The present invention relates to a fender supporting structure of a two wheeled motor vehicle for supporting a front fender covering an area above the front wheel.
A front fender is provided above the front wheel of a two-wheeled motor vehicle, being formed in an arc shape so as to cover the front wheel. This front fender is made attachable from under a bottom bridge provided to a front fork. In addition, this front fork and a mounting surface of the bottom bridge are formed on the same level, and the front fender is attached to the bottom bridge with fastener members such as bolts inserted through a plurality of mounting holes formed in the mounting surface (for example, see patent document 1).
Moreover, the front fender is integrally formed of synthetic resin. Accordingly, in order to secure the supporting rigidity at a mounting portion of the front fender to be attached to the bottom bridge, the dimension of the front fender in a width direction of the mounting surface is secured as long as possible. Moreover, in order to secure the rigidity of the entire front fender, the entire shape of the front fender is enlarged to suit the dimension thereof in this width direction.
The front fender has only to have a function of preventing mud from splashing. However, an enlargement of the dimension of the front fender in the width direction of the mounting surface to secure the rigidity requires the outer shape of the front fender to be made larger than necessary. As a result, this requirement narrows the range of the design and layout of the front fender.
The present invention has been made in consideration of the foregoing circumstances. An object of the present invention is to provide a fender supporting structure of a two-wheeled motor vehicle that is capable of securing the rigidity of a mounting portion of a front fender and the rigidity of the entire front fender, without enlarging the outer shape of the front fender more than necessary.
The present invention is characterized as a fender supporting structure of a two-wheeled motor vehicle including a fender formed in an arc shape along a shape of a wheel, and a fender supporting member on which the fender is mounted from under the fender supporting member so as to cover an area above the wheel. The fender supporting structure of a two-wheeled motor vehicle is characterized in that at least two mounting surfaces at different levels in height are formed on each of the fender and the fender supporting member; and that the fender is joined to the fender supporting member with these mounting surfaces.
With this configuration, the at least two mounting surfaces are used to join the fender and the fender supporting member. Thereby, the supporting rigidity of this mounting portion can be increased. Moreover, the bending strength at the mounting surfaces can also be increased.
In addition, the fender supporting member may be a bottom bridge attached to a front fork.
With this configuration, the fender can be supported above the wheel.
Further, the at least two mounting surfaces may be different in height in a front and rear direction of the vehicle body.
With this configuration, the rigidity of the fender supporting member in a width direction can be secured.
Furthermore, the fender supporting member may be provided with a cover member for covering the fender supporting member.
With this configuration, the fender mounting portion can be concealed from the outside.
Moreover, a front face of the bottom bridge may be provided with a jutting portion, and one of the mounting surfaces of the fender may be supported by the jutting portion.
With this configuration, supporting surfaces at different levels in height can be formed without a change in the shape of the bottom bridge, and accordingly the fender can be supported by these supporting surfaces.
According to the present invention, in a fender supporting structure of a two-wheeled motor vehicle including a fender formed in an arc shape along a shape of a wheel, and a fender supporting member on which the fender is mounted from under the fender supporting member so as to cover an area above the wheel, at least two mounting surfaces at different levels in height are formed on each of the fender and the fender supporting member; and the fender is joined to the fender supporting member with these mounting surfaces. Thus, the fender and the fender supporting member are joined together by use of the at least two mounting surfaces at the different levels in height. Accordingly, the supporting rigidity of this mounting portion can be increased. In addition, the bending strength at the mounting surfaces can also be increased. This makes it possible to secure the rigidity of the entire fender and the rigidity of the mounting portion of the fender, without enlarging the outer shape of the fender more than necessary. As a result, the flexibility in fender design and layout can be enhanced.
Moreover, by providing the cover member for concealing the fender supporting member, the mounting portion of the fender is concealed from the outside. Thus, the appearance of the two-wheeled motor vehicle can be made more attractive.
Hereinafter, a fender supporting structure of a two-wheeled motor vehicle according to an embodiment of the present invention will be described by referring to the drawings.
As shown in
The down tube 20A is formed in a hollow structure having a rectangular cross section, and has the right and left side surfaces provided with bolt fastening portions 21 for fixing a radiator 55. The bolt fastening portions 21 are provided to be spaced apart from each other in an upper and lower direction. The back side of the down tube 20A is provided with a reinforcement frame 24, and each edge of the reinforcement frame 24 is connected to a head hanger bracket of the main frame 10.
Rear frames 40, 40 extending to the rear side of the vehicle body are attached to the center frames 30, 30. The rear frames 40, 40 are configured of pipes 40A, 40A and a pair of pipes 40B, 40B. The pipes 40A, 40A obliquely extend to the rear and upper side of the vehicle body from a bent portion 30A located in a center portion in an upper and lower direction of the center frames 30, 30. The pipes 40B, 40B extend to the rear side of the vehicle body from the upper edges of brackets 30B, 30B provided to upper portions of the center frames 30, 30. The rear edges of these pipes 40A, 40A and 40B, 40B are respectively connected to each other. A seat 57, a rear fender 58 and an unillustrated side cover are attached to these pipes 40A and 40B.
A pivot 32 piercing the center frame 30 in a right and left direction of the vehicle body is provided under the bent portion 30A of the center frame 30. This pivot 32 supports the front edge of a swing arm 71 swingably in the upper and lower directions, and the swing arm 71 supports a rear wheel 70 via a shaft. In addition, a drive chain 74 is wrapped around both a sprocket 72 provided to the rear wheel 70 and a sprocket 73 provided to an output shaft 5A of the engine 4. A driving force of the engine 4 is transmitted to the rear wheel 70 via this drive chain 74.
In addition, a rod-bracket 33 is provided under the pivot 32 and also functions as a cross member of the center frame 30. One end of a rod 75 is rotatably joined to this rod-bracket 33, and the other end of the rod 75 is joined to a joint member 76 to which the lower end of a rear cushion 80 is joined. In other words, this rod 75 controls the movement of the joint member 76 in rotating directions about a joint pivot of the joint member 76 with the swing arm 71.
The engine 4 includes a crank case 5, a cylinder block 6 extending substantially upward from a front portion of the crank case 5, and a cylinder head 7 joined to an upper portion of the cylinder block 6. The engines 4 is a single cylinder engine including a single cylinder in the cylinder block 6. A piston is reciprocatably housed inside the cylinder in the cylinder block 6. In addition, a crankshaft connected to the piston via a connecting rod, and the output shaft 5A of the engine are supported in the crank case 5. Moreover, in the crank case 5, also housed are a clutch mechanism, a gear change mechanism and the like constituting a power transmission mechanism between this crankshaft and the output shaft 5A.
An air intake/exhaust valve is provided in the cylinder head 7, and opens and closes an air intake/exhaust path that communicates with the cylinder in the cylinder block 6. An air intake port 7A of this air intake/exhaust path is formed in the rear face of the cylinder head 7. A throttle body 8 is connected to this air intake port 7A, and an air cleaner box 9 is connected to this throttle body 8.
An air exhaust port 7B of the air intake/exhaust path is formed in the front face of the cylinder head 7. An air exhaust pipe is connected to this air exhaust port 7B. This air exhaust pipe 50 is extended forward from the air exhaust port 7B, is bent to the right side of the cylinder head 7, and then is extended to the rear side of the vehicle body. The extended end of the air exhaust pipe 50 is connected to an exhaust muffler 51. In addition, a fuel tank 56 is arranged above the cylinder head 7 and in front of the seat 57.
Moreover, a number plate background 66 is provided in front of the head pipe 3. This number plate background is attached so as to cover a bottom bridge 62A (particularly, the mounting portions of the bottom bridge 62A and the front fender 65) and a steering damper 67, which will be described in detail.
A steering stem 62 is rotatably inserted through the head pipe 3, and supports a pair of right and left front forks 61 that support the front wheel 60 via a shaft. A top bridge 64 is joined to the upper end of this steering stem 62, and a handlebar 63 is fixed to the top bridge 64. In addition, the front fender 65 is attached to the lower side of the bottom bridge 62A of the steering stem 62.
Moreover, a steering damper 67 for improving the handling performance of the handlebar 63 is provided in front of the head pipe 3 and above the front fender 65. In this steering damper 67, as shown in
Hereinafter, the front fender 65 will be described in detail.
As shown in
Mounting surfaces 100 and 110 for mounting the front fender 65 on the bottom bridge 62A are formed in this front fender 65. As shown in
The mounting surface 100 forwardly extends from the step face into a substantially half-circle shape when viewed from the upper side, as shown in
On the other hand, the mounting surface 110 rearwardly extends from the step face 120 into a substantially half-circle shape when viewed from the upper side, as shown in
In addition, as shown in
As shown in
In addition, as shown in
Furthermore, as shown in
Hereinafter, the bottom bridge 62A to which the front fender 65 is attached will be described in detail.
The bottom bridge 62A is integrally formed by casting or the like, and includes through holes 140, 140 on the right and left sides of the bottom bridge 62A, and a through hole 141 on the central lower side thereof. The front forks 61 are inserted through the through holes 140, 140, and a shaft (not illustrated) of the steering stem 62 is inserted through the through hole 141.
In addition, as shown in
As shown in
In the mounting surface 160, mounting holes 163, 163 are formed in positions corresponding to the mounting holes 113, 113 of the front fender 65. Each of the mounting holes 163, 163 is processed to have a female screw which is engageable with a fastener member such as a screw. The dimension in height between the mounting surfaces 150 and 160 (the dimension of a level difference obtained by forming a step) is substantially equal to the dimension in height between the mounting surfaces 100 and 110 of the front fender 65.
Moreover, a mounting portion 142 to which the lower end portion 67B of the steering damper 67 is attached is formed between the two jutting portions 151, 151 of the bottom bridge 62A.
A state where the front fender 65 is mounted on the bottom bridge 62A is described by using
Moreover, as shown in
Next, by using
An ECU 210 is attached with a bracket 200 to edge portions of the two pipes 40B, 40B of the rear frame 40. As shown in
As shown in
Moreover, a hole portion 203 is formed in the center on the upper side of the wall portion 200B. The seat 57 is mounted by inserting a bottom plate of the seat 57 into this hole portion 203, and then by hooking the bottom plate onto the attachment portion 200A.
As shown in
In addition, as shown in
The outer side of the ECU 210 is covered with an elastic rubber 211, so that vibrations transmitted from the vehicle body to the ECU 210 are reduced. Moreover, a hooked portion 211A to be hooked on the hook portion 207 is provided in a lower portion of this rubber 211. By hooking this hooked portion 211A on the hook portion 207, the ECU 210 can be attached to the bracket 200 by use of the elasticity of the rubber 211 without use of any fastener member.
In the fender supporting structure of the two-wheeled motor vehicle according to the embodiment of the present invention, the two mounting surfaces 100 and 110 at different levels in height are formed in the front fender 65. Thereby, the strength of the part that is the mounting surface 100 and 110 of the front fender 65.
Moreover, the two mounting surfaces 100 and 110 at different levels in height are formed in the front fender 65, and also the two mounting surfaces 150 and 160 are also formed in the bottom bridge 62A. The mounting surfaces 150 and 160 are at different levels in height and come into surface contact with the mounting surfaces 100 and 110, respectively. Then, the front fender 65 is joined to the bottom bridge 62A by fixing these mounting surfaces 100 and 100 to the mounting surfaces 150 and 160, respectively, with the faster members such as screws. Accordingly, the supporting rigidity of the mounting support portion of the front fender 65 can be increased because the distance between the joint portions of the mounting surfaces 100 and 110 can be made longer.
Further, the vertical wall portion 102 extending to the surface portion 65A of the front fender 65 is formed around the mounting surface 100. This configuration makes it possible to increase the cross-section modulus of a part in which the mounting surface 100 is formed, and thereby to secure the rigidity of this part.
Furthermore, the groove portion 104 allowing the lower portion 67B of the steering damper 67 to be arranged therein is formed on the mounting surface 100. For this reason, the rigidity can be secured by increasing the cross-section modulus, similarly.
Meanwhile, the number plate background 66 for concealing the bottom bridge 62A is provided in front of the head pipe 3. Accordingly, the mounting portions of the bottom bridge 62A and the front fender 65, and the steering damper 67 can be concealed by this number plate background. This configuration allows the appearance of the two-wheeled motor vehicle to be more attractive.
The jutting portions 151, 151 are formed in the front face of the bottom bridge 62A, and the mounting surface 150, 150 are formed in these jutting portions 151, 151. Then, the mounting surface of the fender is supported by these mounting surfaces 150, 150. Accordingly, the mounting surface 150 at the different level in height can be formed without any change in the shape of the bottom bridge 62A. Thus, the mounting surface 100 of the front fender 65 can be supported by the mounting surface 150.
Hereinabove, the preferred embodiment for carrying out the present invention has been described. However, the present invention is not limited to the foregoing embodiment, and various modifications and variations of the embodiment can be made.
Although this embodiment has been described for the configuration in which the front fender 65 is mounted on the bottom bridge 62A, another embodiment can be configured by providing an additional supporting member apart from the bottom bridge 62A.
Moreover, although the mounting portions of the front fender 65 and the bottom bridge 62A are concealed by the number plate background 66, the mounting portions may be concealed by another covering member (for example, a shroud).
In addition, in this embodiment, the mounting surfaces 100 and 110 (the mounting surfaces 150 and 160) are formed at different levels in height in a front and rear direction of the vehicle body. However, the mounting surfaces may be formed at different levels in height in a width direction of the vehicle body.
Number | Date | Country | Kind |
---|---|---|---|
2007-052508 | Mar 2007 | JP | national |