Fenestration lock assemblies, fenestration units including the fenestration lock assemblies, and methods of assembling the same are described herein.
Lock assemblies used in fenestration units often use rotating cams that are captured by keepers. One potential drawback of such lock assemblies is the need for precise alignment between the rotating cam and the keeper. The alignment requirements may be difficult and/or expensive to achieve. Examples of such lock assemblies may be found in, e.g., U.S. Pat. Nos. 3,811,718; 4,095,829; 5,582,445; etc.
Fenestration lock assemblies, fenestration units including the lock assemblies, and methods of assembling the lock assemblies are described herein.
In one or more embodiments, the fenestration lock assemblies described herein may be used to secure a first frame member of a fenestration unit (e.g., a window) to a keeper attached to a second frame member of the fenestration unit and thereby preventing movement of the first and second frame members relative to each other in a manner that would open the window on which the fenestration lock assembly is mounted.
The lock assemblies described herein accommodate a relatively large variability in the sash positions when moving the lock assembly from the unlocked to the locked state. In one or more embodiments, the lock assemblies use a cam and follower design that transfers rotary motion commonly associated with fenestration lock assemblies to a lock bolt that moves in translation between an extended/locked state and a retracted/unlocked state.
In one or more embodiments, the lock assemblies described herein may be used with a variety of cover in handle styles, finishes, etc. without affecting the operation of the lock assembly.
Further, one or more embodiments of the lock assemblies described herein may include nonvisible tamper resistance countermeasures that could be incorporated into any number of parts within the lock assembly.
In a first aspect, one or more embodiments of a fenestration lock assembly as described herein may include: a housing comprising a base and a cover, the housing configured to be secured to the first window frame member and defining an internal space; a lock bolt slidably mounted in the internal space of the housing and configured to move in alternate rearward and forward directions along a locking axis between a retracted position and an extended position, the lock bolt in the extended position configured to extend in the forward direction from the housing to engage the keeper, and the lock bolt in the retracted position configured to retract in the rearward direction at least partially into the housing to disengage the keeper; a rotatable handle operably connected to the cover of the housing, the handle comprising a shaft and a lever portion, the handle configured to rotate the shaft about a shaft axis as the handle portion rotates about the shaft axis, wherein the shaft axis is generally transverse to the locking axis; a rotatable cam connected to the shaft of the handle, wherein the cam is configured to rotate about the shaft axis with the shaft as the lever portion of the handle is rotated about the shaft axis; and a follower in the internal space of the housing, wherein rotation of the cam about the shaft axis moves the follower along the locking axis, and wherein the follower moves the lock bolt between the retracted position and the extended position along the locking axis as the cam rotates about the shaft axis.
In one or more embodiments of the fenestration lock assemblies described herein, the rotatable handle is configured to rotate about the shaft axis between an unlocked position and a locked position, wherein the lock bolt is in the retracted position when the handle is in the unlocked position, and wherein the lock bolt is in the extended position when the handle is in the locked position.
In one or more embodiments of the fenestration lock assemblies described herein, the cam comprises a stop arm extending away from the shaft axis in a generally radial direction, and wherein the housing comprises a first stop positioned such that the first stop limits further rotation of the handle as the handle is rotated from the locked position to the unlocked position, and wherein the housing comprises a second stop positioned such that the first stop limits further rotation of the handle as the handle is rotated from the unlocked position to the locked position. In one or more embodiments, the first stop and the second stop extend from the cover towards the base of the housing.
In one or more embodiments of the fenestration lock assemblies described herein, the fenestration lock assembly comprises a biasing element located in the base of the housing, the biasing element acting on the lock bolt and configured to apply a biasing force on the lock bolt in a direction that moves the lock bolt to the extended position. In one or more embodiments, the biasing force alone cannot cause the cam to rotate the handle from the unlocked position to the locked position. In one or more embodiments, the biasing element comprises a coil spring.
In one or more embodiments of the fenestration lock assemblies described herein, the follower is separate and discrete from the lock bolt.
In one or more embodiments of the fenestration lock assemblies described herein, the follower comprises a pin, and wherein the pin is received in a recess in the lock bolt, wherein the pin of the follower acts on the recess of the lock bolt to move the lock bolt between the retracted position and the extended position along the locking axis as the cam rotates about the cam axis.
In one or more embodiments of the fenestration lock assemblies described herein, the fenestration lock assembly further comprises a detent washer connected to the shaft of the handle such that rotation of the shaft about the shaft axis rotates the detent washer about the shaft axis, wherein the housing comprises a detent washer cavity in which the detent washer is located, wherein the detent washer is retained in a locked configuration in the detent washer cavity when the lock bolt is in the extended position until the handle is manually rotated about the shaft axis; and wherein the detent washer is retained in an unlocked configuration in the detent washer cavity when the lock bolt is in the retracted position until the handle is manually rotated about the shaft axis. In one or more embodiments, the detent washer and the detent washer cavity comprise complementary mating protrusions and recesses that mate when the detent washer and the detent washer cavity are retained in the locked configuration and when detent washer is retained in the unlocked configuration in the detent washer cavity. In one or more embodiments, the detent washer and the detent washer cavity comprise complementary mating protrusions and recesses that do not mate when the detent washer is not in the locked configuration or the unlocked configuration in the detent washer cavity.
In a second aspect, one or more embodiments of a fenestration lock assembly as described herein may include: a housing comprising a base and a cover, the housing configured to be secured to the first window frame member and defining an internal space; a lock bolt slidably mounted in the internal space of the housing and configured to move in alternate rearward and forward directions along a locking axis between a retracted position and an extended position, the lock bolt in the extended position configured to extend in the forward direction from the housing to engage the keeper, and the lock bolt in the retracted position configured to retract in the rearward direction at least partially into the housing to disengage the keeper; a rotatable handle operably connected to the cover of the housing, the handle comprising a shaft and a lever portion, the handle configured to rotate the shaft about a shaft axis as the handle portion rotates about the shaft axis, wherein the shaft axis is generally transverse to the locking axis; a rotatable cam connected to the shaft of the handle, wherein the cam is configured to rotate about the shaft axis with the shaft as the lever portion of the handle is rotated about the shaft axis; a follower in the internal space of the housing, wherein rotation of the cam about the shaft axis slides the follower along the locking axis, and wherein the follower moves the lock bolt between the retracted position and the extended position along the locking axis as the cam rotates about the shaft axis; a detent washer connected to the shaft of the handle such that rotation of the shaft about the shaft axis rotates the detent washer about the shaft axis; a detent washer cavity in the housing, wherein the detent washer is located in the detent washer cavity, and wherein the detent washer is retained in a locked configuration in the detent washer cavity when the lock bolt is in the extended position until the handle is manually rotated about the shaft axis; and wherein the detent washer is retained in an unlocked configuration in the detent washer cavity when the lock bolt is in the retracted position until the handle is manually rotated about the shaft axis; and a biasing element located in the base of the housing, the biasing element acting on the lock bolt and configured to apply a biasing force on the lock bolt in a direction that moves the lock bolt to the extended him position, and wherein the biasing force alone cannot move the detent washer and the detent washer cavity out of the unlocked configuration.
In one or more embodiments of the fenestration lock assemblies described herein, the rotatable handle is configured to rotate about the shaft axis between an unlocked position and a locked position, wherein the lock bolt is in the retracted position when the handle is in the unlocked position, and wherein the lock bolt is in the extended position when the handle is in the locked position.
In one or more embodiments of the fenestration lock assemblies described herein, the cam comprises a stop arm extending away from the shaft axis in a generally radial direction, and wherein the housing comprises a first stop positioned such that the first stop limits further rotation of the handle as the handle is rotated from the locked position to the unlocked position, and wherein the housing comprises a second stop positioned such that the first stop limits further rotation of the handle as the handle is rotated from the unlocked position to the locked position. In one or more embodiments, the first stop and the second stop extend from the cover towards the base of the housing.
In one or more embodiments of the fenestration lock assemblies described herein, the biasing element comprises a coil spring.
In one or more embodiments of the fenestration lock assemblies described herein, the follower is separate and discrete from the lock bolt.
In one or more embodiments of the fenestration lock assemblies described herein, the follower comprises a pin, and wherein the pin is received in a recess in the lock bolt, wherein the pin of the follower acts on the recess of the lock bolt to move the lock bolt between the retracted position and the extended position along the locking axis as the cam rotates about the cam axis.
In one or more embodiments of the fenestration lock assemblies described herein, the detent washer and the detent washer cavity comprise complementary mating protrusions and recesses that mate when the detent washer is retained in the locked configuration in the detent washer cavity and when the detent washer is retained in the unlocked configuration in the detent washer cavity. In one or more embodiments, the detent washer and the detent washer cavity comprise complementary mating protrusions and recesses that do not mate when the detent washer is not in the locked configuration or the unlocked configuration in the detent washer cavity.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” or “the” component may include one or more of the components and equivalents thereof known to those skilled in the art. Further, the term “and/or” means one or all of the listed elements or a combination of any two or more of the listed elements.
It is noted that the term “comprises” and variations thereof do not have a limiting meaning where these terms appear in the accompanying description. Moreover, “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably herein.
The above summary is not intended to describe each embodiment or every implementation of the fenestration lock assemblies, fenestration units including the lock assemblies, and methods of assembling the fenestration lock assemblies described herein. Rather, a more complete understanding of the invention will become apparent and appreciated by reference to the following Description of Illustrative Embodiments and claims in view of the accompanying figures of the drawing.
In the following description of illustrative embodiments, reference is made to the accompanying figures of the drawing which form a part hereof, and in which are shown, by way of illustration, specific embodiments. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
The fenestration lock assemblies may be used with a variety of different fenestration units that include movable panels with fenestration lock assemblies. Fenestration units in the form of windows may include one or more horizontally sliding panels (i.e., sashes), one or more vertically moving panels (in, e.g., a double hung window, a single hung window, etc.), and/or one or more rotating panels (in, e.g., a casement window, transom, etc.). Fenestration units in the form of doors may include one or more movable panels, the one or more movable panels may include one or more horizontally sliding panels (e.g., patio doors, sliding doors, gliding doors, multi-glide doors, lift and slide doors, etc.), one or more vertically movable door panels, and/or one or more rotating movable panels. The movable panels in fenestration units as described herein slide and/or rotate between closed and open positions within a fenestration unit frame. The movable panels in fenestration units described herein may include glazing panels and/or opaque panels constructed of wood or other materials.
The illustrative embodiment of fenestration unit 10 depicted in
One of the fenestration lock assemblies 20 is depicted in an enlarged perspective view in
In one or more embodiments, all of the components of the fenestration lock assemblies described herein may be located on a check rail (i.e., the top rail of the lower sash and/or the bottom rail of the upper sash). In one of more alternative embodiments, the components of the fenestration lock assemblies described herein may be located on and/or in other portions of a fenestration unit, e.g., on and/or in another member used in the fenestration unit (e.g., a top rail, bottom rail, sill, stool, threshold, top/head jamb, side jamb, movable panel, etc.).
The lock assembly 20 includes a housing that includes a cover 28 attached to a base 30 when the lock assembly 20 is assembled as depicted in
In the depicted embodiment the base 30 also includes a lock bolt passage 36 in which lock bolt 50 moves during operation of the lock assembly 20 as described herein. In the depicted illustrative embodiment, the lock bolt passage 36 is integrally formed in the chassis 32 (although in other alternative embodiments, the chassis may or may not be used to provide the lock bolt passage 36). In particular, lock bolt 50 is slidably mounted in the passage 36 and configured to move in alternate rearward and forward directions along a locking axis 51 that extends through the passage 36. In the extended position (as seen in, e.g.,
In the depicted illustrative embodiment of lock assembly 20, the base 30 also includes hooks 38 extending from chassis 32. In one or more embodiments, the hooks 38 may engage structures on the keeper (, e.g., keeper 19 as depicted in
In the depicted illustrative embodiment, a detent washer 60 is attached to the shaft 42 of the handle 40. A detent washer insert 62 may be provided to adapt the detent washer 60 to the smaller shaft 42 of the handle 40 as needed. Because of the connection between the detent washer 60 and the shaft 42, rotation of the handle 40 about the shaft axis 41 also rotates the detent washer 60.
A rotatable cam 70 is also attached to the shaft 42 of the handle 40. Rotation of the cam 70 about the shaft axis 41 is used to move the lock bolt 50 between its retracted and extended positions as described herein. In the depicted illustrative embodiment, the cam 70 is fixedly attached to the handle 40 using both a recess 71 into which the shaft 42 extends when assembled, as well as a threaded fastener 46 used to secure the cam 70 and detent washer 60 to the handle 40. Because of the connection between the cam 70 and the shaft 42, rotation of the handle 40 about the shaft axis 41 also rotates the cam 70.
Referring to
The depicted illustrative embodiment of housing cover 28 includes a detent washer cavity 80 configured to receive the detent washer 60. Detent washer cavity 80 includes, in the depicted illustrative embodiment, a pair of recesses 81 and 83, while the detent washer 60 includes a complementary pair of protrusions 61 and 63 with the protrusions and recesses mating with each other in two different positions as the detent washer 60 is rotated within the detent washer cavity 80 of the housing cover 28. In the depicted illustrative embodiment, rotation of the shaft 42 of the handle 40 about the shaft axis rotates the detent washer 60 about the shaft axis. The complementary protrusions and recesses provided as part of the detent washer 60 and detent washer cavity 80 function to retain the detent washer 60 in the locked or unlocked configuration in the detent washer cavity 80 until a force is applied to the handle 40 to rotate the handle 40 about the shaft axis.
In the depicted illustrative embodiment, the detent washer may be pliable or deformable such that the detent washer protrusions 61 and 63 are deflected towards the center of the detent washer (which, in the depicted illustrative embodiment, is towards the shaft axis 41—see, e.g.,
Although the depicted illustrative embodiments of the detent washer 60 and the detent washer cavity 80 include protrusions 61 and 63 on detent washer 60 and recesses 81 and 83 in detent washer cavity 80, one or more alternative embodiments may include the reverse, i.e., the detent washer 60 may include recesses that mate with protrusions formed into the detent washer cavity 80. In either embodiment, the mating protrusions and recesses of the detent washer 60 and detent washer cavity 80 may provide tactile and/or audible feedback to a user when the fenestration lock assembly has reached either the locked or unlocked configuration during operation.
The depicted illustrative embodiment of housing cover 28 also includes a pair of stops 29 that, together with the stop arm 74 extending from the cam 70, limit rotation of the handle 40 about the shaft axis 41. In one or more embodiments, the stops 29 may coincide with positioning of the fenestration lock assembly in either the locked or unlocked configuration. In the depicted illustrative embodiment, the stops 29 are formed integrally with the housing cover 28, although in one or more alternative embodiments, the stops may be provided as separate elements attached to the housing cover 28. Further, although the depicted stops 29 are arranged to limit rotation of the cam 70 about an arc of approximately 180°, one or more alternative embodiments may include stops arranged to limit the rotation of the cam 70 about any suitable arc, e.g., an arc greater than 180° or an arc less than 180°.
The depicted embodiment of base 30 also includes a biasing element 90 located in the base, in particular, in the lock bolt passage 36 in the depicted embodiment. The biasing element 90 acts on the lock bolt 50 and is configured to apply a biasing force on the lock bolt 50 in a direction that moves the lock bolt 50 to the extended position as seen in
The depicted embodiment of base 30 also includes a cam follower 56 in
With reference to
With reference to
As discussed above, one or more embodiments of fenestration lock assemblies may include a biasing element (not shown in
In one or more embodiments in which a detent washer and detent washer cavity (such as, e.g., detent washer 60 and detent washer cavity 80) are provided to retain the fenestration lock assembly in either its locked configuration or unlocked configuration, the biasing force provided by a biasing element alone cannot cause the cam 70 to rotate an attached handle from the unlocked position to the locked position. In one or more embodiments, the biasing force provided by biasing element alone cannot cause the cam 70 to rotate an attached handle from the locked position to the unlocked position. In one or more embodiments, the biasing force provided by the biasing element alone cannot cause the cam 70 to rotate an attached handle from the locked position to the unlocked position or from the unlocked position to the locked position.
As described above, the biasing element provides a force that urges the lock bolt 50 into the extended position depicted in
The complete disclosure of the patents, patent documents, and publications identified herein are incorporated by reference in their entirety as if each were individually incorporated. To the extent there is a conflict or discrepancy between this document and the disclosure in any such incorporated document, this document will control.
Illustrative embodiments of the fenestration lock assemblies, fenestration units and methods of assembling the same are discussed herein with some possible variations described. These and other variations and modifications in the invention will be apparent to those skilled in the art without departing from the scope of the invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein. Accordingly, the invention is to be limited only by the claims provided below and equivalents thereof. It should also be understood that this invention also may be suitably practiced in the absence of any element not specifically disclosed as necessary herein.
This application claims the benefit under 35 U.S.C. Section 119 of U.S. Provisional Patent Application Ser. No. 62/736,797 entitled “FENESTRATION LOCK ASSEMBLIES AND METHODS” and filed on Sep. 26, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3811718 | Bates | May 1974 | A |
4095829 | Van Klompenburg | Jun 1978 | A |
4261602 | Anderson | Apr 1981 | A |
4497135 | Vetter | Feb 1985 | A |
5219193 | Piltingsrud | Jun 1993 | A |
5263346 | Sato | Nov 1993 | A |
5493813 | Vetter et al. | Feb 1996 | A |
5582445 | Olsen et al. | Dec 1996 | A |
6142541 | Rotondi | Nov 2000 | A |
6412834 | Waitai et al. | Jul 2002 | B1 |
6871885 | Goldenberg | Mar 2005 | B2 |
6871886 | Coleman | Mar 2005 | B2 |
6877784 | Kelley et al. | Apr 2005 | B2 |
7000957 | Lawrence | Feb 2006 | B2 |
7013603 | Eenigenburg et al. | Mar 2006 | B2 |
7070211 | Polowinczak et al. | Jul 2006 | B2 |
7322619 | Nolte et al. | Jan 2008 | B2 |
7322620 | Lawrence | Jan 2008 | B1 |
7383707 | Yamada | Jun 2008 | B2 |
7407199 | Richardson | Aug 2008 | B2 |
7591494 | Mitchell | Sep 2009 | B2 |
7607262 | Pettit et al. | Oct 2009 | B2 |
7665775 | Miller | Feb 2010 | B1 |
7676990 | Bestler | Mar 2010 | B2 |
7922223 | Lawrence | Apr 2011 | B2 |
7963577 | Wolf | Jun 2011 | B2 |
8002317 | Satram et al. | Aug 2011 | B2 |
8269627 | Gore et al. | Sep 2012 | B2 |
8567830 | Liang | Oct 2013 | B2 |
10633897 | Liang | Apr 2020 | B2 |
20020171248 | Diss | Nov 2002 | A1 |
20040026932 | Coleman | Feb 2004 | A1 |
20040207212 | Wallis | Oct 2004 | A1 |
20050006906 | Yamada | Jan 2005 | A1 |
20050121923 | Lawrence | Jun 2005 | A1 |
20060033345 | Richardson | Feb 2006 | A1 |
20060087130 | Liang | Apr 2006 | A1 |
20060192391 | Pettit | Aug 2006 | A1 |
20070085350 | Liang | Apr 2007 | A1 |
20080012357 | Liang | Jan 2008 | A1 |
20080129054 | Tremble | Jun 2008 | A1 |
20080246287 | Satram | Oct 2008 | A1 |
20090127872 | Ye | May 2009 | A1 |
20090189398 | Lawrence | Jul 2009 | A1 |
20110221211 | Weron | Sep 2011 | A1 |
20110298225 | Liang | Dec 2011 | A1 |
20110304163 | Liang | Dec 2011 | A1 |
20130283694 | DeBoer | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 62736797 | Sep 2018 | US |
Child | 16582728 | US |