This invention relates generally to microwave devices, and more particularly, to a ferrite circulator having integrated alignment members.
Ferrite circulators are typically configured as multi-port (e.g., three-port) passive RF or microwave devices having magnets and ferrite material that may be used to control the direction of signal flow in, for example, an RF circuit or a microwave circuit. For example, ferrite circulators may be used to control signal flow in wireless base station or power amplifier applications.
In general, a ferrite circulator or junction ferrite circulator is a multi-port device, such as a three-port device, having a symmetrical Y-junction formed by a magnetically biased ferrite disk or slab that is often used as a diplexer. The circulator allows flow of, for example, microwave energy in one direction (e.g., from one of three ports to another one of the three ports). In operation, a microwave signal entering one of the ports of the ferrite circulator follows a rotating sense based on the interaction of the electromagnetic wave with the magnetized ferrite. Thus, by symmetrically constructing the ferrite circulator, a defined signal path or direction through the ferrite circulator may be provided. Ferrite circulators also may be used to protect against reflections by terminating one of the ports of the ferrite circulator to thereby provide isolation.
In order for the ferrite circulator to properly operate (e.g., properly control signal flow therethrough), proper alignment of ferrite within the ferrite circulator must be provided. Specifically, the ferrite and center conductor must be precisely positioned and maintained relative to the housing in order to provide proper operation. It is known to provide alignment devices in connection with the ferrite circulator and/or to use epoxy to ensure proper alignment of the ferrite within the housing of the ferrite circulator. For example, it is known to use a plastic aligning frame or aligning disc member in connection with the ferrite circulator to ensure proper alignment of the ferrite within the housing of the ferrite circulator.
These known alignment devices add complexity and cost to the ferrite circulators. Further, the likelihood of misalignment of ferrite within the housing of the ferrite circulator increases due to improper positioning or affixing of the alignment device within the housing.
According to an exemplary embodiment, a ferrite circulator housing is provided that includes a body for receiving at least one ferrite element therein. The ferrite circulator housing further includes a plurality of alignment members positioned and configured to maintain the alignment of the at least one ferrite element in an alignment region defined by the plurality of alignment members.
According to another exemplary embodiment, an alignment system for a ferrite circulator is provided that includes a plurality of posts extending from a bottom surface of a housing of a ferrite circulator. The plurality of posts are integrally formed with the housing. The alignment system further includes an alignment region defined by the plurality of posts for receiving a ferrite element and aligning the ferrite element within the housing.
The ferrite circulator 30 also includes a plurality of stripline circuits 38 (only one of the stripline circuits 38 is shown in
Further, although only one magnet 34 and one ferrite element 36 are shown, additional magnets 34 and ferrite elements 36 may be provided in a stacked arrangement within the housing 32. Also, additional stripline circuits 38 defining additional ports 40 may be provided (e.g., four stripline circuits defining a four-port ferrite circulator 30).
In operation, and as shown in
The presence of an induced axial magnetic field across the ferrite element 36 changes the effective permeability experienced by the rotating waves based upon the sense of rotation. This causes rotation of the standing wave patterns. For example, the ferrite circulator 30 may be configured such that the power transfer and isolation properties are provided such that the standing wave pattern is rotated thirty degrees. Additionally, one of the ports 40 may be internally terminated to provide a two-port isolator.
Various embodiments of the invention provide for aligning the ferrite element 36 within the housing 32. Specifically, and as shown in
It should be noted that the number and configuration of the alignment members 50 may be modified as desired or needed. For example, although the alignment members 50 are shown as generally cylindrical posts, the shape of the alignment members 50 may be provided having, for example, a square, rectangular, octagonal or other geometric shaped cross-section. Further, the height of the alignment members 50 may be modified to accommodate (e.g., receive in the alignment region 54) and maintain therein more than one ferrite element 36 provided in a stacked arrangement.
Further, the number and positioning of the alignment members 50 may be modified to accommodate different sizes and shapes of ferrite elements 36. For example, the alignment members 50 may be arranged to define a square, rectangular, octagonal or other geometrically shaped alignment region 54 for receiving and maintaining therein or therebetween a correspondingly shaped ferrite element 36.
Further, in various embodiments, the alignment region 54 defined by the plurality of alignment members 50 is sized smaller than the magnet 34 (shown in
The alignment members 50 are integrally formed as part of the housing 32 in the various embodiments. For example, the alignment members 50 may be formed into the housing 32 using a machining, stamping, casting and/or molding process, which may be a single or multiple step process. For example, in one exemplary embodiment, a two step process is performed to form the alignment members 50 and alignment region 54. Specifically, in a first step the alignment members 50 are formed (e.g., by stamping or pulling up posts from the bottom surface 52) and in a second step, the planar alignment region 54 is formed. In operation, this two step process may include, for example, a first machining strike to form the alignment members 50 (e.g., posts) and a second machining strike to flatten the alignment region 54 to provide a planar surface.
During the manufacturing process, the alignment members 50 may be formed at any position along the bottom surface 52 of the housing 32. In one embodiment, the alignment members 50 are centered in the housing 32 relative to the sides 56 (e.g., walls) of the housing 32. However, the number and positioning of the alignment members 50 may be provided at any location along the bottom surface 52 of the housing 32.
It further should be noted that the integral forming of the alignment members 50 as part of the housing 32 to form a single unitary piece may be provided by any suitable process, including, but not limited to, shearing, extruding, punching, etc. In a molding or casting process, the alignment members 50 may be formed in the housing 32 at the time of molding or casting, or as part of a secondary step.
Thus, as shown in
As shown, one or more ferrite elements 36 (e.g., ferrite disks) are inserted within the alignment region 54 defined by the plurality of alignment members 50. A circuit element 62, comprising a plurality of stripline circuits 38 is provided on top of the ferrite element 36. A spacer 64, which may be formed of a dielectric material is then provided between the circuit element 62 and a magnet 34. A pole piece 66 is provided on top of the magnet 34 and a cover return 68 is provided on top of the pole piece 66. A cover 70 is then provided on top of the cover return 68.
It should be noted that the spacer 64 is provided between the circuit element 62 and the magnet 34 to minimize the “lossyness” of the circuit element 62 that would occur if the magnet 34 contacts the circuit element 62. Further the pole piece 66 and return cover 68 are provided and configured to focus the magnetic fields within the housing 32 as is known and to direct flow of energy therethrough. Also, in various embodiments, the cover 70 is spring loaded to apply a downward force on the components within the housing 32 to maintain the position and alignment of the components therein. The cover 70 and housing 32 may have complimenting locking or latching portion to secure the cover 70 to the housing 32 (e.g., snap fit).
Thus, as shown in
As shown in
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.