Fenestrated implant

Information

  • Patent Grant
  • 10426533
  • Patent Number
    10,426,533
  • Date Filed
    Monday, May 6, 2013
    11 years ago
  • Date Issued
    Tuesday, October 1, 2019
    5 years ago
Abstract
The present invention relates generally to implants used in medical procedures such as bone fixation or fusion. More specifically, this application relates to fenestrated implants used in bone fixation or fusion.
Description
FIELD

This application relates generally to implants used in medical procedures such as bone fixation or fusion. More specifically, this application relates to fenestrated implants used in bone fixation or fusion.


BACKGROUND

Many types of hardware are available both for the fixation of bones that are fractured and for the fixation of bones that are to be fused (arthrodesed).


For example, the human hip girdle is made up of three large bones joined by three relatively immobile joints. One of the bones is called the sacrum and it lies at the bottom of the lumbar spine, where it connects with the L5 vertebra. The other two bones are commonly called “hip bones” and are technically referred to as the right ilium and-the left ilium. The sacrum connects with both hip bones at the sacroiliac joint (in shorthand, the SI-Joint).


The SI-Joint functions in the transmission of forces from the spine to the lower extremities, and vice-versa. The SI-Joint has been described as a pain generator for up to 22% of lower back pain.


To relieve pain generated from the SI Joint, sacroiliac joint fusion is typically indicated as surgical treatment, e.g., for degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. Currently, screws and screws with plates are used for sacro-iliac fusion.


In order to promote bone growth into the implant and enhance fusion of the implant with the bone, pockets or channels can be created in the implant that promote bone growth into the implant. However, these pockets or channels may weaken the structural integrity of the implant, which can also be required to bear large stresses. Therefore, it would be desirable to provide an implant with pockets or channels to promote bone growth while substantially maintaining the structural integrity of the implant.


SUMMARY OF THE DISCLOSURE

The present invention relates generally to implants used in medical procedures such as bone fixation or fusion. More specifically, this application relates to fenestrated implants used in bone fixation or fusion.


In some embodiments, an implant for bone fixation is provided. The implant can include an elongate body having a longitudinal axis and a rectilinear cross section transverse to the longitudinal axis, a plurality of faces, a plurality of apexes joining the plurality of faces, a central lumen extending along the longitudinal axis of the elongate body, and a plurality of holes with openings on the plurality of faces, wherein the holes are in fluid communication with the central lumen.


In some embodiments, the holes are circular. In some embodiments, the holes are oval. In some embodiments, the holes are arranged in a single longitudinal row on each face. In some embodiments, the holes are arranged in a plurality of longitudinal rows on each face.


In some embodiments, the elongate body is coated with a biologic aid.


In some embodiments, the holes have a diameter that is about equal to the diameter of the central lumen. In some embodiments, the holes have a diameter than is between about 0.2 to 0.5 of the width of the faces.


In some embodiments, an implant for bone fixation is provided. The implant can include an elongate body having a longitudinal axis and a rectilinear cross section transverse to the longitudinal axis, a plurality of faces, a plurality of apexes joining the plurality of faces, a central lumen extending along the longitudinal axis of the elongate body, and a plurality of side pockets extending along a portion of each of the plurality of faces, wherein the side pockets have a depth that does not extend to the central lumen.


In some embodiments, each of the plurality of faces has only one side pocket. In some embodiments, each of the side pockets is centered on each of the faces. In some embodiments, the side pockets have a width that is between about 0.2 to 0.8 of the width of the faces and a length that is between about 0.5 to 0.9 of the length of the faces.


In some embodiments, the implant further includes a plurality of holes located within the side pockets, wherein the holes are in fluid communication with the central lumen.


In some embodiments, an implant for bone fixation is provided. The implant can include an elongate body having a longitudinal axis and a rectilinear cross section transverse to the longitudinal axis, a plurality of faces, a plurality of apexes joining the plurality of faces, and a central lumen extending along the longitudinal axis of the elongate body, wherein each one of the plurality of apexes includes a groove that extends along the length of the apex.


In some embodiments, an implant for bone fixation is provided. The implant can include an elongate body having a longitudinal axis and a rectilinear cross section transverse to the longitudinal axis, a plurality of faces, a plurality of apexes joining the plurality of faces, and a central lumen extending along the longitudinal axis of the elongate body, wherein each one of the plurality of apexes includes a plurality of pockets located at discrete points along the length of each apex.


In some embodiments, an implant for bone fixation is provided. The implant can include an elongate body having a longitudinal axis, a distal end, a proximal end, and a rectilinear cross section transverse to the longitudinal axis, a plurality of faces, each face formed from a wall with a thickness between about 2 to 3 mm in thickness, and a plurality of fenestrations disposed on each face.


In some embodiments, the distal end of the elongate body is formed into one or more cutting edges.


In some embodiments, the rectilinear cross section has three sides. In some embodiments, the rectilinear cross section has four sides, such as in FIG. 8C.


In some embodiments, the fenestrations are located on a distal portion of the elongate body that is configured to be implanted within the sacrum of a patient while the proximal portion of the elongate body that is configured to be implanted within the illium is free from fenestrations.


In some embodiments, the fenestrations are arranged in a staggered pattern.


In some embodiments, the implant further includes a cap on the proximal end of the elongate body, the cap having a hole sized to receive a guide pin.


In some embodiments, the elongate body has an inner surface and an outer surface that are porous. In some embodiments, the elongate body has an inner surface and an outer surface that are roughened. In some embodiments, the elongate body has an inner surface and an outer surface that are plasma coated. In some embodiments, the elongate body has an inner surface and an outer surface that are coated with a biologic aid. In some embodiments, the biologic aid is a bone morphogenetic protein.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-1V illustrate various embodiments of implant structures with different fenestrations.



FIGS. 2A-2D are side section views of the formation of a broached bore in bone according to one embodiment of the invention.



FIGS. 2E and 2F illustrate the assembly of a soft tissue protector system for placement over a guide wire.



FIGS. 3 and 4 are, respectively, anterior and posterior anatomic views of the human hip girdle comprising the sacrum and the hip bones (the right ilium, and the left ilium), the sacrum being connected with both hip bones at the sacroiliac joint (in shorthand, the SI-Joint).



FIGS. 5 to 7A and 7B are anatomic views showing, respectively, a pre-implanted perspective, implanted perspective, implanted anterior view, and implanted cranio-caudal section view, the implantation of three implant structures for the fixation of the SI-Joint using a lateral approach through the ilium, the SI-Joint, and into the sacrum.



FIGS. 8A
8B and 8C illustrate embodiments of implant structures with fenestrations.



FIGS. 9A and 9B illustrate yet another embodiment of an implant structure with fenestrations.





DETAILED DESCRIPTION

Elongated, stem-like implant structures 20 like that shown in FIG. 1A make possible the fixation of the SI-Joint (shown in anterior and posterior views, respectively, in FIGS. 3 and 4) in a minimally invasive manner. These implant structures 20 can be effectively implanted through the use of a lateral surgical approach. The procedure is desirably aided by conventional lateral and/or anterior-posterior (A-P) visualization techniques, e.g., using X-ray image intensifiers such as a C-arms or fluoroscopes to produce a live image feed that is displayed on a TV screen.


In some embodiments, the implant structures 20 can include pockets, pathways, cavities, openings, fenestrations, channels and/or recesses that allow bone graft materials to be incorporated into the implant structure. These bone graft materials can promote bone growth into and/or around the implant structure, which can reduce the time it takes for the implant structure to be stably integrated with the bone. Bone graft materials can be applied to and/or injected into the implant structure before implantation or applied after implantation by injection of the bone graft material into a proximal cannula or other conduit. In some embodiments, the surfaces of the implant structure 20 can be roughened or textured to promote bone growth and adherence of the bone graft materials. The internal and/or external surfaces can be roughened or textured by mechanical means or can be spray coated with a roughening material.


The bone graft materials can be a liquid, gel, slurry, paste, powder or other form, and can include a biologic aid that can promote and/or enhance bony ingrowth, tissue repair, and/or reduce inflammation, infection and pain. For example, the biologic aid can include growth factors, such as bone morphogenetic proteins (BMPs), hydroxyapatite in, for example, a liquid or slurry carrier, demineralized bone, morselized autograft or allograft bone, medications to reduce inflammation, infection or pain such as analgesics, antibiotics and steroids. In some embodiments, the growth factors can be human recombinant growth factors, such as hr-BMP-2 and/or hr-BMP-7, or any other human recombinant form of BMP, for example. The carrier for the biologic aid can be a liquid or gel such as saline or a collagen gel, for example. The biologic aid can also be encapsulated or incorporated in a controlled released formulation so that the biologic aid is released to the patient at the implant site over a longer duration. For example, the controlled release formulation can be configured to release the biologic aid over the course of days or weeks or months, and can be configured to release the biologic aid over the estimated time it would take for the implant site to heal. The amount of biologic aid delivered to the implant structure can be controlled using a variety of techniques, such as controlling or varying the amount of coating material applied to the implant and/or controlling or varying the amount of biologic aid incorporated into the coating material. In some embodiments, in may be important to control the amount of biologic aid delivered because excessive use of certain biologic aids can result in negative effects such as radicular pain, for example.


In general, any pockets, pathways, cavities, openings, fenestrations, channels and/or recesses in the implant structure may weaken its structural strength, including for example the bending and shear strengths. The following examples of implant structures are variations of the solid triangular implant structure 20 of FIG. 1A, which has a single central, longitudinally oriented lumen or cannula for receiving a guide wire or guide pin. The relative bending and shear strengths can be compared to the cannulated but otherwise solid implant structure 20 of FIG. 1A, which can be assigned a bending strength of 1.00 and a shear strength of 1.00. The relative bending and shear strengths can be modified or optimized for structural strength and ability to promote bone grafting by varying the size, number, spacing, location, orientation, and shape of the pockets, pathways, cavities, openings, fenestrations, channels and/or recesses. Although the embodiments illustrated herein show triangular implant structures, implant structures with different rectilinear shapes, such as rectangular or square, can be used or substituted for the triangular implant structures.



FIGS. 1B-D illustrate an embodiment of a triangular implant structure 100 having a central lumen 101 and a series of holes 102 on each face 103 of the implant structure 100 that reach and provide access to the central lumen 101. The holes 102 can be centered on the face 103 and extend inwardly at an angle that is substantially perpendicular or normal to the face 103 of the implant structure 100. In some embodiments, each apex 104 can be beveled or rounded. In some embodiments, the distal end 105 of the implant structure 100 can be tapered to facilitate implantation into the bone. In some embodiments, the diameter of the holes 102 can be equal to or substantially equal to the diameter of the central lumen 101. In other embodiments, the diameter of the holes 102 can be greater than or less than the diameter of the central lumen 101. In some embodiments, the implant structure 100 illustrated in FIGS. 1B-D has a relative bending strength of about 0.82 and a relative shear strength of about 0.66. In some embodiments, to inject or load the implant structure 100 with bone graft materials, the distal hole 106 of the central lumen 101 can be blocked or sealed so that flow of the bone graft materials fills the central lumen 101 and exits the side holes 102.


In some embodiments, the holes 102 can have a diameter (D1) that is about 0.3 of width (W1) of the face 103 of the implant structure 100. In some embodiments, the holes 102 can have a diameter that is greater than about 0.3 of the width of the face 103 of the implant structure 100. In some embodiments, the holes 102 can have a diameter that is less than about 0.3 of the width of the face 103 of the implant structure 100. In some embodiments, the holes 102 can have a diameter that is between about 0.2 to about 0.5 of the width of the face 103 of the implant structure. In some embodiments, the holes 102 can be separated from adjacent holes 102 by about ⅔ of the hole diameter, where separation distance (S1) is measured by the distance between the circumference of the holes 102. In some embodiments, the holes 102 can be separated from adjacent holes 102 by less than about ⅔ of the hole diameter. In some embodiments, the holes 102 can be separated from adjacent holes 102 by greater than about ⅔ of the hole diameter. In some embodiments, the holes 102 can be separated from adjacent holes 102 by about 0.5 to about 2 times, or about 0.5 to about 1 times the hole 102 diameter. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.9. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.9.



FIGS. 1E-G illustrate another embodiment of an implant structure 110 having a central lumen 111 and a series of slots 112 on each face 113 of the implant structure 110 that reach and provide access to the central lumen 111. The slots 112 can be centered on the face 113 and extend inwardly at an angle that is substantially perpendicular or normal to the face 113 of the implant structure 110. In some embodiments, each apex 114 can be beveled or rounded. In some embodiments, the distal end 115 of the implant structure 110 can be tapered to facilitate implantation into the bone. In some embodiments, the width of the slots can be equal to or substantially equal to the diameter of the central lumen 111. In other embodiments, the width of the slots can be greater than or less than the diameter of the central lumen 111. In some embodiments, the implant structure 110 illustrated in FIGS. 1E-G has a relative bending strength of about 0.82 and a relative shear strength of about 0.66. In some embodiments, to inject or load the implant structure 110 with bone graft materials, the distal hole 116 of the central lumen 111 can be blocked or sealed so that flow of the bone graft materials fills and exits the slots 112.


In some embodiments, the slots 112 can have a width (W3) that is about 0.3 of width (W2) of the face 113 of the implant structure 110. In some embodiments, the slots 112 can have a width that is greater than about 0.3 of the width of the face 113 of the implant structure 110. In some embodiments, the slots 112 can have a width that is less than about 0.3 of the width of the face 113 of the implant structure 110. In some embodiments, the slots 112 can have a width that is between about 0.2 to about 0.6 of the width of the face 113 of the implant structure 110. In some embodiments, the slots 112 can have a length (L3) that is about 0.15 the length (L2) of the face 113. In some embodiments, the slots 112 can have a length that is less than about 0.15 the length of the face 113. In some embodiments, the slots 112 can have a length that is greater than about 0.15 the length of the face 113. In some embodiments, the slots 112 can have a length that is between about 0.1 to 0.4, or about 0.1 to 0.25 the length of the face 113. In some embodiments, the slots 112 are separated (S2) from adjacent slots 112 by about ⅔ the width of the slot 112. In some embodiments, the slots 112 are separated from adjacent slots 112 by greater than about ⅔ the width of the slot 112. In some embodiments, the slots 112 are separated from adjacent slots 112 by less than about ⅔ the width of the slot 112. In some embodiments, the slots 112 can be separated from adjacent slots 112 by about 0.5 to about 2 times, or about 0.5 to about 1 times the slot 112 width. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.9. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.9.



FIGS. 1H-J illustrate another embodiment of an implant structure 120 having a central lumen 121 and a side pocket 122 on each face 123 of the implant structure 120. The side pocket 122 can be a depression, cavity, groove or slot centered on the face 123 having a width, length and depth. In some embodiments, the side pocket 122 is relatively shallow so that it does not extend to the central lumen 121. In some embodiments, each apex 124 can be beveled or rounded. In some embodiments, the distal end 125 of the implant structure 120 can be tapered to facilitate implantation into the bone. In some embodiments, the implant structure 120 illustrated in FIGS. 1H-J has a relative bending strength of about 0.77 and a relative shear strength of about 0.72. In some embodiments, to load the implant structure 120 with bone graft materials, the bone graft material is applied to the side pockets 122 before implantation. In other embodiments, the bone graft material is applied during implantation, as further described in U.S. Patent Application 61/609,043 titled Tissue Dilator and Protector, which is hereby incorporated by reference in its entirety and can be applied to the other implants.


In some embodiments, the side pocket 122 can have a width (W4) that is about 0.5 of width (W5) of the face 123 of the implant structure 120. In some embodiments, the side pocket 122 can have a width that is greater than about 0.5 of the width of the face 123 of the implant structure 120. In some embodiments, the side pocket 122 can have a width that is less than about 0.5 of the width of the face 123 of the implant structure 120. In some embodiments, the side pocket 122 can have a width that is between about 0.2 to about 0.8 of the width of the face 123 of the implant structure 120. In some embodiments, the side pocket 122 can have a length (L4) that is about 0.75 the length (L5) of the face 123. In some embodiments, the side pocket 122 can have a length that is less than about 0.75 the length of the face 123. In some embodiments, the side pocket 122 can have a length that is greater than about 0.75 the length of the face 123. In some embodiments, the side pocket 122 can have a length that is between about 0.5 to 0.9 of the length of the face 123. In some embodiments, the side pocket 122 can have a depth between about 0.2 mm and 5 mm, or between about 0.2 mm and 2 mm, or between about 0.2 and 1 mm. In some embodiments, the side pocket 122 can have a depth between about 0.25 mm, 0.5 mm, 0.75 mm, 1 mm or 2 mm. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.9. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.9.



FIGS. 1K-M illustrate another embodiment of an implant structure 130 having a central lumen 131, a side pocket 132 on each face 133 of the implant structure 130, and a plurality of holes 134 located within the side pocket 132. The side pocket 132 in the embodiment illustrated in FIGS. 1K-M can be the same as or be similar to the side pocket 122 previously described above and illustrated in FIGS. 1H-J. Likewise, the holes 134 illustrated in FIGS. 1K-M can be the same as or be similar to the holes 102 previously described above and illustrated in FIGS. 1B-D. In some embodiments, as illustrated in FIGS. 1K-M, the holes 134 have a diameter that is less than the diameter of the central lumen 131. In other embodiments, the holes 134 have a diameter than is equal to or greater than the diameter of the central lumen 131. In some embodiments, each apex 135 can be beveled or rounded. In some embodiments, the distal end 136 of the implant structure 130 can be tapered to facilitate implantation into the bone. In some embodiments, the implant structure 130 illustrated in FIGS. 1K-M has a relative bending strength of about 0.74 and a relative shear strength of about 0.62. In some embodiments, to load the implant structure 130 with bone graft materials, the bone graft material is injected and/or applied to the side pockets 132 and holes 134 before implantation. In other embodiments, the bone graft materials can be injected into the central lumen 131, which can have a distal opening 137 that is blocked off or plugged so that the bone graft materials fill the central lumen 131 and exit out the holes 134 which are in fluid communication with the central lumen 131. As the bone graft materials exit the holes 134, the bone graft material can coat and fill both the holes 134 and the side pocket 132. This injection process can be done before implantation, during implantation, or after implantation.


In some embodiments, the side pocket 132 shown in FIGS. 1K-M has the same or similar dimensions as the side pocket 122 shown in FIGS. 1H-J and described above. In some embodiments, the holes 134 can have a diameter (D2) that is about 0.4 of the width (W6) of the side pocket 132. In some embodiments, the holes 134 can have a diameter that is greater than or less than about 0.4 times the width of the side pocket 132. In some embodiments, the holes 134 can be separated (S3) by about 1.5 times the diameter of the holes 134. In some embodiments, the holes 134 can be separated by greater than or less than about 1.5 times the diameter of the holes 134. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.9. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.9.



FIGS. 1N-P illustrate another embodiment of an implant structure 140 having a central lumen 141 and a plurality of peripheral lumens 142 surrounding the central lumen 141. The peripheral lumens 142 can be oriented longitudinally and can be located between the central lumen 141 and each apex 143. As illustrated, the implant structure 140 is triangular and has three apexes 143 and three peripheral lumens 142 that surround the central lumen 141. In some embodiments, both the central lumen 141 and the peripheral lumens 142 can extend throughout the longitudinal length of the implant structure 140. In other embodiments, the peripheral lumens 142 do not extend throughout the length of the implant structure 140, and instead, the peripheral lumens 142 terminate prior to the distal end 144 of the implant structure 140. In addition, a plurality of side holes 145 can be included in the implant structure 140. Each peripheral lumen 142 can be intersected by a plurality of side holes 145, where each side hole 145 extends between two faces 146 of the implant structure with a side hole opening 147 on each of the two faces 146. The side holes 145 can extend transversely through the implant structure 140 at an angle of about 60 degrees from the surfaces of the faces 146. In some embodiments, each apex 143 can be beveled or rounded. In some embodiments, the distal end 144 of the implant structure 140 can be tapered to facilitate implantation into the bone. In some embodiments, the implant structure 140 illustrated in FIGS. 1N-P has a relative bending strength of about 0.63 and a relative shear strength of about 0.66. In some embodiments, to load the implant structure 140 with bone graft materials, the bone graft material is injected into the peripheral lumens 142, where the bone graft material fills up the peripheral lumens and exits the side holes 145. Injection of the bone graft material can take place before, during, or after implantation. In some embodiments where the peripheral lumens 142 extend completely through the implant structure 140, the distal ends of the peripheral lumens 142 can be blocked or plugged before injection of the bone graft material.


In some embodiments, the peripheral lumens 142 have a diameter (D3) of about 0.2 times the width (W7) of the faces 146 of the implant structure. In some embodiments, the peripheral lumens 142 have a diameter greater than or less than about 0.2 times the width of the faces 146 of the implant structure. In some embodiments, the peripheral lumens 142 can have a smaller diameter than the central lumen 141. In other embodiments, the peripheral lumens 142 can have an equal or larger diameter than the central lumen 141. In some embodiments, the side holes 145 have a diameter (D4) equal or substantially equal to the diameter of the peripheral lumens 142. In other embodiments, the side holes 145 have a diameter less than or greater than the diameters of the peripheral lumens 142. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.9. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.9.



FIGS. 1Q-S illustrate another embodiment of an implant structure 150 having a central lumen 151. Each apex 152 can be beveled or rounded and can have a plurality of pockets or cavities 153 located at discrete points along the length of the apex 152. These pockets 153 extend from the apex 152 and towards the central lumen 151, but do not reach the central lumen 151. In some embodiments, the pockets 153 have a curved cutout shape, which can correspond in shape to a portion of a cylinder. In some embodiments, the distal end 154 of the implant structure 140 can be tapered to facilitate implantation into the bone. In some embodiments, the implant structure 150 illustrated in FIGS. 1Q-S has a relative bending strength of about 0.89 and a relative shear strength of about 0.86. In some embodiments, to load the implant structure 150 with bone graft materials, the bone graft material is applied externally to the implant structure 150 either before or during implantation. In addition to receiving the bone graft materials, the pockets 153 also function to eliminate or reduce a corner haloing effect.


In some embodiments, the pockets 153 can have a length (L6) or diameter of about 0.06 of the length (L7) of the apex 152. In some embodiments, the pockets 153 can have a length or diameter greater than or less than about 0.06 of the length of the apex 152. In some embodiments, the pockets 153 can be separated (S4) from adjacent pockets 153 by about ⅔ of the pocket length or diameter. In some embodiments, the pockets 153 can be separated from adjacent pockets 153 by greater than or less than about ⅔ of the hole diameter. In some embodiments, the relative bending strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative bending strength can be between about 0.5 to 0.95. In some embodiments, the relative shear strength can be at least about 0.5, 0.6, 0.7, 0.8 or 0.9. In some embodiments, the relative shear strength can be between about 0.5 to 0.95.



FIGS. 1T-V illustrate another embodiment of an implant structure 160 having a central lumen 161. Each apex 162 has a groove 163 that extends along the length of the apex 162. In some embodiments, the distal end 164 of the implant structure 160 can be tapered to facilitate implantation into the bone. In some embodiments, the implant structure 160 illustrated in FIGS. 1T-V has a relative bending strength of about 0.87 and a relative shear strength of about 0.88. In some embodiments, to load the implant structure 160 with bone graft materials, the bone graft material is applied externally to the implant structure 160 either before or during implantation. In addition to receiving the bone graft materials, the grooves 163 also function to eliminate or reduce a corner haloing effect.


In some embodiments, the grooves 163 can be circular shaped cutouts running along the apex 162 having a diameter (D5) of about 0.25 of the width of the face 165 and an arc length of about 0.28 of the width of the face 165. In some embodiments, the grooves 163 can have a diameter of greater or less than about 0.25 of the width of the face 165. In some embodiments, the grooves 163 can have an arc length of greater than or less than about 0.28 of the width of the face 165.


In one embodiment of a lateral approach (see FIGS. 5, 6, and 7A/B), one or more implant structures 20 are introduced laterally through the ilium, the SI-Joint, and into the sacrum. This path and resulting placement of the implant structures 20 are best shown in FIGS. 6 and 7A/B. In the illustrated embodiment, three implant structures 20 are placed in this manner. Also in the illustrated embodiment, the implant structures 20 are rectilinear in cross section and triangular in this case, but it should be appreciated that implant structures 20 of other cross sections can be used. In addition, any of the implant structures disclosed above can be used in the implantation procedures herein.


Before undertaking a lateral implantation procedure, the physician identifies the SI-Joint segments that are to be fixated or fused (arthrodesed) using, e.g., the Fortin finger test, thigh thrust, FABER, Gaenslen's, compression, distraction, and diagnostic SI Joint injection.


Aided by lateral, inlet, and outlet C-arm views, and with the patient lying in a prone position, the physician aligns the greater sciatic notches and then the alae (using lateral visualization) to provide a true lateral position. A 3 cm incision is made starting aligned with the posterior cortex of the sacral canal, followed by blunt tissue separation to the ilium. From the lateral view, the guide pin 38 (with sleeve (not shown)) (e.g., a Steinmann Pin) is started resting on the ilium at a position inferior to the sacrum end plate and just anterior to the sacral canal. In the outlet view, the guide pin 38 should be parallel to the sacrum end plate at a shallow angle anterior (e.g., 15 to 20 degrees off horizontal, as FIG. 7B shows). In a lateral view, the guide pin 38 should be posterior to the sacrum anterior wall. In the inlet view, the guide pin 38 should not violate the sacral foramina. This corresponds generally to the sequence shown diagrammatically in FIGS. 2A and 2B. A soft tissue protector (not shown) is desirably slipped over the guide pin 38 and firmly against the ilium before removing the guide pin sleeve (not shown).


Over the guide pin 38 (and through the soft tissue protector), the pilot bore 42 is drilled in the manner previously described, as is diagrammatically shown in FIG. 2C. The pilot bore 42 extends through the ilium, through the SI-Joint, and into the sacrum. The drill bit 40 is then removed.


The shaped broach 44 is tapped into the pilot bore 42 over the guide pin 38 (and through the soft tissue protector) to create a broached bore 48 with the desired profile for the implant structure 20, which, in the illustrated embodiment, is triangular. This generally corresponds to the sequence shown diagrammatically in FIG. 2D. The triangular profile of the broached bore 48 is also shown in FIG. 5.



FIGS. 2E and 2F illustrate an embodiment of the assembly of a soft tissue protector or dilator or delivery sleeve 200 with a drill sleeve 202, a guide pin sleeve 204 and a handle 206. In some embodiments, the drill sleeve 202 and guide pin sleeve 204 can be inserted within the soft tissue protector 200 to form a soft tissue protector assembly 210 that can slide over the guide pin 208 until bony contact is achieved. The soft tissue protector 200 can be any one of the soft tissue protectors or dilators or delivery sleeves disclosed herein. In some embodiments, an expandable dilator or delivery sleeve 200 as disclosed herein can be used in place of a conventional soft tissue dilator. In the case of the expandable dilator, in some embodiments, the expandable dilator can be slid over the guide pin and then expanded before the drill sleeve 202 and/or guide pin sleeve 204 are inserted within the expandable dilator. In other embodiments, insertion of the drill sleeve 202 and/or guide pin sleeve 204 within the expandable dilator can be used to expand the expandable dilator.


In some embodiments, a dilator can be used to open a channel though the tissue prior to sliding the soft tissue protector assembly 210 over the guide pin. The dilator(s) can be placed over the guide pin, using for example a plurality of sequentially larger dilators or using an expandable dilator. After the channel has been formed through the tissue, the dilator(s) can be removed and the soft tissue protector assembly can be slid over the guide pin. In some embodiments, the expandable dilator can serve as a soft tissue protector after being expanded. For example, after expansion the drill sleeve and guide pin sleeve can be inserted into the expandable dilator.


As shown in FIGS. 5 and 6, a triangular implant structure 20 can be now tapped through the soft tissue protector over the guide pin 38 through the ilium, across the SI-Joint, and into the sacrum, until the proximal end of the implant structure 20 is flush against the lateral wall of the ilium (see also FIGS. 7A and 7B). The guide pin 38 and soft tissue protector are withdrawn, leaving the implant structure 20 residing in the broached passageway, flush with the lateral wall of the ilium (see FIGS. 7A and 7B). In the illustrated embodiment, two additional implant structures 20 are implanted in this manner, as FIG. 6 best shows. In other embodiments, the proximal ends of the implant structures 20 are left proud of the lateral wall of the ilium, such that they extend 1, 2, 3 or 4 mm outside of the ilium. This ensures that the implants 1020 engage the hard cortical portion of the ilium rather than just the softer cancellous portion, through which they might migrate if there was no structural support from hard cortical bone. The hard cortical bone can also bear the loads or forces typically exerted on the bone by the implant 1020.


The implant structures 20 are sized according to the local anatomy. For the SI-Joint, representative implant structures 20 can range in size, depending upon the local anatomy, from about 35 mm to about 70 mm in length, and about a 7 mm inscribed diameter (i.e. a triangle having a height of about 10.5 mm and a base of about 12 mm). The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the implant structure 20 based upon prior analysis of the morphology of the targeted bone using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning.


Using a lateral approach, one or more implant structures 20 can be individually inserted in a minimally invasive fashion across the SI-Joint, as has been described. Conventional tissue access tools, obturators, cannulas, and/or drills can be used for this purpose. Alternatively, the novel tissue access tools described above and in U.S. Application No. 61/609,043, titled “TISSUE DILATOR AND PROTECTER” and filed Mar. 9, 2012, can also be used. No joint preparation, removal of cartilage, or scraping are required before formation of the insertion path or insertion of the implant structures 20, so a minimally invasive insertion path sized approximately at or about the maximum outer diameter of the implant structures 20 can be formed.


The implant structures 20 can obviate the need for autologous bone graft material, additional screws and/or rods, hollow modular anchorage screws, cannulated compression screws, threaded cages within the joint, or fracture fixation screws. Still, in the physician's discretion, bone graft material and other fixation instrumentation can be used in combination with the implant structures 20.


In a representative procedure, one to six, or perhaps up to eight, implant structures 20 can be used, depending on the size of the patient and the size of the implant structures 20. After installation, the patient would be advised to prevent or reduce loading of the SI-Joint while fusion occurs. This could be about a six to twelve week period or more, depending on the health of the patient and his or her adherence to post-op protocol.


The implant structures 20 make possible surgical techniques that are less invasive than traditional open surgery with no extensive soft tissue stripping. The lateral approach to the SI-Joint provides a straightforward surgical approach that complements the minimally invasive surgical techniques. The profile and design of the implant structures 20 minimize or reduce rotation and micromotion. Rigid implant structures 20 made from titanium alloy provide immediate post-op SI Joint stability. A bony in-growth region 24 comprising a porous plasma spray coating with irregular surfaces supports stable bone fixation/fusion. The implant structures 20 and surgical approaches make possible the placement of larger fusion surface areas designed to maximize post-surgical weight bearing capacity and provide a biomechanically rigorous implant designed specifically to stabilize the heavily loaded SI-Joint.


In some embodiments, as illustrated in FIGS. 8A and 8B, the implant structure 800 can have a rectilinear cross-sectional profile formed from a plurality of walls 802 having a thickness of approximately 2 to 3 mm, or 1 to 5 mm, or less than approximately 5, 4, 3, or 2 mm. In some embodiments, the rectilinear cross-sectional profile can be triangular, square or rectangular. In some embodiments, the implant structure 800 can have a substantially rectilinear cross-sectional profile formed by a plurality of apices that are joined together by a plurality of walls. The thin walled implant structure 800 can be advanced through the bone with little to no bony preparation. For example, in some embodiments, the implant structure 800 can be driven into the bone without first forming a bore that is shaped like the implant structure 800. In some embodiments, the distal end 804 of the implant structure 800 can be sharpened and/or have cutting edges like a chisel to facilitate the cutting of bone as the implant structure 800 is advanced. In some embodiments, an osteotome can be used to cut the bone before the implant structure 800 is inserted into the bone. For example, an osteotome as described in U.S. Provisional Application 61/800,966, titled “SYSTEMS AND METHODS FOR REMOVING AN IMPLANT” and filed on Mar. 15, 2013, which is herein incorporated by reference in its entirety for all purposes, can be adapted to pre-cut the bone to facilitate insertion of the implant structure 800 without forming a complete bore. In some embodiments, a bore can be formed as described above, and the implant structure 800 can then be inserted into the bore.


In some embodiments, as illustrated in FIGS. 8A and 8B, the distal portion of the plurality of walls 802 forming the implant structure 800 can have fenestrations 806. For example, the distal portion of the implant structure 800 that is configured to be embedded in the sacrum or second bone segment can be fenestrated, while the proximal portion of the implant structure 800 that is configured to be embedded in the illium or first bone segment can be free from fenestrations. In other embodiments, the proximal portion of the implant structure 800 can be fenestrated while the distal portion of the implant structure 800 can be free from fenestration. In other embodiments, as illustrated in FIGS. 9A and 9B and the other embodiments described herein, the fenestrations can be distributed across the entire face of each wall or side of the implant structure. In some embodiments, the concentration or number of fenestrations can be higher in one portion of the implant structure than the other.


In some embodiments, as illustrated in FIGS. 8A and 8B, the fenestrations 806 can be oval or circular shaped or curvilinear, such that the fenestrations 806 do not have corners. In some embodiments, the fenestrations 806 can be staggered, arranged randomly, or otherwise distributed in a non-aligned pattern across each wall 802. For example, in some embodiments, each longitudinal row of fenestrations can be staggered or offset from adjacent longitudinal rows of fenestrations. In some embodiments, the fenestrations can alternatively or additionally be staggered along the longitudinal axis of the implant structure 800. This non-aligned arrangement of fenestrations can provide the implant structure with improved structural strength.


In some embodiments, the implant structure 800 can be sized as any other implant structure described herein. In some embodiments, the implant structure 800 can be sized so that the implant structure 800 has walls that inscribe a circle with a diameter of about 8 mm, or between about 4 and 12 mm, as illustrated in FIG. 8B. In some embodiments, the implant structure 800 can be sized so that the wall inscribe a circle with a diameter equal to or about equal to the diameter of a guide pin. In some embodiments, the implant structure 800 can have a proximal end 808 having a cap 810 with a circular opening 812 that allows passage of a guide pin.


In some embodiments, as illustrated in FIGS. 9A and 9B, the implant structure 900 can be similar to the embodiment described in FIGS. 8A and 8B except that the fenestrations 902 are evenly distributed across the faces of the implant structure. FIG. 9B illustrates bone growing within and/or through the fenestrations 902 and lumen of the implant structure 900. In some embodiments, the bone illustrated within the lumen of the implant structure 900 may be native bone that remains after the implant structure 900 is advanced into the bone, i.e. a self-grafting implant. In some embodiments, the lumen of the implant structure 900 illustrated in FIGS. 9A and 9B, as well as the other implant structures described herein, can be filled with bone material and/or a biologic aid such as morselized bone, allograft bone, autograft bone, hydroxyapatite, bone morphogenetic protein and the like to promote bony ingrowth within the implant structure 900. This can be appropriate when the implant structure 900 is inserted into a bore such that after implantation, the lumen of the implant structure 900 is empty or substantially empty and can be filled with bone growth promoting materials. In addition, as described above, the interior surface and/or the outer surface of the implant structure can be roughened and/or coated, using a plasma coating process for example, to provide a porous or roughened surface.


The terms “about” and “approximately” and the like can mean within 10, 20, or 30% of the stated value or range.


Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations, are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto. Any feature described in any one embodiment described herein can be combined with any other feature of any of the other embodiments whether preferred or not.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

Claims
  • 1. An implant for bone fixation, the implant comprising: an elongate body having a longitudinal axis, a distal end, a proximal end, a rectilinear cross section transverse to the longitudinal axis having three or four sides, and a plurality of faces, each of the plurality of faces formed from a wall with a thickness between 1 mm and 5 mm in thickness, and each face having a width and a plurality of fenestrations, the plurality of fenestrations each having a diameter that is between about 0.2 to about 0.5 of the width of its associated face, the elongate body having a central lumen located along the longitudinal axis and configured to receive a guide pin, wherein each of the plurality of fenestrations reach and provide access to the central lumen, wherein a concentration or number of fenestrations is higher in a distal half of the elongate body than in a proximal half, wherein the distal end of the elongate body is tapered to facilitate implantation into the bone, and wherein the elongate body has a bending strength or a shear strength of at least 0.5 relative to a reference elongate body with identical dimensions and material composition but without any fenestrations.
  • 2. The implant of claim 1, wherein the distal end of the elongate body is formed into one or more cutting edges.
  • 3. The implant of claim 1, wherein the fenestrations are located on a distal portion of the elongate body that is configured to be implanted within the sacrum of a patient while the proximal portion of the elongate body that is configured to be implanted within the ilium is free from fenestrations.
  • 4. The implant of claim 1, wherein the fenestrations are arranged in a staggered pattern.
  • 5. The implant of claim 1, further comprising a cap on the proximal end of the elongate body, the cap having a hole sized to receive a guide pin.
  • 6. The implant of claim 1, wherein the elongate body has an inner surface and an outer surface that are porous.
  • 7. The implant of claim 1, wherein the elongate body has an inner surface and an outer surface that are roughened.
  • 8. The implant of claim 1, wherein the elongate body has an inner surface and an outer surface that are treated with a plasma coating.
  • 9. The implant of claim 1, wherein the elongate body has an inner surface and an outer surface that are coated with a biologic aid.
  • 10. The implant of claim 9, wherein the biologic aid is a bone morphogenetic protein.
  • 11. An implant for bone fixation, the implant comprising: an elongate body having a longitudinal axis, a distal end, a proximal end, a rectilinear cross section transverse to the longitudinal axis having three or four sides, and a plurality of faces, each of the plurality of faces having a width and a plurality of fenestrations, the plurality of fenestrations each having a diameter that is between about 0.2 to about 0.5 of the width of its associated face, the elongate body having a central lumen located along the longitudinal axis and configured to receive a guide pin, wherein each of the plurality of fenestrations reach and provide access to the central lumen, wherein a concentration or number of fenestrations is higher in a distal half of the elongate body than in a proximal half, wherein the distal end of the elongate body is tapered to facilitate implantation into the bone, and wherein the elongate body has a bending strength or a shear strength of at least 0.5 relative to a reference elongate body with identical dimensions and material composition but without any fenestrations.
  • 12. The implant of claim 11, wherein the distal end of the elongate body is formed into one or more cutting edges.
  • 13. The implant of claim 11, wherein the fenestrations are located on a distal portion of the elongate body that is configured to be implanted within the sacrum of a patient while the proximal portion of the elongate body that is configured to be implanted within the ilium is free from fenestrations.
  • 14. The implant of claim 11, wherein the fenestrations are arranged in a staggered pattern.
  • 15. The implant of claim 11, further comprising a cap on the proximal end of the elongate body, the cap having a hole sized to receive a guide pin.
  • 16. The implant of claim 11, wherein the elongate body has an inner surface and an outer surface that are porous.
  • 17. The implant of claim 11, wherein the elongate body has an inner surface and an outer surface that are roughened.
  • 18. The implant of claim 11, wherein the elongate body has an inner surface and an outer surface that are treated with a plasma coating.
  • 19. The implant of claim 11, wherein the elongate body has an inner surface and an outer surface that are coated with a biologic aid.
  • 20. The implant of claim 19, wherein the biologic aid is a bone morphogenetic protein.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/642,681, filed May 4, 2012, titled “FENESTRATED IMPLANT,” which is herein incorporated by reference in its entirety for all purposes. All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. For example, this application incorporates by reference in their entireties U.S. Patent Publication No. 2011/0087294 and U.S. Patent Publication No. 2011/0118785.

US Referenced Citations (527)
Number Name Date Kind
1951278 Ericsson Mar 1934 A
2136471 Schneider Nov 1938 A
2243717 Moreira May 1941 A
2414882 Longfellow Jul 1947 A
2562419 Ferris Jul 1951 A
2675801 Bambara et al. Apr 1954 A
2697433 Zehnder Dec 1954 A
3076453 Tronzo Feb 1963 A
3506982 Steffee Apr 1970 A
3694821 Moritz Oct 1972 A
3709218 Halloran Jan 1973 A
3744488 Cox Jul 1973 A
4059115 Jumashev et al. Nov 1977 A
4156943 Collier Jun 1979 A
4292964 Ulrich Oct 1981 A
4341206 Perrett et al. Jul 1982 A
4344190 Lee et al. Aug 1982 A
4399813 Barber Aug 1983 A
4423721 Otte et al. Jan 1984 A
4475545 Ender Oct 1984 A
4501269 Bagby Feb 1985 A
4569338 Edwards Feb 1986 A
4612918 Slocum Sep 1986 A
4622959 Marcus Nov 1986 A
4630601 Harder et al. Dec 1986 A
4638799 Moore Jan 1987 A
4657550 Daher Apr 1987 A
4743256 Brantigan May 1988 A
4773402 Asher et al. Sep 1988 A
4787378 Sodhi Nov 1988 A
4790303 Steffee Dec 1988 A
4834757 Brantigan May 1989 A
4846162 Moehring Jul 1989 A
4877019 Vives Oct 1989 A
4878915 Brantigan Nov 1989 A
4898186 Ikada et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4950270 Bowman et al. Aug 1990 A
4961740 Ray et al. Oct 1990 A
4969888 Scholten et al. Nov 1990 A
4981481 Kranz et al. Jan 1991 A
5034011 Howland Jul 1991 A
5034013 Kyle et al. Jul 1991 A
5035697 Frigg Jul 1991 A
5041118 Wasilewski Aug 1991 A
5053035 McClaren Oct 1991 A
5059193 Kuslich Oct 1991 A
5066296 Chapman et al. Nov 1991 A
5102414 Kirsch Apr 1992 A
5108397 White Apr 1992 A
5122141 Simpson et al. Jun 1992 A
5139498 Astudillo Ley Aug 1992 A
5139500 Schwartz Aug 1992 A
5147367 Ellis Sep 1992 A
5147402 Bohler et al. Sep 1992 A
5190551 Chin et al. Mar 1993 A
5197961 Castle Mar 1993 A
5242444 MacMillan Sep 1993 A
5298254 Prewett et al. Mar 1994 A
5334205 Cain Aug 1994 A
5380325 Lahille et al. Jan 1995 A
5390683 Pisharodi Feb 1995 A
5433718 Brinker Jul 1995 A
5443466 Shah Aug 1995 A
5458638 Kuslich et al. Oct 1995 A
5470334 Ross et al. Nov 1995 A
5480402 Kim Jan 1996 A
5569249 James et al. Oct 1996 A
5591235 Kuslich Jan 1997 A
5593409 Michelson Jan 1997 A
5609635 Michelson Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5626616 Speece May 1997 A
5643264 Sherman et al. Jul 1997 A
5645599 Samani Jul 1997 A
5658337 Kohrs et al. Aug 1997 A
5667510 Combs Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5672178 Petersen Sep 1997 A
5683391 Boyd Nov 1997 A
5709683 Bagby Jan 1998 A
5713904 Errico et al. Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5725581 Brånemark Mar 1998 A
5743912 LaHille et al. Apr 1998 A
5759035 Ricci Jun 1998 A
5766174 Perry Jun 1998 A
5766252 Henry et al. Jun 1998 A
5766261 Neal et al. Jun 1998 A
5788699 Bobst et al. Aug 1998 A
5800440 Stead Sep 1998 A
5868749 Reed Feb 1999 A
5897556 Drewry et al. Apr 1999 A
5928239 Mirza Jul 1999 A
5941885 Jackson Aug 1999 A
5961522 Mehdizadeh Oct 1999 A
5961554 Janson et al. Oct 1999 A
6010507 Rudloff Jan 2000 A
6015409 Jackson Jan 2000 A
6053916 Moore Apr 2000 A
6056749 Kuslich May 2000 A
6086589 Kuslich et al. Jul 2000 A
6096080 Nicholson et al. Aug 2000 A
6120504 Brumback et al. Sep 2000 A
6143031 Knothe et al. Nov 2000 A
6197062 Fenlin Mar 2001 B1
6210442 Wing et al. Apr 2001 B1
6214049 Gayer et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6224607 Michelson May 2001 B1
6241732 Overaker et al. Jun 2001 B1
6264657 Urbahns et al. Jul 2001 B1
6270528 McKay Aug 2001 B1
6287343 Kuslich et al. Sep 2001 B1
6302885 Essiger Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306140 Siddiqui Oct 2001 B1
6319253 Ackeret et al. Nov 2001 B1
6406498 Tormala Jun 2002 B1
6409768 Tepic et al. Jun 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6471707 Miller et al. Oct 2002 B1
6485518 Cornwall et al. Nov 2002 B1
6497707 Bowman et al. Dec 2002 B1
6517541 Sesic Feb 2003 B1
6520969 Lambrecht et al. Feb 2003 B2
6524314 Dean et al. Feb 2003 B1
6527775 Warburton Mar 2003 B1
6556857 Estes et al. Apr 2003 B1
6558386 Cragg May 2003 B1
6565566 Wagner et al. May 2003 B1
6575899 Foley et al. Jun 2003 B1
6575991 Chesbrough et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6582431 Ray Jun 2003 B1
6595998 Johnson et al. Jul 2003 B2
6602293 Biermann et al. Aug 2003 B1
6605090 Trieu et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6620163 Michelson Sep 2003 B1
6635059 Randall et al. Oct 2003 B2
6666868 Fallin Dec 2003 B2
6669529 Scaries Dec 2003 B1
6673075 Santilli Jan 2004 B2
6692501 Michelson Feb 2004 B2
6723099 Goshert Apr 2004 B1
6740118 Eisermann et al. May 2004 B2
6743257 Castro Jun 2004 B2
D493533 Blain Jul 2004 S
6793656 Mathews Sep 2004 B1
6827740 Michelson Dec 2004 B1
6984235 Huebner Jan 2006 B2
6991461 Gittleman Jan 2006 B2
7118579 Michelson Oct 2006 B2
7175663 Stone Feb 2007 B1
7211085 Michelson May 2007 B2
7223269 Chappuis May 2007 B2
7314488 Reiley Jan 2008 B2
7335205 Aeschlimann et al. Feb 2008 B2
7338500 Chappuis Mar 2008 B2
7452359 Michelson Nov 2008 B1
7452369 Barry Nov 2008 B2
7481831 Bonutti Jan 2009 B2
7527649 Blain May 2009 B1
7534254 Michelson May 2009 B1
7537616 Branch et al. May 2009 B1
7569054 Michelson Aug 2009 B2
7569059 Cerundolo Aug 2009 B2
7601155 Petersen Oct 2009 B2
7648509 Stark Jan 2010 B2
7686805 Michelson Mar 2010 B2
7699852 Frankel et al. Apr 2010 B2
7708761 Petersen May 2010 B2
7727235 Contiliano et al. Jun 2010 B2
7758646 Khandkar et al. Jul 2010 B2
7780704 Markworth et al. Aug 2010 B2
7837735 Malone Nov 2010 B2
7850732 Heinz Dec 2010 B2
7857832 Culbert et al. Dec 2010 B2
7887565 Michelson Feb 2011 B2
7901439 Horton Mar 2011 B2
7909832 Michelson Mar 2011 B2
7922765 Reiley Apr 2011 B2
7942879 Christie et al. May 2011 B2
8052728 Hestad Nov 2011 B2
8062365 Schwab Nov 2011 B2
8066705 Michelson Nov 2011 B2
8066709 Michelson Nov 2011 B2
8080046 Suddaby Dec 2011 B2
8142481 Warnick Mar 2012 B2
8142503 Malone Mar 2012 B2
8162981 Vestgaarden Apr 2012 B2
8202305 Reiley Jun 2012 B2
8308779 Reiley Nov 2012 B2
8317862 Troger et al. Nov 2012 B2
8348950 Assell et al. Jan 2013 B2
8388667 Reiley et al. Mar 2013 B2
8394129 Morgenstern Lopez Mar 2013 B2
8398635 Vaidya Mar 2013 B2
8414648 Reiley Apr 2013 B2
8425570 Reiley Apr 2013 B2
8430930 Hunt Apr 2013 B2
8439925 Marino et al. May 2013 B2
8444693 Reiley May 2013 B2
8467851 Mire et al. Jun 2013 B2
8470004 Reiley Jun 2013 B2
8529608 Terrill Sep 2013 B2
8608802 Bagga et al. Dec 2013 B2
D697209 Walthall et al. Jan 2014 S
8641737 Matthis et al. Feb 2014 B2
8672986 Klaue et al. Mar 2014 B2
8945190 Culbert et al. Feb 2015 B2
8945193 Kirschman Feb 2015 B2
8951254 Mayer et al. Feb 2015 B2
8951293 Glazer et al. Feb 2015 B2
8951295 Matityahu et al. Feb 2015 B2
8961571 Lee et al. Feb 2015 B2
RE45484 Foley et al. Apr 2015 E
9131955 Swofford Sep 2015 B2
9149286 Greenhalgh et al. Oct 2015 B1
9198676 Pilgeram et al. Dec 2015 B2
9220535 Röbling et al. Dec 2015 B2
9375243 Vestgaarden Jun 2016 B1
9492284 Ginn et al. Nov 2016 B2
9566100 Asfora Feb 2017 B2
9592131 Sandstrom et al. Mar 2017 B2
9603613 Schoenefeld et al. Mar 2017 B2
9615856 Arnett et al. Apr 2017 B2
9636226 Hunt May 2017 B2
9662124 Assell et al. May 2017 B2
9757154 Donner et al. Sep 2017 B2
20010012942 Estes et al. Aug 2001 A1
20010046518 Sawhney Nov 2001 A1
20010047207 Michelson Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20020029043 Ahrens et al. Mar 2002 A1
20020038123 Visotsky et al. Mar 2002 A1
20020049497 Mason Apr 2002 A1
20020077641 Michelson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020120275 Schmieding et al. Aug 2002 A1
20020128652 Ferree Sep 2002 A1
20020143334 von Hoffmann et al. Oct 2002 A1
20020143335 von Hoffmann et al. Oct 2002 A1
20020151903 Takei et al. Oct 2002 A1
20020169507 Malone Nov 2002 A1
20020183858 Contiliano et al. Dec 2002 A1
20020198527 Mückter Dec 2002 A1
20030018336 Vandewalle Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030050642 Schmieding et al. Mar 2003 A1
20030065332 TenHuisen et al. Apr 2003 A1
20030074000 Roth et al. Apr 2003 A1
20030078660 Clifford et al. Apr 2003 A1
20030083668 Rogers et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030097131 Schon et al. May 2003 A1
20030139815 Grooms et al. Jul 2003 A1
20030181979 Ferree Sep 2003 A1
20030181982 Kuslich Sep 2003 A1
20030199983 Michelson Oct 2003 A1
20030229358 Errico et al. Dec 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20030233147 Nicholson et al. Dec 2003 A1
20040010315 Song Jan 2004 A1
20040024458 Senegas et al. Feb 2004 A1
20040034422 Errico et al. Feb 2004 A1
20040073216 Lieberman Apr 2004 A1
20040073314 White et al. Apr 2004 A1
20040082955 Zirkle Apr 2004 A1
20040087948 Suddaby May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127990 Bartish, Jr. et al. Jul 2004 A1
20040138750 Mitchell Jul 2004 A1
20040138753 Ferree Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040176287 Harrison et al. Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20040210221 Kozak et al. Oct 2004 A1
20040225360 Malone Nov 2004 A1
20040230305 Gorensek et al. Nov 2004 A1
20040260286 Ferree Dec 2004 A1
20040267369 Lyons et al. Dec 2004 A1
20050015059 Sweeney Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050033435 Belliard et al. Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050055023 Sohngen et al. Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050107878 Conchy May 2005 A1
20050124993 Chappuis Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050137605 Assell et al. Jun 2005 A1
20050143837 Ferree Jun 2005 A1
20050149192 Zucherman et al. Jul 2005 A1
20050159749 Levy et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050246021 Ringeisen et al. Nov 2005 A1
20050251146 Martz et al. Nov 2005 A1
20050277940 Neff Dec 2005 A1
20060036247 Michelson Feb 2006 A1
20060036251 Reiley Feb 2006 A1
20060054171 Dall Mar 2006 A1
20060058793 Michelson Mar 2006 A1
20060058800 Ainsworth et al. Mar 2006 A1
20060062825 Maccecchini Mar 2006 A1
20060084986 Grinberg et al. Apr 2006 A1
20060089656 Allard et al. Apr 2006 A1
20060111779 Petersen May 2006 A1
20060129247 Brown et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060161163 Shino Jul 2006 A1
20060178673 Curran Aug 2006 A1
20060195094 McGraw et al. Aug 2006 A1
20060217717 Whipple Sep 2006 A1
20060241776 Brown et al. Oct 2006 A1
20060271054 Sucec et al. Nov 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20070027544 McCord et al. Feb 2007 A1
20070049933 Ahn et al. Mar 2007 A1
20070066977 Assell et al. Mar 2007 A1
20070083265 Malone Apr 2007 A1
20070088362 Bonutti et al. Apr 2007 A1
20070093841 Hoogland Apr 2007 A1
20070106383 Abdou May 2007 A1
20070149976 Hale et al. Jun 2007 A1
20070156144 Ulrich et al. Jul 2007 A1
20070156241 Reiley et al. Jul 2007 A1
20070156246 Meswania et al. Jul 2007 A1
20070161989 Heinz et al. Jul 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070233146 Henniges et al. Oct 2007 A1
20070250166 McKay Oct 2007 A1
20070265621 Matthis et al. Nov 2007 A1
20070270879 Isaza et al. Nov 2007 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080021461 Barker et al. Jan 2008 A1
20080021480 Chin et al. Jan 2008 A1
20080065093 Assell et al. Mar 2008 A1
20080065215 Reiley Mar 2008 A1
20080109083 Van Hoeck et al. May 2008 A1
20080140082 Erdem et al. Jun 2008 A1
20080147079 Chin et al. Jun 2008 A1
20080154374 Labrom Jun 2008 A1
20080161810 Melkent Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080234758 Fisher et al. Sep 2008 A1
20080255562 Gil et al. Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080255622 Mickiewicz et al. Oct 2008 A1
20080255664 Hogendijk et al. Oct 2008 A1
20080255666 Fisher et al. Oct 2008 A1
20080255667 Horton Oct 2008 A1
20080275454 Geibel Nov 2008 A1
20080306554 McKinley Dec 2008 A1
20090012529 Blain et al. Jan 2009 A1
20090018660 Roush Jan 2009 A1
20090024174 Stark Jan 2009 A1
20090036927 Vestgaarden Feb 2009 A1
20090043393 Duggal et al. Feb 2009 A1
20090082869 Slemker et al. Mar 2009 A1
20090099602 Aflatoon Apr 2009 A1
20090099610 Johnson et al. Apr 2009 A1
20090105770 Berrevooets et al. Apr 2009 A1
20090118771 Gonzalez-Hernandez May 2009 A1
20090131986 Lee et al. May 2009 A1
20090138053 Assell et al. May 2009 A1
20090157119 Hale Jun 2009 A1
20090163920 Hochschuler et al. Jun 2009 A1
20090187247 Metcalf, Jr. et al. Jul 2009 A1
20090216238 Stark Aug 2009 A1
20090259261 Reiley Oct 2009 A1
20090270929 Suddaby Oct 2009 A1
20090287254 Nayet et al. Nov 2009 A1
20090312798 Varela Dec 2009 A1
20090324678 Thorne et al. Dec 2009 A1
20100016903 Matityahu et al. Jan 2010 A1
20100022535 Lee et al. Jan 2010 A1
20100076502 Guyer et al. Mar 2010 A1
20100081107 Bagambisa et al. Apr 2010 A1
20100094290 Vaidya Apr 2010 A1
20100094295 Schnieders et al. Apr 2010 A1
20100106194 Bonutti et al. Apr 2010 A1
20100106195 Serhan et al. Apr 2010 A1
20100114174 Jones et al. May 2010 A1
20100114317 Lambrecht et al. May 2010 A1
20100131011 Stark May 2010 A1
20100145461 Landry et al. Jun 2010 A1
20100160977 Gephart et al. Jun 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100198267 Vaidya Aug 2010 A1
20100268228 Petersen Oct 2010 A1
20100280619 Yuan et al. Nov 2010 A1
20100280622 McKinley Nov 2010 A1
20100286778 Eisermann et al. Nov 2010 A1
20100331851 Huene Dec 2010 A1
20100331893 Geist et al. Dec 2010 A1
20110009869 Marino et al. Jan 2011 A1
20110022089 Assell et al. Jan 2011 A1
20110029019 Ainsworth et al. Feb 2011 A1
20110040362 Godara et al. Feb 2011 A1
20110046737 Teisen Feb 2011 A1
20110060373 Russell et al. Mar 2011 A1
20110060375 Bonutti Mar 2011 A1
20110066190 Schaller et al. Mar 2011 A1
20110082551 Kraus Apr 2011 A1
20110087294 Reiley Apr 2011 A1
20110093020 Wu Apr 2011 A1
20110098747 Donner et al. Apr 2011 A1
20110098816 Jacob et al. Apr 2011 A1
20110098817 Eckhardt et al. Apr 2011 A1
20110106175 Rezach May 2011 A1
20110118796 Reiley et al. May 2011 A1
20110153018 Walters et al. Jun 2011 A1
20110160866 Laurence et al. Jun 2011 A1
20110178561 Roh Jul 2011 A1
20110184478 Reiley Jul 2011 A1
20110184518 Trieu Jul 2011 A1
20110184519 Trieu Jul 2011 A1
20110184520 Trieu Jul 2011 A1
20110196372 Murase Aug 2011 A1
20110230966 Trieu Sep 2011 A1
20110238074 Ek Sep 2011 A1
20110238181 Trieu Sep 2011 A1
20110257755 Bellemere et al. Oct 2011 A1
20110264229 Donner Oct 2011 A1
20110295272 Assell et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110313532 Hunt Dec 2011 A1
20120083887 Purcell et al. Apr 2012 A1
20120095560 Donner Apr 2012 A1
20120101530 Robling et al. Apr 2012 A1
20120179256 Reiley Jul 2012 A1
20120191191 Trieu Jul 2012 A1
20120197311 Kirschman Aug 2012 A1
20120226318 Wenger et al. Sep 2012 A1
20120253398 Metcalf et al. Oct 2012 A1
20120259372 Glazer et al. Oct 2012 A1
20120271424 Crawford Oct 2012 A1
20120296428 Donner Nov 2012 A1
20120323285 Assell et al. Dec 2012 A1
20130018427 Pham et al. Jan 2013 A1
20130030456 Assell et al. Jan 2013 A1
20130030529 Hunt Jan 2013 A1
20130035727 Datta Feb 2013 A1
20130053852 Greenhalgh et al. Feb 2013 A1
20130053854 Schoenefeld et al. Feb 2013 A1
20130053902 Trudeau Feb 2013 A1
20130053963 Davenport Feb 2013 A1
20130085535 Greenhalgh et al. Apr 2013 A1
20130096683 Kube Apr 2013 A1
20130116793 Kloss May 2013 A1
20130123850 Schoenefeld et al. May 2013 A1
20130123935 Hunt et al. May 2013 A1
20130131678 Dahners May 2013 A1
20130131739 Reiley May 2013 A1
20130144343 Arnett et al. Jun 2013 A1
20130158609 Mikhail et al. Jun 2013 A1
20130172736 Abdou Jul 2013 A1
20130184769 Reiley et al. Jul 2013 A1
20130190614 Swofford Jul 2013 A1
20130218215 Ginn et al. Jul 2013 A1
20130197590 Assell et al. Aug 2013 A1
20130203088 Baerlecken et al. Aug 2013 A1
20130218282 Hunt Aug 2013 A1
20130231746 Ginn et al. Sep 2013 A1
20130245703 Warren et al. Sep 2013 A1
20130289625 Reiley Oct 2013 A1
20140012340 Beck et al. Jan 2014 A1
20140031934 Trieu Jan 2014 A1
20140031935 Donner et al. Jan 2014 A1
20140031939 Wolfe et al. Jan 2014 A1
20140046380 Asfora Feb 2014 A1
20140074175 Ehler et al. Mar 2014 A1
20140088596 Assell et al. Mar 2014 A1
20140088707 Donner et al. Mar 2014 A1
20140121776 Hunt May 2014 A1
20140135927 Pavlov et al. May 2014 A1
20140142700 Donner et al. May 2014 A1
20140200618 Donner et al. Jul 2014 A1
20140207240 Stoffman et al. Jul 2014 A1
20140257294 Gedet et al. Sep 2014 A1
20140257408 Trieu et al. Sep 2014 A1
20140276851 Schneider et al. Sep 2014 A1
20140277165 Katzman et al. Sep 2014 A1
20140277460 Schifano et al. Sep 2014 A1
20140277462 Yerby et al. Sep 2014 A1
20140288605 Mesiwala et al. Sep 2014 A1
20140288649 Hunt Sep 2014 A1
20140288650 Hunt Sep 2014 A1
20140296982 Cheng Oct 2014 A1
20140330382 Mauldin Nov 2014 A1
20140364917 Sandstrom et al. Dec 2014 A1
20150150683 Donner et al. Jun 2015 A1
20150182268 Donner et al. Jul 2015 A1
20150216566 Mikhail et al. Aug 2015 A1
20150238203 Asfora Aug 2015 A1
20150238205 Reiley Aug 2015 A1
20150250595 Mauldin et al. Sep 2015 A1
20150250611 Schifano et al. Sep 2015 A1
20150250612 Schifano et al. Sep 2015 A1
20150320469 Biedermann et al. Nov 2015 A1
20160022429 Greenhalgh et al. Jan 2016 A1
20160184103 Fonte et al. Jun 2016 A1
20160249940 Stark Sep 2016 A1
20160302941 Reiley et al. Oct 2016 A1
20160324643 Donner et al. Nov 2016 A1
20160374727 Greenhalgh et al. Dec 2016 A1
20170007409 Mauldin et al. Jan 2017 A1
20170049488 Vestgaarden Feb 2017 A1
20170128214 Mayer May 2017 A1
20170135733 Donner et al. May 2017 A1
20170143513 Sandstrom et al. May 2017 A1
20170181770 Reiley et al. Jun 2017 A1
20170209155 Petersen Jul 2017 A1
20170273729 Reiley Sep 2017 A1
20180177534 Mesiwala et al. Jun 2018 A1
20180228621 Reiley et al. Aug 2018 A1
20190090888 Sand et al. Mar 2019 A1
Foreign Referenced Citations (38)
Number Date Country
1128944 Aug 1996 CN
1190882 Aug 1998 CN
1909848 Feb 2007 CN
101795632 Aug 2010 CN
102361601 Feb 2012 CN
1287796 Mar 2003 EP
59200642 Nov 1984 JP
05-176942 Jul 1993 JP
05184615 Jul 1993 JP
09149906 Oct 1997 JP
10-85231 Apr 1998 JP
11318931 Nov 1999 JP
2002509753 Apr 2002 JP
2003511198 Mar 2003 JP
2003533329 Nov 2003 JP
2003534046 Nov 2003 JP
2004121841 Apr 2004 JP
2004512895 Apr 2004 JP
2004516866 Jun 2004 JP
2006506181 Feb 2006 JP
2008540036 Nov 2008 JP
2009521990 Jun 2009 JP
2010137016 Jun 2010 JP
WO 9731517 Aug 1997 WO
WO 0117445 Mar 2001 WO
WO0238054 May 2002 WO
WO03007839 Jan 2003 WO
WO0402344 Jan 2004 WO
WO2004043277 May 2004 WO
WO2005009729 Feb 2005 WO
WO2006003316 Jan 2006 WO
WO2006023793 Mar 2006 WO
WO 2009029074 Mar 2009 WO
WO2010105196 Sep 2010 WO
WO 2011110865 Sep 2011 WO
WO2011149557 Dec 2011 WO
WO 2013000071 Jan 2013 WO
WO2013119907 Aug 2013 WO
Non-Patent Literature Citations (38)
Entry
Mechanical Properties of Porous Materials, Lu et al., Journal of Porous Materials 6, pp. 359-368, 1999.
Reiley, Mark A.; U.S. Appl. No. 14/280,360 entitled “Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint,” filed May 16, 2014.
Reiley, Mark A.; U.S. Appl. No. 14/280,436 entitled “Systems and methods for the fusion of the sacral-iliac joint,” filed May 16, 2014.
Al-Khayer et al.; Percutaneous sacroiliac joint arthrodesis, a novel technique; J Spinal Disord Tech; vol. 21; No. 5; pp. 359-363; Jul. 2008.
Khurana et al.; Percutaneous fusion of the sacroiliac joint with hollow modular anchorage screws, clinical and radiological outcome; J Bone Joint Surg; vol. 91-B; No. 5; pp. 627-631; May 2009.
Wise et al.; Minimally invasive sacroiliac arthrodesis, outcomes of a new technique; J Spinal Disord Tech; vol. 21; No. 8; pp. 579-584; Dec. 2008.
Reiley, Mark A.; U.S. Appl. No. 12/357,483 entitled “Systems and methods for the fixation or fusion of bone in the hand and wrist,” filed Jan. 22, 2009 (abandoned).
Mauldin et al.; U.S. Appl. No. 13/791,746 entitled “Integrated implant,” filed Mar. 8, 2013.
Mauldin, R. G.; U.S. Appl. No. 13/791,801 entitled “Threaded implant,” filed Mar. 8, 2013.
Mauldin, R. G.; U.S. Appl. No. 13/791,837 entitled “Artificial joint,” filed Mar. 8, 2013.
Mauldin, R. G.; U.S. Appl. No. 13/791,849 entitled “Revision tool and method,” filed Mar. 8, 2013.
Mauldin et al.; U.S. Appl. No. 13/794,542 entitled “Tissue dilator and protector,” filed Mar. 11, 2013.
Mauldin et al.; U.S. Appl. No. 13/794,580 entitled “Guide pin,” filed Mar. 11, 2013.
Mauldin et al.; U.S. Appl. No. 13/794,611 entitled “Impactor,” filed Mar. 11, 2013.
Reiley, Mark.; U.S. Appl. No. 13/858,814 entitled “Apparatus, systems, and methods for achieving trans-iliac lumbar fusion,” filed Apr. 8, 2013.
Reiley, Mark; U.S. Appl. No. 13/867,941 entitled “Apparatus, systems, and methods for achieving anterior lumbar interbody fusion,” filed Apr. 22, 2013.
Reiley, Mark; U.S. Appl. No. 13/898,415 entitled “Apparatus, systems, and methods for achieving lumbar facet fusion,” filed May 20, 2013.
Mauldin et al.; U.S. Appl. No. 14/216,790 entitled “Systems and methods for implanting bone graft and implant,” filed Mar. 17, 2014.
Mesiwala et al.; U.S. Appl. No. 14/216,863 entitled “Implants for spinal fixation or fusion,” filed Mar. 17, 2014.
Yerby et al.; U.S. Appl. No. 14/216,938 entitled “Implants for facet fusion,” filed Mar. 17, 2014.
Schneider et al.; U.S. Appl. No. 14/217,008 entitled “Systems and methods for removing an implant,” filed Mar. 17, 2014.
Yerby et al.; U.S. Appl. No. 14/217,089 entitled “Long implant for sacroiliac joint fusion,” filed Mar. 17, 2014.
Reiley et al.; U.S. Appl. No. 14/274,486 entitled “Systems and methods for the fixation or fusion of bone using compressive implants,” filed May 9, 2014.
Reiley, Mark a.; U.S. Appl. No. 14/245,759 entitled “Systems and methods for the fixation or fusion of bone,” filed Apr. 4, 2014.
Reiley, Mark A.; U.S. Appl. No. 14/162,689 entitled “Systems and methods for the fixation or fusion of bone,” filed Jan. 23, 2014.
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998.
Richards et al.; Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra; Journal of Osteoporosis; 2010(ID 504078); 5 pgs; Jun. 9, 2010.
Reiley; U.S. Appl. No. 14/488,144 entitled “Systems and methods for the fixation of bone,” filed Sep. 16, 2014.
Reckling et al.; U.S. Appl. No. 14/515,416 entitled “Implant Placement,” filed Oct. 15, 2014.
ACUMED; Acutrak Headless Compressioin Screw (product information); 12 pgs; ©2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/Ivanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf.
Schneider et al.; U.S. Appl. No. 14/859,005 entitled “Matrix implant,” filed Sep. 18, 2015.
Reiley et al.; U.S. Appl. No. 14/859,046 entitled “Implants for bone fixation or fusion,” filed Sep. 18, 2015.
Sand et al.; U.S. Appl. No. 15/085,765 entitled “Neuromonitoring systems and methods for bone fixation or fusion procedures,” filed Mar. 30, 2016.
Schneider et al.; U.S. Appl. No. 15/593,208 entitled “Matrix implant,” filed May 11, 2017.
Reckling et al.; U.S. Appl. No. 15/838,070 entitled “Implant placement,” filed Dec. 11, 2017.
Reiley et al.; U.S. Appl. No. 16/237,409 entitled “Implants for bone fixation or fusion,” filed Dec. 31, 2018.
Mauldin et al.; U.S. Appl. No. 16/261,393 entitled Integrated Implant,: filed Jan. 29, 2019.
Schneider et al.; U.S. Appl. No. 16/263,971 entitled “Matrix Implant,” filed Jan. 31, 2019.
Related Publications (1)
Number Date Country
20130296953 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61642681 May 2012 US