This disclosure is directed to a fence and stop assembly system. More particularly, this disclosure is directed to a fence and stop assembly system having improved accuracy, consistency, and efficiency. Specifically, this disclosure is directed to a fence and stop assembly system having a fence and a selectively engageable and fine-adjustable stop assembly.
When undertaking projects, such as, for example, woodworking or metal working projects, a worker may be required to perform repeatable operations on multiple workpieces. For example, a project may require a worker to crosscut multiple workpieces to the same length. As performing repeatable operations on multiple workpieces is typically difficult and time consuming, workers may look for tools to aid the process. However, conventional tools available to workers performing repeatable operations have some drawbacks including, among others, being inaccurate, inconsistent, and inefficient.
In one aspect, an exemplary embodiment of the present disclosure may provide a fence and stop assembly system, comprising a fence configured to guide and/or secure a workpiece, a track defined in the fence extending along a length thereof, a stop assembly operably engaged with the track, and a stop portion of the stop assembly configured to engage the workpiece. At least a part of the stop portion may be positioned within the track. In some implementations, the entire stop assembly may be positioned between a top end and a bottom end of the fence.
The track may include a front opening, and the stop assembly may include a pivot shaft defining a pivot axis. The stop portion may be pivotable about the pivot axis between a disengaged position and an engaged position. In some implementations, when the stop portion pivots about the pivot axis from the disengaged position to the engaged position, at least a portion of the stop portion may pass through the front opening defined by the track.
The stop portion may include a stop surface configured to engage the workpiece. In some implementations, when the stop portion is in the disengaged position, the stop surface may face the track, and when the stop portion is in the engaged position, the stop surface may face a direction perpendicular to a front opening defined by the track. In some implementations, the stop portion may pivot about the pivot axis 90 degrees or less between the disengaged position and the engaged position.
The stop assembly may further include a locking assembly configured to engage the track and lock at least a part of the stop assembly at a desired location along the track. The stop assembly may further include a fine-adjustment assembly configured to move the stop portion in a linear direction.
The stop assembly may further include a first portion and a second portion operably engaged with the first portion. The locking assembly may be operably engaged with the first portion and the fine-adjustment assembly may be operably engaged with the second portion. In some implementations, the fine-adjustment assembly may be configured to move the second portion in a linear direction relative to the first portion. The stop portion may be operably engaged with the second portion. In some implementations, the fine-adjustment assembly may be configured to move the stop portion in a linear direction relative to the first portion.
In another aspect, an exemplary embodiment of the present disclosure may provide a method, comprising: operably engaging a stop assembly with a track defined in a fence such that at least a part of a stop portion of the stop assembly is positioned within the track. The method may further include moving the stop portion in a linear direction along the track such that the entire stop assembly is positioned between a top end of the fence and a bottom end of the fence when the stop portion moves in the linear direction. The method may further include moving the stop portion in a linear direction along the track such that at least a portion of the stop portion is within the track as the stop portion moves in the linear direction.
The method may further include pivoting the stop portion, about a pivot axis defined by a pivot shaft of the stop assembly, through a front opening defined by the track to position the stop portion in an engaged position. The method may further include pivoting the stop portion, about a pivot axis defined by a pivot shaft of the stop assembly, to an engaged position such that a stop surface of the stop portion faces a direction perpendicular to a front opening defined by the track when the stop portion is in the engaged position. The method may further include pivoting the stop portion, about a pivot axis defined by a pivot shaft of the stop assembly, 90 degrees or less about the pivot axis to an engaged position.
In another aspect, an exemplary embodiment of the present disclosure may provide a fence and stop assembly system and method of use thereof. The fence and stop assembly system may include a fence configured to guide and/or secure a workpiece, and a track defined in the fence extending along a length thereof. The stop assembly may be operably engaged with the track. The stop assembly may include a stop portion configured to engage the workpiece such that at least a part of the stop portion is positioned within the track. The method may include operably engaging a stop assembly with a track defined in a fence such that at least a part of a stop portion of the stop assembly is positioned within the track.
Sample embodiments of the present disclosure are set forth in the following description, are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended claims.
Similar numbers refer to similar parts throughout the drawings.
Referring to
With primary reference to
With continued reference to
The first side surface 22 of the second table portion 16 may extend vertically upward from the top surface 24 of the second table portion 16 to meet the top surface 20 of the first table portion 14 at an edge 30. The top surface 24 of the second table portion 16 may extend between the first side surface 22 and the second side surface 26. The second side surface 26 of the second table portion 16 may extend vertically upward from the top surface 24 of the second table portion 16 to meet the top surface 28 of the third table portion 18 at an edge 32.
With primary reference to
With primary reference to
With continued reference to
The first lower fence 48 may include a front surface 48a and may be an elongate member. The first lower fence 48 may be engaged with the support surface 40a of the base 40 proximate the first side 40b of the base 40 and spaced a distance from the cutting axis X1 in a direction perpendicular to the cutting axis X1. The front surface 48a of the first lower fence 48 may extend vertically upward from the support surface 40a of the base 40 such that the front surface 48a of the first lower fence 48 faces a direction parallel with the cutting axis X1.
The upper fence 50 may include a front surface 50a and may be an elongate member. The upper fence 50 may be engaged with a top 48b of the first lower fence 48 and spaced a distance from the cutting axis X1 in a direction perpendicular to the cutting axis X1. The front surface 50a of the upper fence 50 may extend vertically upward from the top 48b of the first lower fence 48 such that the front surface 50a of the upper fence 50 faces a direction parallel with the cutting axis X1. As such, the front surface 48a of the first lower fence 48 and the front surface 50a of the upper fence 50 may be coplanar in a vertical direction with one another.
The second lower fence 52 may include a front surface 52a and may be an elongate member. The second lower fence 52 may be engaged with the support surface 40a of the base 40 proximate the second side 40c of the base 40 and spaced a distance from the cutting axis X1 in a direction perpendicular to the cutting axis X1. The front surface 52a of the second lower fence 52 may extend vertically upward from the support surface 40a of the base 40 such that the front surface 52a faces a direction parallel with the cutting axis X1. The front surface 52a of the second lower fence 52 may be coplanar in a vertical direction with the front surface 48a of the first lower fence 48 and the front surface 50a of the upper fence 50.
As such, the front surface 48a of the first lower fence 48, the front surface 50a of the upper fence 50, and the front surface 52a of the second lower fence 52 may guide and/or secure a workpiece while it is being worked on, such as, for example, while the workpiece is being sawn, planed, routed, marked, drilled, or the like.
With primary reference to
It should be noted that the first fence 54a, the second fence 54b, the third fence 54c, and the fourth fence 54d may be substantially identical, and, therefore, only the structure of the first fence 54a will be further described herein, and any such descriptions applied to the first fence 54a may be applied to the second fence 54b, the third fence 54c, and the fourth fence 54d as necessary.
With primary reference to
With continued reference to
The first side 68 may include a recessed region 68a configured to be engaged with a portion of another fence (e.g., the bottom end 62 of the first fence 54a is engaged with the recessed region 68a of the first side 68 of the second fence 54b as shown in
The first side 68 of the first fence 54a may be coplanar with the front surface 48a of the first lower fence 48, the front surface 50a of the upper fence 50, and the front surface 52a of the second lower fence 52. As such, and in some implementations, the second end 66 of the first fence 54a may abut the first lower fence 48 and the upper fence 50 of the saw fence assembly 46 to serve as an extension to the saw fence assembly 46. However, in other implementations, the second end 66 of the first fence 54a may be placed proximate the machine tool, such as, for example, when a machine tool does not have a fence assembly.
With primary reference to
With continued reference to
With continued reference to
With continued reference to
The second track 74 may be provided on the second side 70 of the first fence 54a such that the front opening 82 of the second track 74 faces outwardly from the second side 70 of the first fence 54a and is positioned vertically intermediate the front opening 78 of the first track 72 and the front opening 86 of the third track 76.
The third track 76 may be provided on the first side 68 of the first fence 54a proximate the bottom end 62 of the first fence 54a such that the front opening 86 of the third track 76 faces outwardly from the first side 68 of the first fence 54a.
In some implementations, the first track 72 may be formed to have dimensions corresponding to standard fastener dimensions, the second track 74 may be formed to have dimensions corresponding to standard fastener dimensions, and the third track 76 may be formed to have dimensions corresponding to standard miter gauge dimensions (e.g., ¾ of an inch by ⅜ of an inch). However, the first track 72, the second track 74, and the third track 76 may take on any suitable dimensions. Although the first track 72, the second track 74, and the third track 76 have been described as being elongate longitudinally extending T-tracks, it is to be understood that the first track 72, the second track 74, and the third track 76 may take on any suitable shape and may have any suitable cross section.
It should be noted that the first stop assembly 56a and the second stop assembly 56b may be substantially identical, and, therefore, only the structure of the first stop assembly 56a will be further described herein, and any such descriptions applied to the first stop assembly 56a may be applied to the second stop assembly 56b as necessary.
With primary reference to
For clarity, directions relative to the first stop assembly 56a will be defined herein, which may be different compared to the directions defined relative to the first fence 54a. As such, the top end 90 (
With primary reference to
More particularly, and with continued reference to
The second end surface 114 may be a vertically extending surface and may face longitudinally inward (i.e., toward from the transverse axis X3). The second end surface 114 may include a base region 124 (substantially identical to the base region 120 of the first end surface 112) and a stem region 126 (substantially identical to the stem region 122 of the first end surface 112). The base region 124 of the second end surface 114 may be positioned vertically lower than the stem region 126 of the second end surface 114 (in a manner substantially identical to the first end surface 112). As the second end surface 114 may be substantially identical to the first end surface 112, the base region 124 of the second end surface 114 may have a width (not shown) that is equal to width W7 and a height (not shown) that is equal to height H1, and the stem region 126 of the second end surface 114 may have a width (not shown) that is equal to width W8, and a height (not shown) that is equal to height H2.
With continued reference to
With continued reference to
The second side surface 130 of the base portion 116 may face transversely outward (i.e., away from the longitudinal axis X2), may extend longitudinally between the base region 120 of the first end surface 112 and the base region 124 of the second end surface 114, and may extend vertically between the bottom surface 136 of the base portion 116 and the second top surface 134 of the base portion 116 a distance that is equal to height H1.
The first top surface 132 of the base portion 116 may face vertically upward, may extend transversely between the first side surface 128 of the base portion 116 and the first side surface 140 of the stem portion 118 a distance equal to a difference between width W7 and width W8, and may extend longitudinally between the base region 120 of the first end surface 112 and the base region 124 of the second end surface 114.
The second top surface 134 may face vertically upward, may extend transversely between the second side surface 130 of the base portion 116 and the second side surface 142 of the stem portion 118 a distance equal to a difference between width W7 and width W8, and may extend longitudinally between the base region 120 of the first end surface 112 and the base region 124 of the second end surface 114.
The first side surface 140 of the stem portion 118 may be transversely spaced from the second side surface 142 of the stem portion 118 a distance equal to width W8. The first side surface 140 of the stem portion 118 may face transversely outward (i.e., away from the longitudinal axis X2), may extend vertically between the first top surface 132 of the base portion 116 and the top surface 138 of the stem portion 118 a distance that is equal to height H2, and may extend longitudinally between the stem region 122 of the first end surface 112 and the stem region 126 of the second end surface 114.
The second side surface 142 of the stem portion 118 may face transversely outward (i.e., away from the longitudinal axis X2), may extend vertically between the second top surface 134 of the base portion 116 and the top surface 138 of the stem portion 118 a distance that is equal to height H2, and may extend longitudinally between the stem region 122 of the first end surface 112 and the stem region 126 of the second end surface 114.
The top surface 138 of the stem portion 118 may be spaced a vertical distance from the first top surface 132 of the base portion 116 that is equal to height H2, may extend transversely between the first side surface 140 of the stem portion 118 and the second side surface 142 of the stem portion 118, and may extend longitudinally between the stem region 122 of the first end surface 112 and the stem region 126 of the second end surface 114.
The first portion 102 may define a vertically extending bore 144 (
With primary reference to
With primary reference to
As will be described in greater detail below, the locking assembly 104 may be utilized to lock the first portion 102 of the first stop assembly 56a in various locations of the third track 76 of the first fence 54a. Although the locking assembly 104 has been described as including the locking foot 148 and the nut 150, it is to be understood that other components may be utilized to effect the same result. For example, the locking assembly 104 may include an engagement member, such as, for example, a threaded bolt, configured to releasably secure the first portion 102 with another object, such as, for example, a portion of another tool.
The second portion 106 may be substantially identical to the first portion 102 with several exceptions which will be further described herein. As such, similar parts are labeled with similar reference numerals and different parts are labeled with different reference numerals.
More particularly, and with primary reference to
With continued reference to
The longitudinally extending generally cylindrical bore 166 may extend through the first end surface 158 and through the second bore section 164d into the bore 164. The bore 166 may include a first opening 166a and a second opening 166b. The first opening 166a of the bore 166 may be provided proximate the first end surface 158, and the second opening 166b of the bore 166 may be provided proximate the second bore section 164d of the bore 164.
The cavity 168 may extend through the second bore section 164d, through the second end surface 160 of the second portion 106, and through at least a part of the pivot mount 170. The cavity 168 may include an opening 168a and an end 168b. As such, the opening 168a of the cavity 168 may lead to the bore 164 and the end 168b of the cavity 168 may be provided within at least a part of the pivot mount 170. As shown in
The pivot mount 170 may be engaged with, and may extend longitudinally from, the second end surface 160. More particularly, the pivot mount 170 may include a top surface 172 and a bottom surface 174. The top surface 172 may include a first section 172a and a second section 172b. The first section 172a may be coplanar with the top surface 162 of the stem portion 118 of the second portion 106 and may extend longitudinally away from the second end surface 160 of the second portion 106 toward the second section 172b of the top surface 172. The second section 172b may extend between the first section 172a and the bottom surface 174, and, as such, the second section 172b may have an arcuate portion and a straight portion (i.e., the arcuate portion is between the first section 172a and the straight portion, and the straight portion is between the arcuate portion and the bottom surface 174). The bottom surface 174 may define a cavity 176 having an opening 176a that faces vertically downward and leads to an interior cavity surface 176b. As shown in
With primary reference to
With primary reference to
As such, the adjustment wheel 182 may be provided within the bore 164 and may be rotatable about the thread axis X4. More particularly, the adjustment wheel 182 rotates about the threaded portion 178c of the set screw 178 about the thread axis X4. The fine-adjustment assembly 108 may further include an anti-backlash mechanism 182c, such as a spring molded within the second portion 106 proximate the first end 182a of the adjustment wheel 182, to reduce and/or prevent backlash associated with the linear movement of the second portion 106 and the stop portion 110. In some implementations, the fine-adjustment assembly 108 may be used to make adjustments of thousandths of an inch to the location of the second portion 106, the stop portion 110, and the stop surface 206 of the stop portion 110, however, the range of adjustment of the fine-adjustment assembly 108 may be any suitable range of adjustment.
Although the fine-adjustment assembly 108 has been described as including the set screw 178, the expansion bolt 180, and the adjustment wheel 182, it is to be understood that other components may be utilized to effect the same result. For example, the first portion 102 may be engaged with the second portion 106 with a link member, such as an elongate rod, and the second portion 106 may include an adjustment member, such as, for example, a grip member configured to be gripped by an operator to slidably move the second portion 106 along the elongate rod to make adjustments to components of the first stop assembly 56a.
With primary reference to
With continued reference to
The pivot shaft 194 may extend in a transverse direction and may be engaged with the inner side surface 210 of the first pivot portion 190 on one end and the inner side surface 214 of the second pivot portion 192 on the other end at a longitudinal distance away from the first end surface 196. A void 216 may be defined by a portion of the inner side surface 210 of the first pivot portion 190, a portion of the first end surface 196, a portion of the inner side surface 214 of the second pivot portion 192, and a portion of the pivot shaft 194. The pivot shaft 194 may define a pivot axis X5 (
It should be noted that the pivot surface 208 of the first pivot portion 190 and the pivot surface 212 of the second pivot portion 192 may be substantially identical, and, therefore, only the pivot surface 208 of the first pivot portion 190 will be further described herein, and any such descriptions applied to the pivot surface 208 of the first pivot portion 190 may be applied to the pivot surface 212 of the second pivot portion 192 as necessary.
With primary reference to
With primary reference to
The second section 220 may be a generally arcuate surface (such as, for example, a cam surface having convex and/or concave portions) extending between the first section 218 and the third section 222. The third section 222 may be a generally flat surface extending between the second section 220 and the fourth section 224. The fourth section 224 may be a generally arcuate surface (such as, for example, a cam surface having convex and/or concave portions) extending between the third section 222 and a part of the stop surface 206. The configuration of the first section 218, the second section 220, the third section 222, and the fourth section 224 may aid the movement of the stop portion 110 into and out of the engaged position EP and the disengaged position DP.
More particularly, when the stop portion 110 is in the disengaged position DP, the third section 222 (i.e., the generally flat surface) may be engaged with the second end surface 160 of the second portion 106. The stop portion 110 may pivot (about the pivot axis X5) in a rotational direction toward the first portion 102 when moving from the disengaged position DP to the engaged position EP. As this occurs, the second section 220 (i.e., the cam surface) cammingly engages the second end surface 160 of the second portion 106 to aid the rotation of the stop portion 110 until the first section 218 (i.e., the generally flat surface) engages the second end surface 160 of the second portion 106.
Further, when the stop portion 110 is in the engaged position EP, the first section 218 (i.e., the generally flat surface) may be engaged with the second end surface 160 of the second portion 106. The stop portion 110 may pivot (about the pivot axis X5) in a rotational direction away the first portion 102 when moving from the engaged position EP to the disengaged position DP. As this occurs, the second section 220 (i.e., the cam surface) cammingly engages the second end surface 160 of the second portion 106 to aid the rotation of the stop portion 110 until the third section 222 (i.e., the generally flat surface) engages the second end surface 160 of the second portion 106.
With continued reference to
The second side surface 202 may face transversely outward (i.e., away from the longitudinal axis X2) and may be bounded by a part of the second end surface 198, a part of the top surface 204, a part of the stop surface 206, and a part of the pivot surface 212 proximate the second side 100 of the first stop assembly 56a.
Further, the second side surface 202 may be spaced a transverse distance away from the first side surface 200 that is that is equal to width W8. Stated otherwise, the stop portion 110 may have a width (not shown) that is equal to (or less than) width W8, which allows at least a part of the stop portion 110 to pass through the front opening 86 of the third track 76.
The second end surface 198 may be bounded by a part of the top surface 204, a part of the stop surface 206, a part of the first side surface 200, and a part of the second side surface 202. The second end surface 198 may be an angled surface extending upwardly from the stop surface 206 at an acute angle relative to the stop surface.
With primary reference to
The stop surface 206 may be a generally flat surface, and may be bounded by a part of the first pivot portion 190, a part of the second pivot portion 192, a part of the first end surface 196, a part of the second end surface 198, a part of the first side surface 200, and a part of the second side surface 202.
In some implementations, the stop surface 206 may have a length (not shown) defined between the first end surface 196 and the second end surface 198 and a width (not shown) defined between the first side surface 200 and the second side surface 202. The width of the stop surface 206 may be equal to (or less than) width W8, which allows at least a part of the stop surface 206 to pass through the front opening 86 of the third track 76. In some implementations, the stop surface 206 may be square in shape (i.e., the length and width of the stop surface 206 may be equal), however, it is to be understood that the stop surface 206 may take on any suitable dimensions.
As stated above, and as illustrated in
With primary reference to
With continued reference to
With continued reference to
One or more fasteners 236 may extend through one or more of the plurality of bores 234 such that a portion of the one or more fasteners 236 engages at least the interior surface 84 of the second track 74 of the first fence 54a, the interior surface 80 of the first track 72 of the second fence 54b, and the top surface 20 of the first table portion 14 thereby releasably engaging the first fence 54a and the second fence 54b with one another, and further releasably engaging the first fence 54a and the second fence 54b to the top surface 20 of the first table portion 14.
Although the system 10 has been described as releasably engaging the first fence 54a and the second fence 54b with one another, and further releasably engaging the first fence 54a and the second fence 54b to the top surface 20 of the first table portion 14, it is to be understood that other configurations are possible. For example, and in some implementations, the system 10 may utilize a single vertical fence releasably engaged with the table 12 (e.g., if there is no groove 34, the first fence 54a may be releasably engaged with the top surface 20 of the first table portion 14), or the system may utilize a single horizontal fence releasably engaged with the groove 34 of the table 12 (e.g., if there is a groove 34, the second fence 54b may be releasably engaged with groove 34 in any suitable manner).
It should further be noted that the second end 66 of the first fence 54a and the second end 66 of the second fence 54b may be positioned to serve as an extension to another fence assembly, such as, for example, a miter saw fence assembly, or, alternatively, positioned proximate a cutting blade of a machine tool, such as, for example, a cutting blade of a miter saw.
Having thus described the structure of the system 10, and its associated components, primary reference is now made to
With primary reference to
As shown in
As the first stop assembly 56a is inserted into the third track 76, the first top surface 132 of the base portion 116 of the first portion 102 and the second portion 106, and the second top surface 134 of the base portion 116 of the first portion 102 and the second portion 106 slidably engage the interior surface 88 of the third track 76 (i.e., an area of the base portion 88a of the interior surface 88 is engaged). As shown in
With primary reference to
Once the first stop assembly 56a is moved to a location near the desired location, the hex portion 152 may be rotated which, in turn, rotates the threaded portion 154, which, in turn, moves the foot portion 156 in a transverse direction until the foot portion 156 engages the interior surface 88 of the third track 76. This causes the first top surface 132 of the base portion 116 of the first portion 102 and the second portion 106, and the second top surface 134 of the base portion 116 of the first portion 102 and the second portion 106 to engage the interior surface 88 of the third track 76 with sufficient force to lock the first portion 102 of the first stop assembly 56a in that location.
With primary reference to
Now that the movement of the first stop assembly 56a relative to the first fence 54a has been described, an implementation showing the first stop assembly 56a and the second stop assembly 56b engaged with the first fence 54a will be described. With primary reference to
With primary reference to
To accomplish this, the adjustment wheel 182 may be rotated in a direction generally indicated at arrow “C” which, in turn, causes the second portion 106 and the stop portion 110 to move in a linear direction (e.g., a longitudinal direction) generally indicated at arrow “D” away from the first portion 102.
More particularly, the adjustment wheel 182 may rotate about the thread axis X4 which, in turn, causes the adjustment wheel 182 to engage the second bore section 164d of the bore 164 and provide a linear force to move the second portion 106 and the stop portion 110 away from the first portion 102 in the linear direction (e.g., the longitudinal direction) until the stop surface 206 of the stop portion 110 of the first stop assembly 56a is precisely aligned with the 42-inch mark of the measurement device 11 (e.g., the stop surface 206 is perpendicular to the front opening 86 of the third track 76 at the 42-inch mark (
Generally, once the stop surface 206 of the stop portion 110 is at the desired location, the stop surface 206 may releasably engage a workpiece. For example, the workpiece may be a piece of wood having a length greater than a required cut length (e.g., the workpiece may have a length of 60 inches and needs to be crosscut to a length of 47 inches, or a length of 60 inches and needs to be crosscut to a length of 42 inches). As such, a side of the workpiece may releasably engage the first side 68 of the first fence 54a and an end of the workpiece may releasably engage the stop surface 206 of the stop portion 110 as more fully described below.
For example, the workpiece may slidably move along the first side 68 of the first fence 54a until an end of the workpiece engages the stop surface 206 of the stop portion 110. The end of the workpiece may remain engaged with the stop surface 206 until a crosscut operation is performed on the workpiece, which results in the workpiece having a necessary length.
This process may be repeated to crosscut other workpieces to the same length with accuracy, consistency, and efficiency, or to any other desired length with accuracy, consistency, and efficiency by relocating the stop surface 206 of the stop portion 110 to another desired location.
With primary reference to
With primary reference to
With primary reference to
One of the benefits of using more than one stop assembly includes being able to perform multiple repeatable operations with varying parameters on multiple workpieces (e.g., workpieces need to be crosscut to different lengths with a miter saw). For example, if more than one stop assembly is utilized, a first stop assembly may be positioned at a first desired location (associated with a first workpiece cut length) and a second stop assembly may be positioned at a second desired location (associated with a second workpiece cut length).
When a workpiece needs to be cut to the first workpiece cut length, the first stop assembly may be pivoted to the engaged position, and, if the second stop assembly is at a closer position to the machine tool than the first stop assembly, the second stop assembly may be pivoted to the disengaged position (positioning the entire stop assembly coplanar with, or inwardly of, the imaginary longitudinal vertical plane) to allow the workpiece to pass by the second stop assembly and engage the first stop assembly. Likewise, when a workpiece needs to be cut to the second workpiece cut length, the second stop assembly may be pivoted to the engaged position, and, if the first stop assembly is at a closer position to the machine tool than the second stop assembly, the first stop assembly may be pivoted to the disengaged position (positioning the entire stop assembly coplanar with, or inwardly of, the imaginary longitudinal vertical plane) to allow the workpiece to pass by the first stop assembly and engage the second stop assembly.
It should be noted that structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. For example, while the pivot shaft 194 has been described as being an element of the stop portion 110 of the first stop assembly 56a, it is to be understood that the pivot shaft 194 may be a separate element operably engaged with the second portion 106 and the stop portion 110, or with any suitable element of the first stop assembly 56a.
Various inventive concepts may be embodied as one or more methods, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims (if at all), should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc. As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper”, “above”, “behind”, “in front of”, and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal”, “lateral”, “transverse”, “longitudinal”, and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed herein could be termed a second feature/element, and similarly, a second feature/element discussed herein could be termed a first feature/element without departing from the teachings of the present invention.
An embodiment is an implementation or example of the present disclosure. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” “one particular embodiment,” “an exemplary embodiment,” or “other embodiments,” or the like, means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the invention. The various appearances “an embodiment,” “one embodiment,” “some embodiments,” “one particular embodiment,” “an exemplary embodiment,” or “other embodiments,” or the like, are not necessarily all referring to the same embodiments.
If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Additionally, the method of performing the present disclosure may occur in a sequence different than those described herein. Accordingly, no sequence of the method should be read as a limitation unless explicitly stated. It is recognizable that performing some of the steps of the method in a different order could achieve a similar result.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of various embodiments of the disclosure are examples and the disclosure is not limited to the exact details shown or described.
This application is a Continuation of U.S. patent application Ser. No. 17/463,822, filed Sep. 1, 2021, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1504248 | Johnson | Apr 1924 | A |
2890729 | Horn | Jun 1959 | A |
3095673 | Born, Jr. et al. | Jul 1963 | A |
3516316 | Cooper | Apr 1968 | A |
3994484 | Schorr | Nov 1976 | A |
4693158 | Price | Sep 1987 | A |
D298040 | Legler et al. | Oct 1988 | S |
4782871 | Aigner | Nov 1988 | A |
4901992 | Dobeck | Feb 1990 | A |
4974650 | Varley | Dec 1990 | A |
5018562 | Adams | May 1991 | A |
5337641 | Duginske | Aug 1994 | A |
5419540 | Teafatiller | May 1995 | A |
5617909 | Duginske | Apr 1997 | A |
D387782 | Letendre | Dec 1997 | S |
5722308 | Ceroll | Mar 1998 | A |
5735324 | Ponce | Apr 1998 | A |
5768966 | Duginske | Jun 1998 | A |
5768996 | Ackley | Jun 1998 | A |
5807036 | Lostlen | Sep 1998 | A |
5816129 | Singer | Oct 1998 | A |
5845555 | Dawley | Dec 1998 | A |
D404404 | Lane et al. | Jan 1999 | S |
D415177 | Miller et al. | Oct 1999 | S |
D427214 | Welsh et al. | Jun 2000 | S |
D428899 | Brutscher et al. | Aug 2000 | S |
6293176 | Talesky | Sep 2001 | B1 |
6557601 | Taylor | May 2003 | B1 |
6688202 | Parks et al. | Feb 2004 | B2 |
6880442 | Duginske | Apr 2005 | B2 |
D512893 | Cowan | Dec 2005 | S |
7228774 | Stolzer | Jun 2007 | B2 |
7231858 | Oberheim | Jun 2007 | B2 |
7367253 | Romo et al. | May 2008 | B2 |
7416000 | White et al. | Aug 2008 | B2 |
7464737 | Duginske | Dec 2008 | B2 |
7483765 | Dick | Jan 2009 | B2 |
7798187 | Duginske | Sep 2010 | B1 |
8495939 | Kani | Jul 2013 | B2 |
D702532 | Garrido et al. | Apr 2014 | S |
8844918 | Milligan | Sep 2014 | B1 |
D754525 | Kandakur et al. | Apr 2016 | S |
9403284 | Liu | Aug 2016 | B2 |
9505069 | Frolov | Nov 2016 | B2 |
D808249 | Kandakur et al. | Jan 2018 | S |
9993938 | Chen | Jun 2018 | B2 |
9996072 | Dick et al. | Jun 2018 | B2 |
10092968 | Fulmer | Oct 2018 | B2 |
D907079 | Favel et al. | Jan 2021 | S |
10906110 | Mayer et al. | Feb 2021 | B2 |
D915715 | Berg | Apr 2021 | S |
11020808 | Duginske | Jun 2021 | B2 |
11345057 | Duxbury | May 2022 | B1 |
20020092397 | Liu | Jul 2002 | A1 |
20040124036 | Ulshafter, Jr. | Jul 2004 | A1 |
20050223862 | Oberheim | Oct 2005 | A1 |
20060248998 | Duginske | Nov 2006 | A1 |
20070175729 | Robinson et al. | Aug 2007 | A1 |
20080041211 | Gibbons | Feb 2008 | A1 |
20120167738 | Lawlor et al. | Jul 2012 | A1 |
20150082962 | Lin | Mar 2015 | A1 |
20150298273 | Suhling | Oct 2015 | A1 |
20200215623 | Duginske | Jul 2020 | A1 |
20210078196 | Pierluigi | Mar 2021 | A1 |
20210394319 | Suhling | Dec 2021 | A1 |
20220176580 | Ottemeier et al. | Jun 2022 | A1 |
Entry |
---|
“Rockler Inline Track Stop for T Track System—Durable Aluminum T Tracks Woodworking Stop features Low-Profile Knobs—T-Track Stop Msueare . . . ” Amazon., Jun. 2, 2015 [online], [retrieved on Jul. 28, 2022]. Retrieved from the Internet <URL: https://www.amazon.com/Rockler-Inline-Stop-T-Track-System/B00YP2M0CU/>. |
“Powertec 71367 3-Inch Fence Flip Stop for Woodworking” Amazon., May 3, 2019 [online], [retrieved Jul. 28, 2022]. Retrieved from the Internet <URL: https://www.amazon.com/POWERTEC-71367-3-Inch-Fence-Flip/dp/B07RJBCS46/ref=pd_Ipo_3?pd_rd_i=B07RJBCS46&th=1>. |
Number | Date | Country | |
---|---|---|---|
20230068817 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17463822 | Sep 2021 | US |
Child | 17688008 | US |