This invention relates in general to outdoor containment structures, and more particularly to fencing systems having adjustable vertical support members adaptable to meet varying use conditions.
The home improvement industry has seen significant growth in the last decade. It is estimated that consumers spent over a quarter of a trillion dollars in 2005 on home improvement projects, and that number has been growing at a rate of about 7% per year. As a result, manufacturers and retailers spend significant effort in trying to differentiate their products from the competition.
One commonly undertaken home improvement project involves adding fences, railings, outdoor-rooms and similar structures to homes and landscaping. Railings and fences can be added for aesthetic reasons, such as to add interest to landscaping. In other applications, railings and fences are practical or mandatory. For example, a raised deck will require railings to comply with building codes.
Standard deck railings and fences are typically constructed using a series of posts anchored to the ground or flooring structures. The posts are connected via generally rectangular planar sections that provide the containment function, such as preventing the passage of people or animals. In many fencing and railing systems, these sections are formed by a top and bottom vertical rails that are tied together by a plurality of vertical members sometimes referred to as balusters. In other arrangements, the top and bottom railings are tied together (or integral with) a solid sheet of material, such as mesh, glass, metal, wood, composites, etc.
There are advantages and disadvantages to both solid fencing/railing section and “open” sections that use balusters. For example, the solid sections can block wind and prevent the passage of very small items and can offer privacy. However, blocking the view of what is behind the fence or rail can sometimes be a disadvantage. An open section provides a view through the railing, with the resulting loss of privacy. Oftentimes, a user may want the privacy of a solid section during some conditions, and yet under other conditions may desire the outward-looking view provided by open sections. It would be advantageous, therefore, to have a fence or railing that selectably offers the advantages of both open and solid sections depending on current use conditions.
To overcome limitations in the prior art described above, and to overcome other limitations that will become apparent upon reading and understanding the present specification, the present invention discloses methods and apparatus related to fencing/railing sections. In one embodiment, a railing section is capable of being adapted for varying conditions of use. The railing section includes first and second support rails. The first support rail has a longitudinal void. A plurality of movable fence members are perpendicularly disposed between the first and second support rails. A drive mechanism is disposed in the longitudinal void of the first support rail and coupled to the plurality of movable fence members. Operation of the drive mechanism causes simultaneous rotation of the movable fence members along longitudinal axes of the respective movable fence members through an angle of 360 degrees or more.
In more particular embodiments, the respective longitudinal axes of the first and second support rails are horizontally oriented, and the respective vertical axes of the plurality of movable fence members are vertically oriented. In one configuration, the first support rail is above the second support rail. In another more particular embodiment, the drive mechanism comprises a plurality of gears disposed along the longitudinal void of the first rail. The plurality of gears may include drive gears and idler gears. In such a configuration, each of the drive gears is fixably coupled to one of the movable fence members, and the idler gears are rotatably coupled to the first support rail and disposed between adjacent drive gears. In another configuration, the drive mechanism includes a plurality of rubber wheels disposed along the longitudinal void of the first support rail.
In other, more particular embodiments, the rail section may further include a slip mechanism coupled between the drive mechanism and movable fence members. The slip mechanism decouples the movable fence members from the drive mechanism when a force between the movable fence members and the drive mechanism satisfies a predetermined value. In other, more particular arrangements, the rail section may further include an electrically controllable actuator coupled to the drive mechanism that causes rotation of the movable fence members in response to an input signal. In such an arrangement, the rail section may also include a flexible rotational drive member coupled between the electrically controllable actuator and the drive mechanism. In one configuration, the flexible rotational drive mechanism includes a flex shaft. In another configuration, the railing section includes a structural support member that encloses the electrically controllable actuator. In another configuration, the electrically controllable actuator comprises an electric motor.
In another embodiment of the invention, a railing system that is capable of being adapted for varying conditions of use includes a plurality of railing sections. Each railing section includes first and second support rails, with the first support rail having a longitudinal void. A plurality of movable fence members are perpendicularly disposed between the first and second support rails, and a drive mechanism is disposed in the longitudinal void of the first support rail and coupled to the plurality of movable fence members. Operation of the drive mechanism causes simultaneous rotation of the movable fence members along longitudinal axes of the respective movable fence members through an angle of 360 degrees or more. The railing system also includes a plurality of mounting members connected to a mounting surface. The mounting members couple the first and second support rails of adjacent railing sections. The railing system also includes one or more coupling members disposed through one or more of the mounting members. The coupling members rotatably couple the drive mechanisms of two or more of the railing sections.
In more particular embodiments, the drive mechanisms of the plurality of railing sections each include a plurality of gears disposed along the longitudinal void of the first rail of the respective railing section. The plurality of gears may include drive gears and idler gears. In such an arrangement, each of the drive gears is fixably coupled to one of the movable fence members of the respective railing section, and the idler gears are rotatably coupled to the first support rails of the respective railing section and disposed between adjacent drive gears of the respective railing section.
In other, more particular embodiments, the railing system may further include an electrically controllable actuator coupled to the drive-mechanism of at least one of the railing sections. The actuator causes rotation of the movable fence members in response to an input signal.
In another embodiment of the invention, a method of forming a railing section involves rotatably locating a plurality of movable fence members perpendicularly between first and second support rails. A drive mechanism is disposed in a longitudinal void of the first support rail, and the drive mechanism is coupled to the plurality of movable fence members so that operation of the drive mechanism causes simultaneous rotation of the movable fence members along longitudinal axes of the respective movable fence members through an angle 360 degrees or more.
In more particular embodiments, the method further involves coupling a shaft to the drive mechanism so that the flexible shaft activates the drive mechanism in response to a torsion applied to one end of the flexible shaft. The method may also involve coupling an electronically controllable actuator to the flexible shaft and/or coupling an electrically controllable actuator to the drive mechanism, so that the actuator causes rotation of the movable fence members in response to an input signal.
These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and form a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to accompanying descriptive matter, in which are illustrated and described representative examples of systems, apparatuses, and methods in accordance with the invention.
The invention is described in connection with the embodiments illustrated in the following diagrams.
In the following description of various exemplary embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized, as structural and operational changes may be made without departing from the scope of the present invention.
Generally, the present invention is directed to a containment structure that has containment sections that are selectable depending on use conditions. The term containment structure as used herein generally refers to a fencing or railing system. However, the present invention may be applicable to structures that are intended to contain humans or animals, such as enclosures (e.g., pens, garages), window/door, shutters, gates, verandas, gazebos, parapets, ship decks, hot tub and swimming pool surrounds, roof/overheads, horizontal or vertical supports, walls, roofs, etc. Similarly, the term containment section generally refers to the sections that tie together anchor/edge structures such as posts/walls.
The present invention is directed to methods and apparatus of offering adjustable containment sections that can support different use conditions. In one example, these use conditions may be an adjustment between a closed and open configuration. Generally, the closed configuration blocks some or all of the containment section, so that it appears as if the containment section was formed of a solid sheet. The open configuration has openings/voids so that light and matter might pass through. In some embodiments, transitioning between the open and closed configuration may involve rotating flat, oblong balusters around their longitudinal axis.
There may be other use conditions that are alternatives to or additional to the “open” and “closed” states described herein. For example the changing of the containment sections may involve changing the appearance of the sections. This could be accomplished, for example by forming balusters having differing appearances on differing sides. Therefore, such an arrangement may have multiple closed or open states, each corresponding to a different appearance caused by the orientation of different sides of the balusters shapes.
In reference now to
For purposes of further discussion, the features of rail sections will be discussed with reference to section 104, as structure 100 may include a plurality of substantially identical sections as typified by section 104. The section 104 includes top and bottom rails 110, 112. Top rail 110 also includes a rail cap 114 that covers and protects mechanisms in the top railing 110. The section 104 also contains a plurality of rotatable balusters 116. In this example, the balusters 116 are flat, thin, rectangular members that are rotatable around their longitudinal axes, which are vertical in this arrangement. The balusters 116 may rotate in response to forces provided from driving mechanisms contained in the top rail 110. A more detailed view of the top rail 110 of a section 102 according to an embodiment of the invention shown in
Generally the top rail 110 may include a conduit 202, such as a U-channel or C-channel member, which provides the structural support for the rail 110. The channel member 202 may be formed, for example, from sheet metal, aluminum, plastics, composites, or any other appropriate material. The channel conduit 202 can enclose drive mechanisms 204 that cause the balusters 116 to rotate, as well as motors, wires, transmission members, or other control components of the decking system. In this example, the drive mechanism 204 includes a drive gear 206 coupled to each of the balusters 116, and idler gears 208 between each of the drive gears 206. The drive gears 206 and idler gears 208 form a drive train that allows the balusters 116 to be rotated in unison along each section 102.
Generally, one of the drive gears 206 or idler gears 208 will be coupled to a rotational drive (e.g., crank, motor) that causes the rotation of one or more of the balusters 116 in a section 102, thereby opening and closing the section 102. In the illustrated top rail 110, a gap 210 allows a drive mechanism to enter the conduit 202 and contact an end drive gear 206a, and thereby drive the gears 206, 208 in the section. The gap 210 and associated mechanisms can also be arranged to couple multiple sections 102 so that a single drive element can open and close multiple sections. In such a case, the end gear 206a could be configured to be driven by a rotational motor, by a coupling member (e.g., coupling gear assembly, drive/flex shaft) that is driven by the drive mechanism of an adjacent section 102, and/or to actuate a coupling member that drives adjacent sections 102.
The illustrated drive train 204 utilizes a single idler gear 208 between each drive gear 206. Those skilled in the art will appreciate that any number of intermediate idler gears 208 may be utilized, depending on the size of the gears 206, 208, size of the balusters 116, and other factors. Generally, an odd number of idler gears 208 will be used where it is desired to rotate all of the balusters 116 in the same direction; otherwise with an even number of idler gears 208 (or no idler gears 208) each baluster 116 will rotate in the opposite direction of the adjacent baluster 116.
Although the drive train 204 in
In reference now to
Generally, a drive gear 542 is located on the one end of the drive train 542 and is coupled with a drive wheel 544. This drive wheel 544 is in contact with idler wheel 546, which is in contact with drive wheel 548. The drive train 540 is made of as many-drive and idler wheels as there are individually driven balusters. Note that the drive wheels 544, 548 include respective oblong holes 550, 552 to prevent slipping of the wheels on drive shaft, whereas the idler wheel 546 includes a round hole 554 for free rotation on its shaft. The drive gear 542 may be included at both ends of the drive train 540, and the drive gears may be coupled to any number of idler and drive wheels.
In reference now to
In reference now to
In any of the drive train embodiments described herein, the drive trains maybe located in the lower rail section 112 (see
In
In reference now to
The balusters 116 are fastened at top and bottom edges to respective top and bottom pivot members 306, 308. The top pivot members 306 interface with the drive assembly 204 so that, in response to a driving element (e.g., motor), the drive assembly 204 causes rotation of the balusters 116. The bottom pivot members 308 are arranged to pivot freely in a pivot channel 310 of the lower railing 112. In some arrangements, the pivot channel 310 may be directly attached to a lower support structure (e.g., horizontal deck surface) thereby precluding the need for the lower railing 112.
The pivot channel 310 may be formed of a material that allows the desired level of friction (or lack thereof) in the balusters 116, or bearing elements (not shown) may be placed between the balusters 116 and pivot strip 310. The bearing elements may include sleeves, bushing, ball bearings, inserts, etc. The pivot channel 310 is coupled to a lower support member 314 that provide structural support and enhances the appearance of the lower railing 112.
One advantage to using a drive train assembly 204 with multiple gears/wheels is that the assembly 204 may be adapted to different railing shapes. This is shown in
In reference now to
Note that the mounting plate 508 and end cap 506 have respective voids 512, 514 through which drive apparatus may be located. These voids 512, 514 are aligned with a hole 516 in the post 502. A drive apparatus such as a motor 518 may be located within the conduit 500, within one or more posts 502, or may be located entirely remotely from the railing system. In the either case, a rotational drive element such as a flex shaft 520 might be coupled between internal or external drive apparatus and the drive train in the railings (e.g., gears 204 in
The post 502 also has a sealing member 522 attached to it. This sealing member is substantially aligned with the edge of an end baluster in a railing assembly. The portion of the sealing member 522 that contacts the baluster may be a brush, rubber/foam seal, etc. The use of softer materials may be preferable to prevent pinching hazards. The sealing member 522 may be configured to provide a positive physical engagement so that the balusters lock into a closed position. The sealing member 522 may also assist in preventing the passage of light and matter when the railing system is in the closed position. Similarly, the balusters themselves may have edge features that assist in sealing off the closed rail section and providing positive engagement for the closed baluster members. These sealing features may also include a substantially compliant portion that reduces risk of pinching.
As described above in relation to
Although the drive shafts 566 of adjacent sections may be rigidly coupled, in many installations, it may be beneficial to couple the shafts 566 using a flexible member, such as flex shaft 568. A flex shaft 568 can reduce stresses on the gearing components caused by misalignment of sections. Further, a flexible shaft 568 can provide driving rotations between adjacent angled sections, as seen in
Use of a flexible member 568 may allow the angle between adjacent sections to be as small as 90 degrees, or smaller. However, the stresses on flexible members 568 will increase as the bend angle becomes smaller. Therefore, a system according to embodiments of the invention may use an angled gear coupling 570 as shown in
In the previous examples, the balusters are shown as elongated, thin plates, such as balusters 116 shown in
In other arrangements, rail sections according to embodiments of the invention may have more than two appearances in the closed position, as is illustrated in
As described in relation to previous drawings, it may be desirable or necessary to incorporate some type of slippage mechanisms in the baluster drives. A slippage mechanism can prevent injury to people and/or damage to property due to objects being pinched between closing balusters. It may be possible to have the main drive gear (e.g., drive gear attached to an edge baluster) slip, and have all other balusters substantially fixed to their drive gears. In most configurations, this would place a limit on the closing forces at all of the balusters. In other cases, it may be preferable or desirable to allow each baluster to slip individually. For example, the end user may want to purposely adjust some balusters out of parallel for a certain effect. Typically, though, it will be desirable to ensure the balusters remain substantially parallel, or at least be easily returned to a parallel configuration after slippage has occurred. In reference now to
Generally, the slip mechanism 800 includes a shaft-coupled wheel 802 and an outer drive member 804 that are rotatably coupled. The shaft-coupled wheel 802 is fixably connected to a drive shaft via oblong hole 806. The illustrated outer drive member 804 includes gear teeth, although other drive member 804 may be adapted for pulleys, toothed belts, chains, rubber wheels, one-way bearing, and the like.
The outer surface 808 of the shaft-coupled wheel 802 slidably interfaces with the inner surface 810 of the outer drive member 804. The outer surface 808 of the shaft-coupled wheel 802 also includes one or more radial holes 810 that are each adapted to receive a spring 812 and latch pin 814. When the slip mechanism 800 is assembled, the one or more latch pins 814 are forced into detents 816 on the inner surface 810 of the outer drive member 804. When a sufficiently large moment is applied between the shaft-coupled wheel 802 and the outer drive member 804, the latch pins 814 will slip from the detents 816. This will provide the requisite slippage, yet allows the end user to easily relocate the driven member after slippage has occurred. It will be apparent that alternate variations and uses of the illustrated slip mechanism are possible. For example, the location of the detents 816 and latch pins 814 could be reversed relative to the inner and outer members 802, 804.
The baluster arrangement in some of the previously illustrated embodiments had the rotational axes of the balusters substantially inline along the rail sections. However, a top view of an alternate arrangement of balusters according to an embodiment of the invention is shown in
It will be appreciated that railing sections described herein can be equipped with any manner of automatic or manual drive mechanism, including manual cranks, wheels, sliders, motors, etc. In one arrangement, a manual hand crank may be used that has a locking or notched locking system so the balusters won't move in response to strong winds. One particularly useful arrangement is to use electronically controllable components that can be controlled by computing arrangements. Such an automated system according to an embodiment of the invention is shown in
The adjustable sections 904 may be controlled by one or more electronically controllable actuators 906. These actuators 906 may include motors 908, valves 910, or any other actuating device, as represented by generic actuating device 911. The motors 908 may include one or more electrical motors 908 that are driven by any combination of AC or DC power. The motor(s) 908 may be controlled by switching power on and off, and may also accept digital or analog drive signals (e.g., step motor). Other sources of motive power besides electricity may be used to adjust the rail sections 904, such as hydraulic or pneumatic power. Such forms of power may be controlled by valves 910 and similar devices. The actuators 906 may be arranged to move sections 904 independently (e.g., one actuator per section 904), or even move balusters with the sections 904 independently (e.g., multiple actuators per section 904). In other arrangements, each actuator 906 may be coupled control as many sections 904 as possible. The number of sections that may practically be simultaneously driven may vary based on such factors as forces needed to move balusters, frictional losses in drive trains, effects of weather/temperature, etc.
Besides causing the movement of the railing structures 904, electronic apparatus can also obtain the input of sensors 912 in order to provide more sophisticated control options. Such sensors 912 may include, for example, temperature sensors 914, limit switches 916, light sensors 918 (e.g., photovoltaic cells), or any other sensor, as represented by generic sensor 919. These sensors 912 may be coupled to a component of the railing 902 itself, or located elsewhere. An example of a rail-mounted sensor is where the limit switch 916 could be used to prevent actuator operation during certain use or service conditions (e.g., cover removed, balusters located at user-defined limit, etc.). In another example, sensors 912 may be rail mounted or externally mounted, such as those that can detect certain weather conditions (e.g., sunlight, wind, precipitation) so that the rail sections 904 can be automatically operated based on a user-defined preference related to weather conditions. The sensors 912 may be combined with other devices. For example, a porch light or control switch for the light could be used as a sensor for purposes of controlling the rail sections 904. In such a case, the user may wish for the rail sections 904 to automatically close for privacy when the user is out on the porch at night and has turned the light on.
A computing arrangement 920 may be configured to control various operational aspects of the system 900. The computing arrangement 920 may include custom or general-purpose electronic components. For example, some or all of the functionality of the computing arrangement 920 described below may be incorporated into a wired or wireless remote control 921. The computing arrangement 920 includes a central processor (CPU) 922 that may be coupled to random access memory (RAM) 924, read-only memory (ROM) 926, and/or persistent storage 927. The ROM 926 may include various types of storage media, such as programmable ROM (PROM), erasable PROM (EPROM), etc. The processor 922 may communicate with other internal and external components through input/output (I/O) circuitry 928. The processor 922 carries out a variety of functions as is known in the art, as dictated by software and/or firmware instructions.
The persistent storage 927 may include one or more data storage devices, including hard and floppy disk drives, optical drives, flash memory, and other hardware capable of reading and/or storing information. In one embodiment, software for carrying out the operations in accordance with the present invention may be stored and distributed on a CD-ROM, diskette or other form of media capable of portably storing information. These storage media may be inserted into, and read by, devices such as a CD-ROM drive, disk drive, etc. The software may also be transmitted to computing arrangement 920 via data signals, such as being downloaded electronically via a network, such as the Internet. The computing arrangement 920 may be coupled to a user input/output interface 932 for user interaction. The user input/output interface 932 may include apparatus such as a mouse, keyboard, microphone, touch pad, touch screen, voice-recognition system, monitor, LED display, LCD display, etc.
The computing arrangement 920 includes processor executable instructions 934 for carrying out tasks of the computing arrangement 920. These instructions include actuator and sensor interfaces 936, 938 for communicating with respective actuator devices 906 and sensor devices 912. The actuator and sensor interfaces 936, 938 may include any combination of hardware electronics, basic input-output interfaces, software drivers, operating system components, and application level utilities. The actuator interface 936 generally controls the stopping and starting of actuators 906, and may control other aspects such as acceleration, operation speed, monitoring of on-device sensors (e.g., temperature and force transducers). The sensor interface 938 generally receives electronic signals indicative of physical phenomena detected by the sensors 912. The sensor interface 938 may include signal conditioning circuitry, analog-to-digital converters, and memory registers used to store sensed values.
Both the actuator and sensor interfaces 936, 938 may have their own application-level interfaces that allow a user to control and read data related to devices 906, 912. These interfaces 936, 938 may include user interfaces that allow people to interact with the devices 906, 912 via the user I/O interface 932 or similar interface apparatus. In a more useful arrangement, the interfaces 936, 938 may have application program interfaces (API) that allow another program, such as controller applications 940, to control these and other devices at the same time. A unified controller application 940 may use the device interfaces 936 directly through a custom API, or through other generic media and control interfaces. For example, the applications 940 and interfaces 936, 938 may implement home automation and control standards such as X10, Jini, Universal Plug and Play, and other home automation and ubiquitous computing standards known in the art. These standards allow the fencing system 900 to be integrated into larger-scale home or business automation network. For example, general purposes devices, such as the remote control 921, may be programmable to interface with the system 900 using these standards.
In reference now to
Railing section 958 is located vertically above section 960, and, at least in the illustrated arrangement, share the same support posts 962, 964. In this arrangement, the balusters 966, 968 of the respective sections 958, 960 may be driven by the same drive mechanism. For example, a common drive mechanism may be located in horizontal section 970 that is tied to balusters 966 on the topside and tied to balusters 968 on the bottom side. In another configuration, single ones of the upper balusters 966 may directly tied to selected one of the lower balusters 968, and a single drive mechanism may be incorporated on either a top rail 972 or a bottom rail 974.
Finally, section 976 illustrates how a lower railing portion 978 (either a rail or pivot channel) may be coupled to something besides a structural base. In this arrangement, a lattice 980 is located directly below the lower member 978. The lattice 980 may be made integral to the deck section 976, or used to cover a space below a raised deck, for example.
In reference now to
In reference now to
The foregoing description of the exemplary embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not with this detailed description, but rather determined from the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
2202417 | Fleming | May 1940 | A |
2607452 | Hall | Aug 1952 | A |
2618087 | Hutchison, Jr. | Nov 1952 | A |
2789792 | Davis | Apr 1957 | A |
2973943 | Loter et al. | Mar 1961 | A |
3084715 | Scharres | Apr 1963 | A |
3137043 | Moeller | Jun 1964 | A |
3342458 | Simonton | Sep 1967 | A |
3412506 | Shiota | Nov 1968 | A |
3688522 | Schmuck et al. | Sep 1972 | A |
3724812 | Richardson | Apr 1973 | A |
4099346 | Isono | Jul 1978 | A |
4122885 | Marotto | Oct 1978 | A |
4184288 | Magill et al. | Jan 1980 | A |
4265086 | Bahrenburg | May 1981 | A |
4275762 | Field | Jun 1981 | A |
4469132 | Redington | Sep 1984 | A |
4541160 | Roberts | Sep 1985 | A |
4702122 | Richard | Oct 1987 | A |
4703188 | Gottfried | Oct 1987 | A |
4709506 | Lukaszonas | Dec 1987 | A |
4773464 | Kobayashi | Sep 1988 | A |
4938445 | Medley | Jul 1990 | A |
4953231 | Burnett | Sep 1990 | A |
5052150 | Chen | Oct 1991 | A |
5095966 | Rogers | Mar 1992 | A |
5203394 | Hailey | Apr 1993 | A |
5216837 | Cleaver et al. | Jun 1993 | A |
5292086 | Min | Mar 1994 | A |
5297353 | Ghalayini | Mar 1994 | A |
5315776 | Strawbridge et al. | May 1994 | A |
5347756 | Abbot et al. | Sep 1994 | A |
5469658 | Digianni et al. | Nov 1995 | A |
5572816 | Anderson et al. | Nov 1996 | A |
5600920 | Roy | Feb 1997 | A |
5628494 | Arnold | May 1997 | A |
5887386 | Alexanian et al. | Mar 1999 | A |
6027104 | Alexander et al. | Feb 2000 | A |
6052931 | Werner | Apr 2000 | A |
6126145 | Mohr | Oct 2000 | A |
6128857 | Morgan et al. | Oct 2000 | A |
6178675 | Strother | Jan 2001 | B1 |
6269568 | Lo | Aug 2001 | B1 |
6405782 | Cheng | Jun 2002 | B1 |
6508140 | Zaps | Jan 2003 | B2 |
6796549 | Lester | Sep 2004 | B1 |
7025335 | Zhu | Apr 2006 | B2 |
7032891 | Rowley et al. | Apr 2006 | B2 |
7100904 | Kim | Sep 2006 | B2 |
7281353 | Konstantin | Oct 2007 | B2 |
20020157291 | Lin | Oct 2002 | A1 |
20030159355 | Froerer et al. | Aug 2003 | A1 |
20040140462 | Rowley et al. | Jul 2004 | A1 |
20050193850 | Sasaguchi et al. | Sep 2005 | A1 |
20070199216 | Atkinson | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2241000 | Aug 1991 | GB |
Number | Date | Country | |
---|---|---|---|
20080087874 A1 | Apr 2008 | US |