Inductors are commonly used for filtering and for energy storage in power supplies, such as in DC-to-DC converters. For example, a buck DC-to-DC converter includes an inductor which, in cooperation with one or more capacitors, filters a switching waveform. Power supplies including multiple power stages often include at least one inductor per power stage. Some power supplies, however, use a coupled inductor in place of multiple discrete inductors, such as to improve power supply performance, reduce power supply size, and/or reduce power supply cost. Examples of coupled inductors and associated systems and methods are found in U.S. Pat. No. 6,362,986 to Schultz et al., which is incorporated herein by reference.
There is an increasing demand for low-height inductors, particularly inductors having a height of less than 0.75 millimeters. For example, the small form factors of many modern information technology devices, such as smart phones and tablet computers, require low-height inductors. As another example, inductor height is severely constrained in the emerging field of integrated voltage regulators.
Low-height discrete inductors have been formed using multilayer film technology, where a number of magnetic film layers and conductive electrodes are stacked to form an inductor. The magnetic film layers have a relatively low magnetic permeability, and therefore, the inductor must have a relatively large number of winding turns to obtain an inductance that is sufficiently large for typical applications. This large number of winding turns causes the inductor's winding to have a large direct current resistance (DCR) because DCR is proportional to winding length. Thus, it is typically infeasible to obtain both large inductance values and low winding DCR in conventional multilayer film inductors. As a result, multilayer film inductors usually have limited current ratings to prevent excessive losses and resulting temperature rise that would occur if the inductors were subjected to high current magnitudes.
Discrete inductors having a relatively low-height have also been formed from ferrite magnetic material. Ferrite magnetic material typically has a much larger magnetic permeability than magnetic film, and therefore, a ferrite inductor will ordinarily achieve a given inductance value with fewer winding turns than a multilayer film inductor. However, ferrite magnetic material is fragile and is difficult to handle in small pieces. Consequentially, conventional low-height ferrite inductors are restricted to simple magnetic cores, such as drum magnetic cores, to obtain acceptable manufacturing yields.
For example,
In an embodiment, a low-height coupled inductor having length, width, and height includes a composite magnetic core including: (1) first and second magnetic plates separated from each other in the height direction, and (2) a plurality of coupling teeth connecting the first and second magnetic plates in the height direction. The plurality of coupling teeth are formed of magnetic material having a lower magnetic permeability than magnetic material forming the first and second magnetic plates. The low-height coupled inductor further includes a respective winding wound around each of the plurality of coupling teeth.
In an embodiment, a low-height coupled inductor having length, width, and height includes a composite magnetic core including: (1) first and second magnetic plates separated from each other in the height direction, and (2) first and second coupling teeth each connecting the first and second magnetic plates in the height direction. The first and second magnetic plates and the first and second coupling teeth collectively form a passageway extending through the magnetic core in the widthwise direction. The first and second coupling teeth are formed of magnetic material having a lower magnetic permeability than magnetic material forming the first and second magnetic plates. The low-height coupled inductor further includes first and second windings wound around the first magnetic plate and through the passageway.
In an embodiment, a low-height coupled inductor having length, width, and height includes a composite magnetic core including: (1) a magnetic plate and (2) a coupling magnetic structure disposed on an outer surface of the magnetic plate. The coupling magnetic structure is formed of magnetic material having a lower magnetic permeability than magnetic material forming the magnetic plate. The low-height coupled inductor further includes a plurality of windings, each of the plurality of windings forming a respective winding turn on the outer surface of the magnetic plate.
In an embodiment, a method for forming a low-height inductor including a composite magnetic core includes the steps of: (1) disposing a plurality of windings on a first magnetic plate formed of a high permeability magnetic material, such that each of the plurality of windings forms a turn on an outer surface of the first magnetic plate; (2) disposing a low permeability magnetic material within each winding turn on the outer surface of the first magnetic plate, to form a plurality of coupling teeth; and (3) disposing a second magnetic plate formed of a high permeability magnetic material on the plurality of coupling teeth.
In an embodiment, a method for forming a low-height inductor including a composite magnetic core includes the steps of: (1) disposing a plurality of windings on a magnetic plate formed of a high permeability magnetic material, such that each of the plurality of windings forms a winding turn on an outer surface of the magnetic plate; and (2) disposing a coupling magnetic structure formed of a low permeability magnetic material on the outer surface of the magnetic plate.
Applicant has discovered that one or more of the problems discussed above can be at least partially overcome by forming a low-height inductor using a composite magnetic core. In certain embodiments, the composite magnetic core includes two magnetic plates formed of ferrite or other high permeability magnetic material, along with coupling teeth formed of a low permeability magnetic material, such as a matrix of magnetic powder and a binder. This composite structure enables the majority of the core to be formed of a high permeability magnetic material having simple shapes, such as rectangular shapes, thereby helping achieve large inductance values and ease of manufacturing, while still allowing flexibility to achieve desired magnetic core features.
Low-height coupled inductor 200 includes a composite magnetic core 208 including a first magnetic plate 210 and a second magnetic plate 212 separated from and opposing each other in the height 206 direction. First and second magnetic plates 210, 212 are each formed of a high permeability magnetic material, such as a ferrite material. Although it is anticipated that first and second magnetic plates 210, 212 will typically have the same configuration, e.g., the same composition and the same size, first magnetic plate 210 could differ from second magnetic plate 212 without departing from the scope hereof. First and second magnetic plates 210, 212 are typically smooth and devoid of mechanical features, such as cut-outs or teeth, to facilitate manufacturability and forming the plates with small respective thicknesses 214, 216 in the height direction. In some embodiments, first and second magnetic plates 210, 212 are each rectangular plates with planar outer surfaces.
Composite magnetic core 208 further includes a plurality of coupling teeth 218, where each coupling tooth 218 is disposed between, and connects, first and second magnetic plates 210, 212 in the height 206 direction. Accordingly, composite magnetic core 208 has a “ladder” shape, where first and second magnetic plates 210, 212 are analogous to ladder rails, and coupling teeth 218 are analogous to ladder rungs. Coupling teeth 218 are formed of a low permeability magnetic material that is different from the respective magnetic material forming each of first and second magnetic plates 210, 212. In some embodiments, coupling teeth 218 are formed of magnetic powder, such as ferrite dust, within a binder including adhesive, filler, epoxy, and/or similar material. In this document, specific instances of an item may be referred to by use of a numeral in parentheses (e.g., coupling tooth 218(1)) while numerals without parentheses refer to any such item (e.g., coupling teeth 218).
A respective winding 220 is wound around each coupling tooth 218, so that each winding forms a respective turn 222 around its coupling tooth 218 on an outer surface 224 of first magnetic plate 210. Accordingly, windings 220 are magnetically coupled out-of-phase by composite magnetic core 208. Such out-of-phase magnetic coupling is characterized, for example, by current of increasing magnitude flowing clockwise around one winding turn 222 inducing current of increasing magnitude flowing clockwise around each other winding turn 222, as seen when viewed cross-sectionally in the height 206 direction. Windings 220 are, for example, foil or wire windings. Each winding forms a respective solder tab (not shown) disposed on an outer surface 226 of composite magnetic core 208, where outer surface 226 is opposite of outer surface 224 in the height 206 direction.
In step 502, one or more windings are disposed on a first magnetic plate formed of a high permeability magnetic material, such that each winding forms a turn on an outer surface of the first magnetic plate. In one example of step 502, windings 220 are disposed on first magnetic plate 210, such that each winding 220 forms a respective turn 222 on outer surface 224 as illustrated in
Low-height coupled inductor 200 may achieve one or more significant advantages over conventional low-height inductors. For example, the fact that first and second magnetic plates 210, 212 are formed of a high permeability magnetic material, such as a ferrite magnetic material, results in a significant portion of composite magnetic core 208's volume being formed of high permeability magnetic material. Consequentially, low-height coupled inductor 200 may potentially achieve large inductance values with windings 220 having a small number of turns, since inductance is proportional to magnetic permeability. Indeed, in some embodiments, windings 220 are single-turn windings, such as illustrated herein. A small number of winding turns helps achieve low winding DCR because DCR is proportional to winding length. Accordingly, certain embodiments of low-height coupled inductor 200 achieve both large inductance values and low winding DCR. Multilayer film low-height inductors, in contrast, typically cannot realize both large inductance values and low DCR, as discussed above.
As another example, the configuration of composite magnetic core 208 helps promote ease of manufacturing while still allowable flexibility to achieve magnetic core features. In particular, high permeability magnetic materials, such as ferrite materials, are typically fragile. Thus, the more complicated the shape of a high permeability magnetic element, the more likely the magnetic element is to break during manufacturing. In composite magnetic core 208, though, first and second magnetic plates 210, 212, which are formed of a high permeability material, have simple shapes, such as rectangular shapes, thereby promoting robustness of these plates and high manufacturing yield. Additionally, magnetic core features can be achieved through coupling teeth 218, or other low permeability magnetic core elements disposed between first and second plates 210, 212. Low permeability magnetic material is typically significantly less fragile than high permeability magnetic material. Thus, coupling teeth, or other low permeability magnetic elements, can potentially be disposed between first and second plates 210, 212 in the height 206 direction without significantly decreasing robustness of composite magnetic core 208. Accordingly, the configuration of magnetic core 208 allows the magnetic core to include multiple coupling teeth, thereby supporting inverse magnetic coupling of multiple windings 220, while allowing high permeability material portions to retain simple shapes.
Modifications could be made to low-height coupled inductor 200 without departing from the scope hereof. For example, additional coupling tooth 218 and winding 220 pairs could be added, so that low-height coupled inductor 200 includes additional windings, or in other words, supports additional “phases” in a multiphase DC-to-DC converter application. Conversely, one coupling tooth 218 and winding 220 pair could be omitted, so that the inductor is a discrete, or uncoupled, inductor. As another example, windings 220 could be multi-turn windings, and/or first and second magnetic plates could be non-rectangular plates. Additionally, in some alternate embodiments, two or more coupling teeth 218 have different length by width cross-sectional areas, and/or at least two of windings 220 form different numbers of turns around respective coupling teeth 218, to achieve an asymmetrical coupled inductor.
In some alternate embodiments, low permeability magnetic material 1002 is disposed in some or all of one or more of portions 906, as illustrated in
It should be appreciated that high permeability of first and second magnetic plates 210, 212 helps achieve a low reluctance coupling path between all coupling teeth 218, even if coupling teeth 218 are significantly separated from each other, so that all winding 220 instances are strongly magnetically coupled. Consider, for example,
Control of winding 220 position during manufacturing of low-height coupled inductor 200 may be important. For example, windings 220 must be in their proper locations on first magnetic plate 210 ensure matching of low-height coupled inductor 200 to its intended printed circuit board footprint, to prevent shorting of adjacent windings, to achieve symmetrical leakage inductance values associated with windings 220, etc. When windings are disposed on a magnetic plate before forming coupling teeth 218, such as in method 500 of
To help overcome this possible drawback, Applicant has developed single-piece winding assemblies which control the position of windings with respect to each other. In particular, in these assemblies, the windings are joined together so that the relative positions of the windings are fixed. Thus, winding position can be controlled during low-height coupled inductor manufacturing simply by controlling the position of the winding assembly, thereby easing manufacturing.
Low-height coupled inductor 1900 includes a composite magnetic core 1908, which is similar to composite magnetic core 208 of
First and second magnetic plates 1910, 1912 are each formed of a high permeability magnetic material, such as a ferrite material. Although it is anticipated that first and second magnetic plates 1910, 1912 will typically have the same configuration, e.g., the same composition and the same size, first magnetic plate 1910 could differ from second magnetic plate 1912 without departing from the scope hereof. First and second magnetic plates 1910, 1912 are typically smooth and devoid of mechanical features, such as cut-outs or teeth, to facilitate manufacturability and forming the plates with small respective thicknesses in the height direction. In some embodiments, first and second magnetic plates 1910, 1912 are each rectangular plates with planar outer surfaces.
Composite magnetic core 1908 further includes two coupling teeth 1918, where each coupling tooth 1918 is disposed between, and connects, first and second magnetic plates 1910, 1912 in the height 1906 direction. Coupling teeth 1918 are formed of a low permeability material that is different from the respective magnetic material forming each of first and second magnetic plates 1910, 1912. In some embodiments, coupling teeth 1918 are formed of magnetic powder, such as ferrite dust, within a binder including adhesive, filler, epoxy, and/or similar material. Coupling teeth 1918 and first and second magnetic plates 1910, 1912 collectively form a passageway 1919 extending through composite magnetic core 1908 in the widthwise 1904 direction. Passageway 1919 has a height 1921, as illustrated in
Two staple-style windings 1920 are wound around first magnetic plate 1910, such that each winding extends through passageway 1919 in the widthwise 1904 direction. Windings 1920 are separated from each other by a linear separation distance 1923 in the lengthwise 1902 direction throughout passageway 1919 (see
Coupling magnetic flux and leakage flux pass through coupling teeth 1918. Only leakage magnetic flux, though, passes through passageway 1919. Consequentially, leakage inductance can be tuned during design of low-height coupled inductor 1900 by adjusting the dimensions of passageway 1919. For example, leakage inductance can be increased by increasing separation distance 1923 and/or by decreasing passageway height 1921, to decrease the leakage path reluctance. In some embodiments, separation distance 1923 is greater than passageway height 1921 to obtain relatively large leakage inductance values. Leakage inductance can be further increased by partially or completely filling passageway 1919 with magnetic material (not shown), such as magnetic material having a lower permeability that the magnetic material forming coupling teeth 1918.
The distal ends of each winding 2420 forms a respective solder tab 2429 having an L-shaped, thereby potentially enabling switching nodes connections to be made on both of opposing sides 2431 and 2433 of low-height coupled inductor 2400. For example,
In the exemplary embodiments discussed above, the composite magnetic core includes separate first and second magnetic plates. While this configuration has significant advantages, Applicant has discovered that inductor cost and/or height can be even further reduced, with the possible tradeoff of reduced inductance, by replacing one of the magnetic plates with a coupling magnetic structure formed of low permeability magnetic material.
For example,
Low-height coupled inductor 2900 includes a composite magnetic core 2908 and two windings 2920. Composite magnetic core 2908 includes a magnetic plate 2910 and a coupling magnetic structure 2918. Windings 2920 are, for example, foil or wire windings. Each winding 2920 forms a winding turn 2922 around a respective center axis 2921, on an outer surface 2924 of first magnetic plate 2910 (see
Each winding 2920 forms a respective solder tab (not shown) disposed on an outer surface 2926 of composite magnetic core 2908, where outer surface 2926 is opposite of outer surface 2924 in the height 2906 direction. In some alternate embodiments, however, winding solder tabs extend away from magnetic core 2908 in the widthwise 2904 direction, such as in a manner similar to that of low-height coupled inductor 1200 of
Magnetic plate 2910 is formed of a high permeability magnetic material, such as a ferrite material. Magnetic plate 2910 is typically smooth and devoid of mechanical features, such as cut-outs or teeth, to facilitate manufacturability and forming the plate with a small thickness 2914 in the height 2906 direction. In some embodiments, magnetic plate 2910 is a rectangular plate with planar outer surfaces.
Coupling magnetic structure 2918 is disposed on outer surface 2924 of magnetic plate 2910 and provides a path for magnetic flux coupling winding turns 2922. Coupling magnetic structure 2918 and magnetic plate 2910 collectively magnetically couple windings 2920 out-of-phase. Such out-of-phase magnetic coupling is characterized, for example, by current of increasing magnitude flowing clockwise around one winding turn 2922 inducing current of increasing magnitude flowing clockwise around each other winding turn 2922, as seen when viewed cross-sectionally in the height 2906 direction. Material forming coupling magnetic structure 2918 is different from, and has a lower magnetic permeability than, magnetic material forming magnetic plate 2910. In some embodiments, coupling magnetic structure 2918 is formed of magnetic powder, such as ferrite dust, within a binder including adhesive, filler, epoxy, and/or similar material. Coupling magnetic structure 2918 includes portions 2903 within winding turns 2922 and portion 2905 outside winding turns 2922, as seen when low-height coupled inductor 2900 is viewed cross-sectionally in the height 2906 direction.
Low-height coupled inductor 3300 includes a composite magnetic core 3308 including magnetic plate 2910 and a coupling magnetic structure 3318 in place of coupling magnetic structure 2918. Coupling magnetic structure 3318 covers substantially all of a length 3302 by width 3304 area of magnetic plate 2910 outer surface 2924, thereby facilitating precise control of coupling magnetic structure 3318 thickness during manufacturing. Additionally, the fact that coupling magnetic structure 3318 covers substantially all of outer surface 2924 helps contain magnetic flux to composite magnetic core 3308, thereby helping minimize proximity losses and/or likelihood of electromagnetic interference from stray magnetic flux originating from low-height coupled inductor 3300.
Additionally, low-height coupled inductor 3300 further includes leakage control structures 3307. Each leakage control structure 3307 has a lower magnetic permeability than the respective magnetic materials forming magnetic plate 2910 and coupling magnetic structure 3318. In some embodiments, leakage control structures 3307 are formed of a low permeability magnetic material, while in some other embodiments, leakage control structures 3307 are formed of a non-magnetic material, such as plastic, a ceramic material, adhesive, or even air. Each leakage control structure 3307 is disposed on a respective portion of outer surface 2924 outside of winding turns 2922, as seen when low-height coupled inductor 3300 is viewed cross-sectionally in the height 3306 direction. Accordingly, each leakage control structure 3307 is disposed between magnetic plate 2910 and coupling magnetic structure 3318, in the height 3306 direction.
Modifications could be made to low-height coupled inductors 2900 and 3300 without departing from the scope hereof. For example, although low-height coupled inductors 2900 and 3300 are illustrated with magnetic plate 2910 being on the bottom and magnetic coupling structure 2918 and 3318 being on the top, the positions of the magnetic plate and magnetic coupling structures could be swapped. Additionally, while windings 2920 are illustrated as being single-turn windings, one or more of windings 2920 could alternately form a plurality of winding turns 2922. Furthermore, additional windings 2920 could be added, or one winding could be omitted so that the inductor is a discrete, or uncoupled, inductor. Moreover, magnetic plate 2910 could be a non-rectangular magnetic plate.
Furthermore, in some alternate embodiments of low-height coupled inductors 2900 and 3300, windings 2920 are joined together so that the relative positions of the windings are fixed, such as in a manner similar to that discussed above with respect to
In step 3602, one or more windings are disposed on a magnetic plate formed of a high permeability magnetic material, such that each winding forms a turn on an outer surface of the first magnetic plate. In one example of step 3602, windings 2920 are printed on first magnetic plate 2910 using a mask, such that each winding 2920 forms a respective winding turn 2922 on outer surface 2924, as illustrated in
One possible application of the low-height coupled inductors disclosed herein is in multi-phase switching power converter applications, including but not limited to, multi-phase buck converter applications, multi-phase boost converter applications, or multi-phase buck-boost converter applications. For example,
A controller 4012 causes each switching circuit 4002 to repeatedly switch its respective winding end between electric power source 4006 and ground, thereby switching its winding end between two different voltage levels, to transfer power from electric power source 4006 to a load (not shown) electrically coupled across output port 4008. Controller 4012 typically causes switching circuits 4002 to switch at a relatively high frequency, such as at 100 kilohertz or greater, to promote low ripple current magnitude and fast transient response, as well as to ensure that switching induced noise is at a frequency above that perceivable by humans. Additionally, in certain embodiments, controller 4012 causes switching circuits 4002 to switch out-of-phase with respect to each other in the time domain to improve transient response and promote ripple current cancelation in output capacitors 4014.
Each switching circuit 4002 includes a control switching device 4016 that alternately switches between its conductive and non-conductive states under the command of controller 4012. Each switching circuit 4002 further includes a freewheeling device 4018 adapted to provide a path for current through its respective winding 220 when the control switching device 4016 of the switching circuit transitions from its conductive to non-conductive state. Freewheeling devices 4018 may be diodes, as shown, to promote system simplicity. However, in certain alternate embodiments, freewheeling devices 4018 may be supplemented by or replaced with a switching device operating under the command of controller 4012 to improve converter performance. For example, diodes in freewheeling devices 4018 may be supplemented by switching devices to reduce freewheeling device 4018 forward voltage drop. In the context of this disclosure, a switching device includes, but is not limited to, a bipolar junction transistor, a field effect transistor (e.g., a N-channel or P-channel metal oxide semiconductor field effect transistor, a junction field effect transistor, a metal semiconductor field effect transistor), an insulated gate bipolar junction transistor, a thyristor, or a silicon controlled rectifier.
Controller 4012 is optionally configured to control switching circuits 4002 to regulate one or more parameters of multi-phase buck converter 4000, such as input voltage, input current, input power, output voltage, output current, or output power. Buck converter 4000 typically includes one or more input capacitors 4020 electrically coupled across input port 4004 for providing a ripple component of switching circuit 4002 input current. Additionally, one or more output capacitors 4014 are generally electrically coupled across output port 4008 to shunt ripple current generated by switching circuits 4002.
Buck converter 4000 could be modified to have a different number of phases. For example, converter 4000 could be modified to have three phases and use low-height coupled inductor 1100 of
Features described above as well as those claimed below may be combined in various ways without departing from the scope hereof. The following examples illustrate some possible combinations:
(A1) A low-height coupled inductor having length, width, and height may include (1) a composite magnetic core, including: (i) first and second magnetic plates separated from each other in the height direction, and (ii) a plurality of coupling teeth connecting the first and second magnetic plates in the height direction, where the plurality of coupling teeth are formed of magnetic material having a lower magnetic permeability than magnetic material forming the first and second magnetic plates; and (2) a respective winding wound around each of the plurality of coupling teeth.
(A2) In the low-height coupled inductor denoted as (A1): the first and second magnetic plates may be formed of a ferrite magnetic material, and the plurality of coupling teeth may be formed of magnetic powder within a binder.
(A3) In either of the low-height coupled inductors denoted as (A1) or (A2), each of the first and second magnetic plates may have a rectangular shape.
(A4) In any of the low-height coupled inductors denoted as (A1) through (A3), each winding may be joined by a common tab, to form a winding assembly.
(A5) In any of the low-height coupled inductors denoted as (A1) through (A4), opposing ends of each winding may form a respective solder tab, and each solder tab may be disposed on an outer surface of the composite magnetic core.
(A6) In any of the low-height coupled inductors denoted as (A1) through (A4), opposing ends of each winding may form a respective solder tab, and each solder tab may extend away from the composite magnetic core in the widthwise direction.
(A7) In any of the low-height coupled inductors denoted as (A1) through (A6), each winding may form a respective turn on an outer surface of the first magnetic plate.
(A8) A multi-phase switching power converter may include (1) any one of the low-height coupled inductors denoted as (A1) through (A7) and (2) a respective switching circuit electrically coupled to each winding of the low-height coupled inductor, where each switching circuit is adapted to repeatedly switch an end of its respective winding between at least two different voltage levels.
(A9) The multi-phase switching power converter denoted as (A8) may further include a controller adapted to control each switching circuit such that the switching circuit switches out of phase with respect to each other switching circuit.
(B1) A low-height coupled inductor having length, width, and height may include: (1) a composite magnetic core including: (i) first and second magnetic plates separated from each other in the height direction, and (ii) first and second coupling teeth each connecting the first and second magnetic plates in the height direction, where the first and second magnetic plates and the first and second coupling teeth collectively form a passageway extending through the magnetic core in the widthwise direction, and where the first and second coupling teeth are formed of magnetic material having a lower magnetic permeability than magnetic material forming the first and second magnetic plates; and (2) first and second windings wound around the first magnetic plate and through the passageway.
(B2) In the low-height coupled inductor denoted as (B1), the first and second magnetic plates may be formed of a ferrite material, and the first and second coupling teeth may be formed of magnetic powder within a binder.
(B3) In either of the low-height coupled inductors denoted as (B1) or (B2), each of the first and second magnetic plates may have a rectangular shape.
(B4) In any of the low-height coupled inductors denoted as (B1) through (B3), each winding may be joined by a common tab, to form a winding assembly.
(B5) A multi-phase switching power converter may include (1) any one of the low-height coupled inductors denoted as (B1) through (B4) and (2) a respective switching circuit electrically coupled to each winding of the low-height coupled inductor, where each switching circuit is adapted to repeatedly switch an end of its respective winding between at least two different voltage levels.
(B6) The multi-phase switching power converter denoted as (B5) may further include a controller adapted to control each switching circuit such that the switching circuit switches out of phase with respect to each other switching circuit.
(C1) A low-height coupled inductor having length, width, and height may include: (1) a composite magnetic core including: (i) a magnetic plate, and (ii) a coupling magnetic structure disposed on an outer surface of the magnetic plate, where the coupling magnetic structure is formed of magnetic material having a lower magnetic permeability than magnetic material forming the magnetic plate; and (2) a plurality of windings, each of the plurality of windings forming a respective winding turn on the outer surface of the magnetic plate.
(C2) In the low-height coupled inductor denoted as (C1), the magnetic plate may be formed of a ferrite magnetic material, and the coupling magnetic structure may be formed of magnetic powder within a binder.
(C3) In either of the low-height coupled inductors denoted as (C1) or (C2), the magnetic plate may have a rectangular shape.
(C4) In any of the low-height coupled inductors denoted as (C1) through (C3), each winding turn may be formed around a respective center axis extending in the height direction, where center axis is offset from each other center axis in the lengthwise direction.
(C5) In any of the low-height coupled inductors denoted as (C1) through (C4), each winding turn may be non-overlapping with each other winding turn, as seen when the low-height coupled inductor is viewed cross-sectionally in the height direction.
(C6) Any of the low-height coupled inductors denoted as (C1) through (C5) may further include a plurality of leakage control structures formed of material having a lower magnetic permeability than the magnetic material forming the magnetic plate and the magnetic material forming the coupling magnetic structure, where each of the plurality of leakage control structures is disposed on a respective portion of the outer surface of the magnetic plate outside of the winding turns, as seen when the low-height coupled inductor is viewed cross-sectionally in the height direction.
(C7) In the low-height coupled inductor denoted as (C6), each of the plurality of leakage control structures may be disposed between the magnetic plate and the coupling magnetic structure, in the height direction.
(C8) In any of the low-height coupled inductors denoted as (C1) through (C7), each of the plurality of windings may be joined by a common tab, to form a winding assembly.
(C9) A multi-phase switching power converter may include (1) any one of the low-height coupled inductors denoted as (C1) through (C8) and (2) a respective switching circuit electrically coupled to each winding of the low-height coupled inductor, where each switching circuit is adapted to repeatedly switch an end of its respective winding between at least two different voltage levels.
(C10) The multi-phase switching power converter denoted as (C9) may further include a controller adapted to control each switching circuit such that the switching circuit switches out of phase with respect to each other switching circuit.
(D1) A method for forming a low-height inductor including a composite magnetic core may include the steps of: (1) disposing a plurality of windings on a first magnetic plate formed of a high permeability magnetic material, such that each of the plurality of windings forms a turn on an outer surface of the first magnetic plate; (2) disposing a low permeability magnetic material within each winding turn on the outer surface of the first magnetic plate, to form a plurality of coupling teeth; and (3) disposing a second magnetic plate formed of a high permeability magnetic material on the plurality of coupling teeth.
(D2) In the method denoted as (D1), the step of disposing low permeability magnetic material within each winding turn may include disposing a magnetic paste within each winding turn.
(D3) In either of the methods denoted as (D1) or (D2), each of the first and second magnetic plates may have a rectangular shape.
(D4) In any of the methods denoted as (D1) through (D3), each of the first and second magnetic plates may be formed of a ferrite magnetic material.
(D5) In any of the methods denoted as (D1) through (D4), the step of disposing the plurality of windings on the first magnetic plate may include disposing a winding assembly, including a common tab joining the plurality of windings, on the first magnetic plate.
(E1) A method for forming a low-height inductor including a composite magnetic core may include the steps of: (1) disposing a plurality of windings on a magnetic plate formed of a high permeability magnetic material, such that each of the plurality of windings forms a winding turn on an outer surface of the magnetic plate; and (2) disposing a coupling magnetic structure formed of a low permeability magnetic material on the outer surface of the magnetic plate.
(E2) The method denoted as (E1) may further include disposing leakage control structures on respective portions of the outer surface outside of the winding turns, before the step of disposing the coupling magnetic structure.
(E3) In either of the methods denoted as (E1) or (E2), the step of disposing the coupling magnetic structure may include disposing a magnetic paste on the outer surface of the magnetic plate.
(E4) In any of the methods denoted as (E1) through (E3), the magnetic plate may have a rectangular shape.
(E5) In any of the methods denoted as (E1) through (E4), the magnetic plate may be formed of a ferrite magnetic material.
(E6) In any of the methods denoted as (E1) through (E5), the step of disposing the plurality of windings on the magnetic plate may include disposing a winding assembly, including a common tab joining the plurality of windings, on the magnetic plate.
Changes may be made in the above methods and systems without departing from the scope hereof. It should thus be noted that the matter contained in the above description and shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense.
This application claims benefit of priority to U.S. Provisional Patent Application No. 61/940,686, filed Feb. 17, 2014, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61940686 | Feb 2014 | US |