Claims
- 1. A fully ferritic stainless steel welded article with high resistance to chloride stress corrosion, especially in the cold-worked condition, and high resistance to intergranular corrosion in combination with good weld formability, said entire welded article consisting essentially of, in weight percent, 0.003 to 0.04 carbon; 0.003 to 0.04 nitrogen, the sum of the carbon plus nitrogen content being below 0.04; up to 1.0 manganese; up to 1.0 silicon; 23.0 to 28.0 chromium; up to 0.50 nickel; up to 0.50 copper, the sum of the nickel and copper content being below 0.50; up to 0.20 cobalt; up to 2.75 molybdenum; 0.05 to 0.70 columbium, with columbium being at least equal to eight times the carbon plus nitrogen content; and the balance iron and incidental impurities, said welded article having an as-welded Olsen cup height exceeding 0.250 in. at a thickness of 0.060 in.
- 2. The fully ferritic stainless steel welded article of claim 1, wherein the sum of the nickel and copper content in relation to the molybdenum content is no greater than the amount given by the following equation:
- 8(%Ni + %Cu) - 1.5 = %Mo.
- 3. A fully ferritic stainless steel welded article with high resistance to chloride stress corrosion cracking especially in the cold-worked condition, and high resistance to intergranular corrosion in combination with good weld formability, said entire welded article consisting essentially of, in weight percent, up to 0.04 carbon; up to 0.04 nitrogen, with the sum of the carbon and nitrogen content being above 0.02 but below 0.07; up to 1.0 manganese; up to 1.0 silicon; 23.0 to 28.0 chromium; up to 0.50 nickel; up to 0.50 copper, the sum of the nickel and copper content being below 0.50; up to 0.20 cobalt; up to 2.75 molybdenum; 0.12 to 0.60 titanium, with titanium being at least equal to six times the carbon plus nitrogen content; and the balance iron and incidental impurities, said welded article having an as-welded Olsen cup height exceeding 0.250 in. at a thickness of 0.060 in.
- 4. The fully ferritic stainless steel welded article of claim 3 wherein the sum of the nickel plus copper content in relation to the molybdenum content is no greater than the amount given by the following equation:
- 8(%Ni + %Cu) - 1.5 = %Mo.
- 5. A fully ferritic stainless steel welded article with high resistance to chloride stress corrosion especially in the cold-worked condition, and high resistance to intergranular corrosion in combination with good weld formability, said entire welded article consisting essentially of, in weight percent, up to 0.04 carbon; up to 0.04 nitrogen, with the sum of the carbon plus nitrogen content being above 0.02 but below 0.07; up to 1.0 manganese; up to 1.0 silicon; 23.0 to 28.0 chromium; up to 0.50 nickel; up to 0.50 copper, with the sum of the nickel and copper content being below 0.50; up to 0.20 cobalt; up to 2.75 molybdenum; up to 0.30 titanium; up to 0.30 columbium, with the columbium and titanium contents at least being equal to the amounts given by the following equation: ##EQU2## and the balance iron and incidental impurities, said welded article having an as-welded Olsen cup height exceeding 0.250 in. at a thickness of 0.060 in.
- 6. The fully ferritic stainless steel welded article of claim 5 wherein the sum of the nickel plus copper content in relation to the molybdenum content is no greater than the amount given by the following equation:
- 8(%Ni + %Cu) - 1.5 = %Mo.
Parent Case Info
This application is a division of application Ser. No. 233,441, filed Mar. 10, 1972, now abandoned.
US Referenced Citations (7)
Non-Patent Literature Citations (1)
Entry |
"Titanium and Columbium in Plain and High Chromium Steels" The Iron Age, Oct. 26, 1973, pp.20-22. |
Divisions (1)
|
Number |
Date |
Country |
Parent |
233441 |
Mar 1972 |
|