-2005122967 | Dec 2005 | WO |
WO-2006002296 | Jan 2006 | WO |
WO-2006058057 | Jun 2006 | WO |
WO-2006069260 | Jun 2006 | WO |
WO-2007007841 | Jan 2007 | WO |
WO-2007053905 | May 2007 | WO |
WO-2007054553 | May 2007 | WO |
WO-2007070859 | Jun 2007 | WO |
WO-2007109641 | Sep 2007 | WO |
WO-2008054389 | May 2008 | WO |
WO-2009088234 | Jul 2009 | WO |
WO-2009088236 | Jul 2009 | WO |
WO-2009088238 | Jul 2009 | WO |
WO-2009105495 | Aug 2009 | WO |
WO-2010008803 | Jan 2010 | WO |
WO-2010075365 | Jul 2010 | WO |
WO-2010108550 | Sep 2010 | WO |
WO-2011072235 | Jun 2011 | WO |
WO-2012031774 | Mar 2012 | WO |
WO-2012112698 | Aug 2012 | WO |
WO-2012173704 | Dec 2012 | WO |
WO-2012173706 | Dec 2012 | WO |
WO-2012173740 | Dec 2012 | WO |
WO-2016153927 | Sep 2016 | WO |
WO-2017058535 | Apr 2017 | WO |
Entry |
---|
“Answer filed Dec. 1, 2010 of Zimmer, Inc and Zimmer Technology, Inc”, W. Norman Scott and Giles R Scuderi vs. Zimmer, Inc and Zimmer Technology, Inc in the US District Court of Delaware in Case No. 10-772-GMS, (Dec. 1, 2010), 36 pgs. |
“U.S. Appl. No. 11/611,021, Advisory Action dated Jan. 22, 2016”, 3 pgs. |
“U.S. Appl. No. 11/611,021, Examiner Interview Summary dated Jun. 30, 2016”, 3 pgs. |
“U.S. Appl. No. 11/611,021, Final Office Action dated Mar. 10, 2011”, 7 pgs. |
“U.S. Appl. No. 11/611,021, Final Office Action dated Sep. 25, 2014”, 9 pgs. |
“U.S. Appl. No. 11/611,021, Final Office Action dated Nov. 6, 2015”, 11 pgs. |
“U.S. Appl. No. 11/611,021, Non Final Office Action dated Jan. 17, 2014”, 11 pgs. |
“U.S. Appl. No. 11/611,021, Non Final Office Action dated Apr. 8, 2016”, 11 pgs. |
“U.S. Appl. No. 11/611,021, Non Final Office Action dated Jun. 17, 2015”, 12 pgs. |
“U.S. Appl. No. 11/611,021, Non Final Office Action dated Jul. 21, 2010”, 8 pgs. |
“U.S. Appl. No. 11/611,021, Non-Final Office Action dated Dec. 7, 2009”, 4 pgs. |
“U.S. Appl. No. 11/611,021, Preliminary Amendment filed Oct. 26, 2007”, 7 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Jan. 4, 2016 to Final Office Action dated Nov. 6, 2015”, 12 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Feb. 24, 2015 to Final Office Action dated Sep. 25, 2014”, 16 pgs. |
“U.S. Appl. No. 11/611,021, Response filed May 3, 2010 to Non Final Office Action dated Dec. 7, 2009”, 14 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Jun. 6, 2011 Final Office Action dated Mar. 10, 2011”, 8 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Jul. 15, 2014 to Non-Final Office Action dated Jan. 17, 2014”, 19 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Aug. 5, 2016 to Non Final Office Action dated Apr. 8, 2016”, 18 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Aug. 25, 2015 to Non Final Office Action dated Jun. 17, 2015”, 14 pgs. |
“U.S. Appl. No. 11/611,021, Response filed Dec. 21, 2010 to Non Final Office Action dated Jul. 21, 2010”, 14 pgs. |
“U.S. Appl. No. 11/780,248, Non Final Office Action dated Feb. 4, 2010”, 4 pgs. |
“U.S. Appl. No. 11/780,248, Non Final Office Action dated Jul. 21, 2010”, 11 pgs. |
“U.S. Appl. No. 11/780,248, Response filed May 3, 2010 to Non Final Office Action dated Feb. 4, 2010”, 13 pgs. |
“U.S. Appl. No. 12/974,018, Appeal Brief filed Feb. 20, 2015”, 24 pgs. |
“U.S. Appl. No. 12/974,018, Final Office Action dated Apr. 13, 2012”, 11 pgs. |
“U.S. Appl. No. 12/974,018, Final Office Action dated Oct. 10, 2014”, 12 pgs. |
“U.S. Appl. No. 12/974,018, Non Final Office Action dated Apr. 4, 2014”, 11 pgs. |
“U.S. Appl. No. 12/974,018, Non Final Office Action dated Nov. 10, 2011”, 5 pgs. |
“U.S. Appl. No. 12/974,018, Preliminary Amendment filed Dec. 21, 2010”, 4 pgs. |
“U.S. Appl. No. 12/974,018, Response filed Mar. 8, 2012 to Non Final Office Action dated Nov. 10, 2011”, 12 pgs. |
“U.S. Appl. No. 12/974,018, Response filed Jul. 30, 2014 to Non-Final Office Action dated Apr. 4, 2014”, 15 pgs. |
“U.S. Appl. No. 12/974,018, Response filed Oct. 12, 2012 to Final Office Action dated Apr. 13, 2012”, 16 pgs. |
“U.S. Appl. No. 13/161,624, Notice of Allowance dated Mar. 12, 2013”, 11 pgs. |
“U.S. Appl. No. 13/161,624, Response filed Feb. 26, 2013 to Restriction Requirement Sep. 26, 2012”, 9 pgs. |
“U.S. Appl. No. 13/161,624, Restriction Requirement dated Sep. 26, 2012”, 8 pgs. |
“U.S. Appl. No. 13/459,060, Advisory Action dated Jun. 8, 2015”, 3 pgs. |
“U.S. Appl. No. 13/459,060, Final Office Action dated Apr. 1, 2015”, 11 pgs. |
“U.S. Appl. No. 13/459,060, Non Final Office Action dated Mar. 14, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,060, Non Final Office Action dated Oct. 9, 2014”, 11 pgs. |
“U.S. Appl. No. 13/459,060, Notice of Allowance dated Dec. 7, 2015”, 7 pgs. |
“U.S. Appl. No. 13/459,060, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“U.S. Appl. No. 13/459,060, PTO Response to Rule 312 Communication dated Mar. 3, 2016”, 2 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Jan. 3, 2014 to Restriction Requirement dated Nov. 4, 2013”, 25 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Feb. 18, 2015 to Non-Final Office Action dated Oct. 9, 2014”, 23 pgs. |
“U.S. Appl. No. 13/459,060, Response filed May 28, 2015 to Final Office Action dated Apr. 1, 2015”, 21 pgs. |
“U.S. Appl. No. 13/459,060, Response filed Jul. 14, 2014 to Non-Final Office Action dated Mar. 14, 2014”, 30 pgs. |
“U.S. Appl. No. 13/459,060, Restriction Requirement dated Nov. 4, 2013”, 6 pgs. |
“U.S. Appl. No. 13/459,061, Advisory Action dated Sep. 30, 2014”, 3 pgs. |
“U.S. Appl. No. 13/459,061, Final Office Action dated Jul. 23, 2014”, 10 pgs. |
“U.S. Appl. No. 13/459,061, Non Final Office Action dated Mar. 26, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Non Final Office Action dated Nov. 10, 2014”, 9 pgs. |
“U.S. Appl. No. 13/459,061, Notice of Allowance dated Feb. 27, 2015”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Jan. 10, 2014 to Restriction Requirement dated Nov. 12, 2013”, 8 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Feb. 10, 2015 to Non Final Office Action dated Nov. 10, 2014”, 12 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Jun. 25, 2014 to Non Final Office Action dated Mar. 26, 2014”, 11 pgs. |
“U.S. Appl. No. 13/459,061, Response filed Sep. 19, 2014 to Final Office Action dated Jul. 23, 2014”, 9 pgs. |
“U.S. Appl. No. 13/459,061, Restriction Requirement dated Nov. 12, 2013”, 5 pgs. |
“U.S. Appl. No. 13/459,064, Final Office Action dated Jun. 13, 2014”, 10 pgs. |
“U.S. Appl. No. 13/459,064, Non Final Office Action dated Mar. 6, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,064, Notice of Allowance dated Aug. 28, 2014”, 8 pgs. |
“U.S. Appl. No. 13/459,064, Preliminary Amendment filed Apr. 27, 2012”, 6 pgs. |
“U.S. Appl. No. 13/459,064, PTO Response to Rule 312 Communication dated Dec. 15, 2014”, 2 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Jan. 27, 2014 to Restriction Requirement dated Nov. 25, 2013”, 13 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Jun. 3, 2014 to Non-Final Office action dated Mar. 6, 2014”, 13 pgs. |
“U.S. Appl. No. 13/459,064, Response filed Aug. 13, 2014 to Final Office Action dated Jun. 13, 2014”, 13 pgs. |
“U.S. Appl. No. 13/459,064, Restriction Requirement dated Nov. 25, 2013”, 5 pgs. |
“U.S. Appl. No. 13/819,528, Advisory Action dated Apr. 14, 2015”, 3 pgs. |
“U.S. Appl. No. 13/819,528, Final Office Action dated Feb. 5, 2015”, 15 pgs. |
“U.S. Appl. No. 13/819,528, Non Final Office Action dated Aug. 12, 2014”, 10 pgs. |
“U.S. Appl. No. 13/819,528, Non Final Office Action dated Dec. 6, 2013”, 15 pgs. |
“U.S. Appl. No. 13/819,528, Notice of Allowance dated Jun. 22, 2015”, 7 pgs. |
“U.S. Appl. No. 13/819,528, Preliminary Amendment filed Feb. 27, 2013”, 9 pgs. |
“U.S. Appl. No. 13/819,528, Response filed Jan. 12, 2015 to Non Final Office Action dated Aug. 12, 2014”, 13 pgs. |
“U.S. Appl. No. 13/819,528, Response filed Apr. 2, 2015 to Final Office Action dated Feb. 5, 2015”, 12 pgs. |
“U.S. Appl. No. 13/819,528, Response filed Apr. 29, 2015 to Advisory Action dated Apr. 14, 2015”, 13 pgs. |
“U.S. Appl. No. 13/819,528, Response filed May 22, 2014 to Non Final Office Action dated Dec. 6, 2013”, 15 pgs. |
“U.S. Appl. No. 13/819,528, Supplemental Preliminary Amendment filed Jul. 11, 2013”, 6 pgs. |
“U.S. Appl. No. 14/014,737, Advisory Action dated Oct. 23, 2014”, 3 pgs. |
“U.S. Appl. No. 14/014,737, Appeal Brief filed Feb. 12, 2015”, 12 pgs. |
“U.S. Appl. No. 14/014,737, Final Office Action dated Aug. 15, 2014”, 5 pgs. |
“U.S. Appl. No. 14/014,737, Non Final Office Action dated May 6, 2014”, 6 pgs. |
“U.S. Appl. No. 14/014,737, Pre-Appeal Brief Request filed Nov. 14, 2014”, 4 pgs. |
“U.S. Appl. No. 14/014,737, Preliminary Amendment filed Nov. 6, 2013”, 7 pgs. |
“U.S. Appl. No. 14/014,737, Response filed Aug. 6, 2014 to Non-Final Office Action dated May 6, 2014”, 8 pgs. |
“U.S. Appl. No. 14/014,737, Response filed Oct. 15, 2014 to Final Office Action dated Aug. 15, 2014”, 8 pgs. |
“U.S. Appl. No. 14/553,034, Preliminary Amendment filed Mar. 13, 2015”, 10 pgs. |
“U.S. Appl. No. 14/731,013, Supplemental Preliminary Amendment filed Jun. 18, 2015”, 5 pgs. |
“U.S. Appl. No. 14/845,522, Final Office Action dated Jun. 13, 2017”, 6 pgs. |
“U.S. Appl. No. 14/845,522, Final Office Action dated Oct. 18, 2016”, 10 pgs. |
“U.S. Appl. No. 14/845,522, Non Final Office Action dated Feb. 8, 2017”, 11 pgs. |
“U.S. Appl. No. 14/845,522, Non Final Office Action dated Jun. 1, 2016”, 11 pgs. |
“U.S. Appl. No. 14/845,522, Notice of Allowance dated Sep. 14, 2017”, 7 pgs. |
“U.S. Appl. No. 14/845,522, Preliminary Amendment filed Sep. 24, 2015”, 7 pgs. |
“U.S. Appl. No. 14/845,522, Response filed Apr. 12, 2017 to Non Final Office Action dated Feb. 8, 2017”, 16 pgs. |
“U.S. Appl. No. 14/845,522, Response filed Aug. 14, 2017 to Final Office Action dated Jun. 13, 2017”, 14 pgs. |
“U.S. Appl. No. 14/845,522, Response filed Sep. 1, 2016 to Non Final Office Action dated Jun. 1, 2016”, 14 pgs. |
“U.S. Appl. No. 14/845,622, Response filed Jan. 11, 2017 to Final Office Action dated Oct. 18, 2016”, 12 pgs. |
“U.S. Appl. No. 15/092,107, Preliminary Amendment filed Apr. 7, 2016”, 11 pgs. |
“U.S. Appl. No. 15/424,382, Preliminary Amendment filed Feb. 23, 2017”, 9 pgs. |
“U.S. Appl. No. 61/381,803, Application filed Sep. 10, 2010”, 23 pgs. |
“Australian Application Serial No. 2006325787, Office Action dated Mar. 14, 2012”, 2 pgs. |
“Australian Application Serial No. 2006325787, Office Action dated Nov. 14, 2011”, 2 pgs. |
“Australian Application Serial No. 2006325787, Response filed May 3, 2013 to Office Action dated Mar. 14, 2012”, 10 pgs. |
“Australian Application Serial No. 2006325787, Response filed Feb. 21, 2012 to Office Action dated Nov. 14, 2011”, 34 pgs. |
“Australian Application Serial No. 2012271153, Amendment filed Jan. 16, 2014”, 13 pgs. |
“Australian Application Serial No. 2012271243, Subsequent Examiners Report dated Apr. 13, 2015”, 2 pgs. |
“Australian Application Serial No. 2013245552, First Examiner Report dated Mar. 30, 2016”, 4 pgs. |
“Canadian Application Serial No. 2,641,966, Office Action dated Feb. 6, 2014”, 2 pgs. |
“Canadian Application Serial No. 2,641,966, Office Action dated Jul. 16, 2013”, 2 pgs. |
“Canadian Application Serial No. 2,641,966, Office Action dated Aug. 25, 2014”, 2 pgs. |
“Canadian Application Serial No. 2,641,966, Office Action datd Sep. 4, 2015”, 4 pgs. |
“Canadian Application Serial No. 2,641,966, Response filed Jan. 15, 2014 to Office Action dated Jul. 16, 2013”, 6 pgs. |
“Canadian Application Serial No. 2,641,966, Response filed Feb. 25, 2015 to Office Action dated Aug. 25, 2014”, 4 pgs. |
“Canadian Application Serial No. 2,641,966, Response filed Aug. 6, 2014 to Office Action dated Feb. 6, 2014”, 3 pgs. |
“Chinese Application Serial No. 200680046893, Office Action dated Aug. 3, 2012”, (W/ English Translation), 8 pgs. |
“Chinese Application Serial No. 200680046893, Office Action dated Aug. 10, 2010”, (W/ English Translation), 22 pgs. |
“Chinese Application Serial No. 200680046893, Office Action dated Dec. 6, 2011”, (W/ English Translation), 5 pgs. |
“Chinese Application Serial No. 200680046893, Response filed Jan. 23, 2012 to Office Action dated Dec. 6, 2011”, (W/ English Translation), 11 pgs. |
“Chinese Application Serial No. 200680046893.7, Response filed Oct. 17, 2012 to Office Action dated Aug. 3, 2012”, (W/ English Translation), 8 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated Mar. 30, 2015”, (W/ English Translation), 2 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated May 28, 2015”, (W/ English Translation), 12 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed May 31, 2016 to Office Action dated May 10, 2016”, (W/ English Translation), 34 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed Sep. 7, 2015 to Office Action dated May 28, 2015”, (W/ English Translation), 72 pgs. |
“Chinese Application Serial No. 201280039705.3, Office Action dated Mar. 20, 2015”, (W/ English Translation), 15 pgs. |
“Chinese Application Serial No. 201280039706.8, Office Action dated May 19, 2015”, (W/ English Translation), 14 pgs. |
“Chinese Application Serial No. 201280039714.2, Office Action dated May 4, 2015”, (W/ English Translation), 19 pgs. |
“Complaint of W. Norman Scot and Giles R. Scuderi filed Sep. 9, 2010”, W. Norman Scott and Giles R Scuderi vs. Zimmer, Inc and Zimmer Technology, Inc in the US District Court of Delaware in Case No. 10-772-GMS, (Sep. 9, 2010), 24 pgs. |
“European Application Serial No. 06840269.2, Decision to Grant dated Feb. 18, 2016”, 3 pgs. |
“European Application Serial No. 06840269.2, Examination Notification Art. 94(3) dated Jan. 24, 2014”, 6 pgs. |
“European Application Serial No. 06840269.2, Examination Notification Art. 94(3) dated Nov. 12, 2014”, 4 pgs. |
“European Application Serial No. 06840269.2, Office Action dated Sep. 8, 2015”, 67 pgs. |
“European Application Serial No. 06840269.2, Response filed Mar. 23, 2015 to Examination Notification Art. 94(3) dated Nov. 12, 2014”, 10 pgs. |
“European Application Serial No. 06840269.2, Response filed Aug. 4, 2014 to Examination Notification Art. 94(3) dated Jan. 24, 2014”, 10 pgs. |
“European Application Serial No. 12720354.5, Examination Notification Art. 94(3) dated Oct. 22, 2014”, 4 pgs. |
“European Application Serial No. 12722967.2, Examination Notification Art. 94(3) dated Oct. 22, 2014”, 4 pgs. |
“European Application Serial No. 12724484.6, Examination Notification Art. 94(3) dated Dec. 3, 2014”, 5 pgs. |
“European Application Serial No. 14200265.8, Response Filed on Mar. 21, 2017 to Extended European Search Report dated Aug. 22, 2016”, 18 pgs. |
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs. |
“Gender Solutions Natural-Knee Flex System: Surgical Technique”, Zimmer, Inc., (2007, 2008, 2009), 36 pgs. |
“Gender Solutions Patello-Femoral Joint (PFJ) System: Surgical Technique”, Zimmer Inc., (2008, 2009), 38 pgs. |
“International Application Serial No. PCT/EP2011/004556, International Preliminary Report on Patentability dated Mar. 12, 2013”, 9 pgs. |
“International Application Serial No. PCT/EP2011/004556, International Search Report dated Feb. 9, 2012”, 6 pgs. |
“International Application Serial No. PCT/EP2011/004556, Written Opinion dated Mar. 12, 2013”, 9 pgs. |
“International Application Serial No. PCT/US2006/062117, International Preliminary Report on Patentability dated Jun. 18, 2008”, 5 pgs. |
“International Application Serial No. PCT/US2006/062117, Written Opinion dated Apr. 5, 2007”, 4 pgs. |
“International Application Serial No. PCT/US2012/035688, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035688, Partial Search Report dated Jul. 3, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035688, Search Report dated Sep. 17, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035688, Written Opinion dated Sep. 17, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/035691, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035691, Partial Search Report dated Jul. 10, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035691, Search Report dated Sep. 17, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035691, Written Opinion dated Sep. 17, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/035693, International Preliminary Report on Patentability dated Jan. 3, 2014”, 13 pgs. |
“International Application Serial No. PCT/US2012/035693, Partial Search Report dated Jun. 27, 2012”, 8 pgs. |
“International Application Serial No. PCT/US2012/035693, Search Report dated Oct. 9, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/035693, Written Opinion dated Oct. 9, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2012/038531, International Preliminary Report on Patentability dated Jan. 3, 2014”, 12 pgs. |
“International Application Serial No. PCT/US2012/038531, International Search Report dated Oct. 8, 2012”, 14 pgs. |
“International Application Serial No. PCT/US2012/038531, Written Opinion dated Oct. 8, 2012”, 10 pgs. |
“International Application Serial No. PCT/US2016/052173, International Search Report dated Jan. 10, 2017”, 6 pgs. |
“International Application Serial No. PCT/US2016/052173, Written Opinion dated Jan. 10, 2017”, 7 pgs. |
“Japanese Application Serial No. 2008-545981, Examiners Decision of Final Refusal dated Oct. 16, 2012”, (W/ English Translation), 3 pgs. |
“Japanese Application Serial No. 2008-545981, Office Action dated Apr. 17, 2012”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2008-545981, Office Action dated Jul. 5, 2011”, (W/ English Translation), 13 pgs. |
“Japanese Application Serial No. 2008-545981, Response filed Oct. 5, 2011 to Office Action dated Jul. 5, 2011”, (W/ English Translation), 6 pgs. |
“Japanese Application Serial No. 2008-545981, Response filed Aug. 30, 2012 to Office Action dated Apr. 17, 2012”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2011-221305, Office Action dated Feb. 26, 2013”, (W/ English Translation), 13 pgs. |
“Japanese Application Serial No. 2011-221305, Office Action dated Sep. 17, 2013”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2011-221305, Response filed Aug. 26, 2013 to Office Action dated Feb. 26, 2013”, (W/ English Translation), 9 pgs. |
“Japanese Application Serial No. 2011-221305, Response filed Dec. 17, 2013 to Office Action dated Sep. 17, 2013”, (W/ English Translation of Claims), 8 pgs. |
“Japanese Application Serial No. 2014-515819, Office Action dated Feb. 3, 2015”, (W/ English Translation), 15 pgs. |
“Japanese Application Serial No. 2014-515820, Office Action dated Dec. 2, 2014”, (W/ English Translation), 8 pgs. |
“Japanese Application Serial No. 2014-515821, Request for Examination Amendment filed Apr. 8, 2014”, (W/ English Translation), 18 pgs. |
“Japanese Application Serial No. 2014-515831, Office Action dated Dec. 16, 2014”, (W/ English Translation), 12 pgs. |
“Japanese Application Serial No. 2015-124808, Amendment filed Jul. 16, 2015”, (W/ English Translation), 8 pgs. |
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs. |
“Natural-Knee® Modular Cemented Baseplate”, [Online] retrieved from the internet:URL:http://www.zimmer.com/content/dam/zimmer-web/documents/en-US/pdf/medical-professionals/knee/natural-knee-modular-cemented-baseplate-brochure.pdf, (2004), 4 pgs. |
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-02 Rev 1, (2000), 26 pgs. |
“NexGen Implant Options Surgeon-Specific”, Zimmer Inc., (2000), 16 pgs. |
“NexGen LPS Fixed Knee: Surgical Technique”, Zimmer Inc., (2002, 2008), 44 pgs. |
“NexGen LPS-Flex Mobile and LPS-Mobile Bearing Knees”, Zimmer, Inc., (2007, 2008), 4 pgs. |
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs. |
“Unicompartmental High Flex Knee: Intramedullary, Spacer Block Option and Extramedullary Minimally Invasive Surgical Techniques”, Zimmer, Inc., (2004, 2009, 2010), 62 pgs. |
Hitt, Kirby, et al., “Anthropometric Measurements of the Human Knee: Correlation to the Sizing of Current Knee Arthroplasty Systems”, The Journal of Bone & Joint Surgery, (2003), 114-122. |
Mensch, Joseph S, et al., “Knee Morphology as a Guide to Knee Replacement”, Clinical Orthopaedics and Related Research No. 112, (Oct. 1975), 231-241. |
Poilvache, Pascal L, et al., “Rotational Landmarks and Sizing of the Distal Femur in Total Knee Arthroplasty”, Clinical Orthopaedics and Related Research, No. 331, (1996), 35-46. |
Seedhom, B B, et al., “Dimensions of the Knee—Radiographic and Autopsy Study of Sizes Required for a Knee Prosthesis”, Annals of the Rheumatic Diseases, (1972), 54-58. |
Yoshioka, Yuki, et al., “The Anatomy and Functional Axes of the Femur”, The Journal of Bone and Joint Surgery, vol. 69A, No. 6, (Jul. 1987), 873-880. |
“U.S. Appl. No. 11/611,021, Notice of Allowance dated Nov. 4, 2016”, 10 pgs. |
“U.S. Appl. No. 12/974,018, Appeal Decision dated Aug. 1, 2017”, 8 pgs. |
“U.S. Appl. No. 14/014,737, Appeal Decision dated Nov. 17, 2017”, 6 pgs. |
“U.S. Appl. No. 14/525,595, Application filed Oct. 28, 2014”, 40 pgs. |
“U.S. Appl. No. 14/553,034, Final Office Action dated Sep. 27, 2016”, 7 pgs. |
“U.S. Appl. No. 14/553,034, Non Final Office Action dated Apr. 20, 2016”, 15 pgs. |
“U.S. Appl. No. 14/553,034, Notice of Allowance dated Dec. 21, 2016”, 5 pgs. |
“U.S. Appl. No. 14/553,034, Response filed Aug. 22, 2016 to Non Final Office Action dated Apr. 20, 2016”, 10 pgs. |
“U.S. Appl. No. 14/553,034, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 27, 2016”, 9 pgs. |
“U.S. Appl. No. 14/731,013, Advisory Action dated Oct. 25, 2017”, 3 pgs. |
“U.S. Appl. No. 14/731,013, Final Office Action dated Aug. 14, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Non Final Office Action dated Apr. 20, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Non Final Office Action dated Nov. 28, 2017”, 14 pgs. |
“U.S. Appl. No. 14/731,013, Preliminary Amendment dated Jun. 4, 2015”, 7 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Jul. 20, 2017 to Non Final Office Action dated Apr. 20, 2017”, 10 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Oct. 16, 2017 to Final Office Actio dated Aug. 14, 2017”, 11 pgs. |
“U.S. Appl. No. 14/731,013, Response filed Nov. 14, 2017 to Advisor Action dated Aug. 14, 2017”, 11 pgs. |
“U.S. Appl. No. 14/809,810, Non Final Office Action dated Sep. 29, 2017”, 9 pgs. |
“U.S. Appl. No. 15/092,107, Response filed Jan. 9, 2018 to Restriction Requirement dated Nov. 17, 2017”, 16 pgs. |
“U.S. Appl. No. 15/092,107, Restriction Requirement dated Nov. 17, 2017”, 7 pgs. |
“U.S. Appl. No. 15/267,826, Restriction Requirement dated Dec. 27, 2017”, 6 pgs. |
“Australian Application Serial No. 2012271186, First Examiner Report dated Dec. 15, 2015”, 3 pgs. |
“Australian Application Serial No. 2012271186, Response filed Jun. 24, 2016 to First Examiner Report dated Dec. 15, 2015”, 14 pgs. |
“Australian Application Serial No. 2012271186, Subsequent Examiners Report dated Aug. 2, 2016”, 3 pgs. |
“Australian Application Serial No. 2012271243, Office Action dated Apr. 1, 2015”, 2 pgs. |
“Australian Application Serial No. 2012271243, Response filed Apr. 8, 2015 to Office Action dated Apr. 1, 2015”, 4 pgs. |
“Australian Application Serial No. 2012271243, Response filed Apr. 15, 2015 to Office Action dated Apr. 13, 2015”, 1 pg. |
“Australian Application Serial No. 2012271244, First Examiner Report dated Dec. 15, 2015”, 3 pgs. |
“Australian Application Serial No. 2012271244, Response filed Jun. 24, 2016 to First Examiner Report dated Dec. 15, 2015”, 13 pgs. |
“Australian Application Serial No. 2016202865, First Examination Report dated Jun. 26, 2017”, 2 pgs. |
“Australian Application Serial No. 2016202865, Response filed Aug. 16, 2017 to First Examination Report dated Jun. 26, 2017”, 22pgs. |
“Canadian Application Serial No. 294408, Voluntary Amendment filed Sep. 18, 2015”, 6 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated May 10, 2016”, w/English Translation, 8 pgs. |
“Chinese Application Serial No. 201280039703.4, Office Action dated Dec. 3, 2015”, w/English Translation, 8 pgs. |
“Chinese Application Serial No. 201280039703.4, Response filed Feb. 1, 2016 to Office Action dated Dec. 3, 2015”, w/English Claims, 24 pgs. |
“Chinese Application Serial No. 201280039705.3, Response filed Aug. 6, 2015 to Office Action dated Mar. 20, 2015”, (W/ English translation of claims), 11 pgs. |
“Chinese Application Serial No. 201280039705.3, Voluntary Amendment filed Jul. 22, 2014”, w/English Claims, 9 pgs. |
“Chinese Application Serial No. 201280039706.8, Office Action dated Feb. 26, 2016”, W/ English Translation, 4 pgs. |
“Chinese Application Serial No. 201280039706.8, Response filed May 11, 2016 to Office Action dated Feb. 26, 2016”, W/ English Translation of Claims, 9 pgs. |
“Chinese Application Serial No. 201280039706.8, Response filed Nov. 16, 2015 to Office Action dated May 19, 2015”, W/ English Translation of Claims, 16 pgs. |
“Chinese Application Serial No. 201280039714.2, Office Action dated Dec. 3, 2015”, (W/ English Translation), 7 pgs. |
“Chinese Application Serial No. 201280039714.2, Response filed Feb. 1, 2016 to Office Action dated Dec. 3, 2015”, w/English Claims, 8 pgs. |
“Chinese Application Serial No. 201280039714.2, Response filed Sep. 18, 2015 to Office Action dated May 4, 2015”, (W/ English Translation of Claims), 9 pgs. |
“Chinese Application Serial No. 201610697089.0, Office Action dated Jul. 25, 2017”, With English Translation, 30 pgs. |
“Chinese Application Serial No. 201610697089.0, Response filed Nov. 1, 2017 to Office Action dated Jul. 25, 2017”, w/English Claims, 11 pgs. |
“European Application Serial No. 12720354.5, Decision of Grant dated Dec. 3, 2015”, 3 pgs. |
“European Application Serial No. 12720354.5, Office Action dated Jun. 17, 2015”, 96 pgs. |
“European Application Serial No. 12720354.5, Response filed Aug. 21, 2014 to Communication pursuant to Rules 161(2) and 162 EPC dated Feb. 14, 2014”, 17 pgs. |
“European Application Serial No. 12720354.5, Response filed Dec. 24, 2014 to Examination Notification Art. 94(3) dated Oct. 22, 2014”, 13 pgs. |
“European Application Serial No. 12724484.6, Communication Pursuant to Article 94(3) EPC dated May 2, 2016”, 5 pgs. |
“European Application Serial No. 12724484.6, Response filed Apr. 13, 2015 to Examination Notification Art. 94(3) dated Dec. 3, 2014”, 16 pgs. |
“European Application Serial No. 12724484.6, Response filed Aug. 20, 2014 to Communication pursuant to Rules 161(1) and 162 EPC dated Feb. 14, 2014”, 10 pgs. |
“European Application Serial No. 12724484.6, Response filed Sep. 12, 2016 to Communication Pursuant to Article 94(3) EPC dated May 2, 2016”, 29 pgs. |
“European Application Serial No. 14200265.8, Extended European Search Report dated Aug. 22, 2016”, 23 pgs. |
“European Application Serial No. 15180629.6, Communication Pursuant to Article 94(3) EPC dated Jul. 5, 2017”, 4 pgs. |
“European Application Serial No. 15180629.6, Extended European Search Report dated Aug. 24, 2016”, 8 pgs. |
“European Application Serial No. 15191778.8, Extended European Search Report dated Oct. 13, 2016”, 7 pgs. |
“International Application Serial No. PCT/US2016/022907, International Preliminary Report on Patentability dated Oct. 5, 2017”, 9 pgs. |
“International Application Serial No. PCT/US2016/022907, International Search Report dated Jul. 7, 2016”, 7 pgs. |
“International Application Serial No. PCT/US2016/022907, Written Opinion dated Jul. 7, 2016”, 13 pgs. |
“Japanese Application Serial No. 2014-515819, Notice of Allowance dated Dec. 15, 2015”, (W/ English Translation), 13 pgs. |
“Japanese Application Serial No. 2014-515819, Response filed Jul. 29, 2015 to Office Action dated Feb. 3, 2015”, (W/ English translation of claims), 11 pgs. |
“Japanese Application Serial No. 2015-124808, Office Action dated Jun. 7, 2016”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2015-124808, Response filed Sep. 7, 2016 to Office Action dated Jun. 7, 2016”, W/ English Translation of Claims, 12 pgs. |
“U.S. Appl. No. 15/092,107, Notice of Allowability dated May 10, 2018”, 2 pgs. |
“U.S. Appl. No. 15/092,107, Notice of Allowance dated Apr. 18, 2018”, 8 pgs. |
“U.S. Appl. No. 15/267,826, Non Final Office Action dated Apr. 5, 2018”, 8 pgs. |
“U.S. Appl. No. 15/267,826, Notice of Allowability dated Aug. 31, 2018”, 2 pgs. |
“U.S. Appl. No. 15/267,826, Notice of Allowance dated Aug. 15, 2018”, 7 pgs. |
“U.S. Appl. No. 15/267,826, Response filed Feb. 22, 2018 to Restriction Requirement dated Dec. 27, 2017”, 6 pgs. |
“U.S. Appl. No. 15/267,826, Response filed Jun. 26, 2018 to Non Final Office Action dated Apr. 5, 2018”, 9 pgs. |
“Canadian Application Serial No. 2,839,433, Office Action dated Feb. 26, 2018”, 4 pgs. |
“Chinese Application Serial No. 201610697089.0, Office Action dated Feb. 7, 2018”, (W/ English Translation), 27 pgs. |
“Chinese Application Serial No. 2016106970890, Office Action dated Jul. 16, 2018”, w/ English translation, 10 pgs. |
“Chinese Application Serial No. 201610697089.0, Response filed Apr. 10, 2018 to Office Action dated Feb. 7, 2018”, w/ Concise Statement of Relevance, 4 pgs. |
“Chinese Application Serial No. 201610697089.0, Response filed Aug. 2, 2018 to Office Action dated Jul. 16, 2018”, w/ Concise Statement of Relevance, 11 pgs. |
“International Application Serial No. PCT/US2016/052173, International Preliminary Report on Patentability dated Apr. 12, 2018”, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20180092746 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61381803 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14845522 | Sep 2015 | US |
Child | 15835144 | US | |
Parent | 13819528 | US | |
Child | 14845522 | US |