Not Applicable
1. Field of the Invention
This invention is in the field of apparatus used to detect the presence of ferromagnetic threat objects to prevent the objects from being transported into the vicinity of a magnetic resonance imaging (MRI) magnet.
2. Background Art
Large ferromagnetic threat objects can be devastating when subjected to the strong magnetic field of a magnetic resonance imaging magnet. Pipe wrenches, floor scrubbers, oxygen cylinders, and even gurneys have been attracted to the MR magnet, as if propelled by a rocket, with disastrous consequences. At least one tragic death has occurred when a steel oxygen cylinder became, in effect, a lethal weapon. The problem is compounded when one considers the fact that many new MRI magnets have a much higher field of 3.0 Tesla (30 KOe). It is, therefore, prudent to screen people for such objects to prevent possible accidents.
Common metal detector portals, such as those used in airports, detect any metal. Hence they produce many false positive readings arising from coins, etc., that are non-magnetic, and, therefore, present no danger in the MRI setting. Ferromagnetic detection portals are very useful for ferromagnetic threat detection relative to a person or object passed through the portal. Nevertheless, disadvantages are present. First, ferromagnetic detection portals tend to be quite expensive, as these generally contain sensing elements, and other elements, on both sides of the portal, and, thus, these portals may be beyond the budget of some MRI centers.
Second, the side structures of these portals, when taken together, consume a significant surface area. This can be a major problem in a compact MRI center, such as a mobile truck. Indeed, in most mobile trucks, many ferromagnetic portals simply will not fit because of lack of room.
Many portals which are fixed in size are either too small, such as 25 inches, and thus unable accommodate a patient on a standard 28-inch gurney, or too large, and thus unable to squeeze into the restricted available space.
In addition, some portals are designed such that threats trigger an alarm only when the portal is turned on, and they typically trigger only when a ferromagnetic object traverses through the pass-through aperture of the portal. With such a portal, it is entirely possible that a significant ferromagnetic threat, such as a floor scrubber, could be introduced into the magnet room itself, because these large threat objects may not fit readily through the portal's screening aperture, which is required in order to trigger the portal's motion detection and alarm systems.
A naive orderly or technician may then decide to circumvent the portal's aperture completely, or, alternatively, simply omit turning on the portal. When the magnet room is entered with the threat object, a disaster can occur.
An interesting situation is when a magnetic resonance imaging center uses a ferromagnetic detection portal, but size constraints of the ante-room mandate that the portal be located elsewhere within the MRI center, such as in a different room completely. In this situation, a floor scrubber, or a metallic gurney, both of which constitute major threats, easily could be brought into the ante-room adjacent to the magnet room, where no ferromagnetic detection is available, and then catastrophically introduced into the magnet room.
Placing a ferromagnetic detection system on the door of the magnet room itself would theoretically avoid these risks, by requiring screening of every person, before entering the magnet room, but this is a doubtful proposition at best. By the time the alarm is triggered, the threat is already within the magnet room and, therefore, subject to the large magnetic field and gradient of the MRI magnet. So, placing a detector system on the door of the magnet room is a poor solution to the problem of some threats bypassing the detector system. If detection occurs in such a system, it is simply too late. Placing a ferromagnetic detection system on the door leading into the anteroom could be effective, but, if there are multiple doors leading to the ante-room, it is generally impractical to alarm all of these doors.
The preferred embodiment of the present invention is a free-standing ferromagnetic detection column or pillar. A single free-standing column or pillar can be used to screen the surrounding area, or two or more free-standing pillars can be arranged in the area as desired, constituting a variable aperture portal. The ferromagnetic detection pillar of the present invention provides a solution for the confined area application, as the pillar can be placed in a very confined area, such as a mobile truck.
The present invention, providing a single ferromagnetic detection pillar, or, alternatively, a variable aperture portal comprised of two or more ferromagnetic detection pillars, offers a solution to the space problem encountered in certain MRI centers. A novel aspect of the variable aperture portal is that its aperture can be adjusted at will by the MRI center, giving great flexibility, especially when an MRI center's floor plan is cramped. So, the use of two pillars to form a portal of variable aperture is a significant advantage over a fixed aperture portal.
Another advantage is realized whenever the portal is in one location for a period of time, and then moved to another location of different physical dimensions. When the variable aperture portal is moved, it can be configured with a different aperture than that employed in its original location. So, the variable aperture portal formed by two pillars which are not physically connected (free-standing) gives enormous flexibility in the size of the pass-through aperture desired, which can be adjusted depending upon the space requirements of that particular location.
Unlike some ferromagnetic portals, which are ready for ferromagnetic threat detection only when a switch is activated, the present invention is preferably always sensing, and is always in a ready-to-alarm mode. Thus, when a ferromagnetic threat is identified, an alarm is always triggered. The sensitivity may be modified, however, so that nuisance alarms are minimized. Certainly, major threats, such as wrenches, cell phones, floor scrubbers, oxygen tanks, wheelchairs, and gurneys, should be detected.
The preferred embodiment of the pillar of the present invention senses ferromagnetic threat objects, and subsequently triggers an alarm, regardless of whether an object is on one side or the other of the pillar. When two pillars form a variable aperture portal, an alarm is triggered, in the preferred embodiment, if a threat object passes through the portal's aperture, or is on one side or the other of either pillar column forming the portal. Unlike current ferromagnetic detection portals, which are not intended to alarm on threats other than those passing through the portal's aperture, a significant advantage of the present invention is that alarms occur whenever a ferromagnetic threat object is identified in the vicinity, regardless of its location on one side or the other of the pillar, or, in the case of two pillars forming a variable aperture portal, regardless of whether the threat is passing through the pass-through aperture or is outside the aperture. The alarm preferably has both visual components, such as one or more lights, and auditory components.
The present invention preferably will be configured such that a gradiometer configuration will be used for the sensors to decrease threat alarms from distant unwanted sources, such as moving elevators, or cars moving in a parking garage. In the gradiometer configuration, each sensor receives essentially the same signal from a distant source, and, therefore, no alarm is triggered by distant ferromagnetic threat objects, because of the absence of a differential, from one sensor to the other, in the received magnetization signal.
Alternatively, a single sensor configuration can be used. In fact, this configuration has the advantage of better sensing capability than a gradiometer configuration, with the disadvantage that more distant ferromagnetic threats are detected. In the MRI center which does not have extraneous distant sources of ferromagnetic material which trigger unwanted false alarms, such as caused by moving elevators, or cars in an underground parking garage or moving on a street in close proximity, the single sensor is actually preferable because it achieves better detectability.
The novel features of this invention, as well as the invention itself, will be best understood from the attached drawings, taken along with the following description, in which similar reference characters refer to similar parts, and in which:
The preferred location for the present invention, either a single free-standing pillar or a variable aperture portal configured with two free-standing pillars, is within the ante-room to the magnet room of an MRI center, preferably four feet or so from the door to the magnet room. Alternatively, the pillar or pillars can be placed elsewhere in an MRI center. It is imperative that the ante-room be as free or “clean” as possible of ferromagnetic threats. The present invention greatly decreases the possibility of a major ferromagnetic threat escaping identification and then entering the magnet room. So, in an application where a currently known type of ferromagnetic detection portal does not fit in the ante-room because it is too large, the single column pillar, or the variable aperture portal, of the present invention is an effective alternative solution. Aperture spacing in the present invention is as desired by the operator of the MRI center.
In the preferred embodiment of the present invention, be it a single pillar or a variable aperture portal, a connection to an automatic door interlock precludes entry to the magnet room when an alarm is triggered. In the ante-room location, the present invention functions as a “last resort” ferromagnetic detection alarm, intended to prevent potential catastrophic accidents, such as when pipe wrenches, floor polishers, wheelchairs, and even ferromagnetic gurneys enter the magnet room.
The present invention is intended to be “on” all the time, and, it is intended to alarm on all sides of the pillar or column or columns, even if a variable aperture portal has been configured. Therefore, it is quite difficult to circumvent, either intentionally or inadvertently.
Existing ferromagnetic threat screening portals often depend upon the earth's magnetic field to magnetize target objects. Many common small ferromagnetic objects, such as bobby pins and paper clips, are scarcely magnetized by the small earth's field, roughly 0.5 Oe.
Detection of ferromagnetic threat objects is considerably facilitated if a moderate magnetic field of, say, 25 Oe is provided by magnetization means. A magnetic field of 25 Oe or so, giving a bobby pin magnetization of about 30%, increases the moment of the bobby pin target by a ratio of about 30% divided by 0.15%, or 200 times. Large threats are also better detected, especially at a distance from the sensors, if a magnetizing applied field is employed. As detectability is based, among other considerations, upon the level of induced magnetization of a threat object, applying an appropriately-sized independent magnetic field greatly increases detectability.
The strength of the magnetic field of a magnetized object is inversely proportional to the cube of the distance from the object. In other words, a factor of two increase in the distance results in a factor of eight decrease in the signal field. The pillar ferromagnetic detector of the present invention uses its own magnetization means because of this fact. The preferred embodiment uses permanent magnets, although magnetic ferrite strips, or coils, may be utilized. The magnetic fields of the magnets on the pillar or pillars are oriented in the same direction, to make the largest distant magnetic field possible, thereby increasing detectability.
When more than one sensor or multiple-sensor configuration S is utilized for a pillar, location of the threat object can be achieved and displayed, via the use of appropriate software. As shown in
The present invention employs independent magnetizing means to create an applied field. This is preferably via permanent magnets, or, alternatively, via magnetic ferrite strips, or coils. The sensors of each multiple-sensor configuration are preferably mounted in a gradiometer configuration about the magnetizing means, such that unwanted signals from distant noise sources tend to be rejected. In a gradiometer configuration, after appropriate balancing, each sensor “sees” the same magnetic field, and, if that field on both sensors is the same, a null reading occurs. This is desirable for maximal rejection of signals from distant sources, such as elevators, moving cars in the parking lot, and the like. On the other hand, in MRI centers which do not have extraneous sources of ferromagnetic material in the immediate environs (such as an MRI center lacking elevators, moving cars in the vicinity, etc.), the sensor preference can be one or more single sensors, as this increases detectability when compared to a gradiometer configuration. The gradiometer configuration will generally be employed, however, because most MRI centers, in reality, do have significant ferromagnetic objects outside the room in which the pillar or variable aperture portal is placed. It is absolutely desirable to detect ferromagnetic threat objects in the room in which the present invention is positioned, but generally undesirable to detect ferromagnetic threats at a distance from that room, as these constitute false alarms.
Unlike a prior art ferromagnetic detection portal, where it is undesirable to detect outside the portal's pass-through aperture, however, the single pillar and the variable aperture portal of the present invention detect on both sides of the pillar, or on both sides of each pillar in the case of the variable aperture portal. This aids in the search for ferromagnetic threats in the immediate vicinity, such as oxygen cylinders, floor scrubbers, and tools such as pipe wrenches. As the pillar is not generally intended to detect truly tiny objects, but, rather, major ferromagnetic threat objects on a “last resort” basis, one sensor or multiple-sensor configuration per pillar can certainly suffice in the most basic embodiment of the present invention. In the preferred embodiment, however, 3 to 6 sensors or multiple-sensor configurations S are used, preferably in gradiometer configuration, and these are spaced appropriately apart and are mounted upon the vertical column of the pillar.
The sensors can be of the usual varieties, including, but not limited to, magneto-resistive, fluxgate, Hall sensors, ferrite rod sensors, a large induction coil, magneto impedance sensors, etc. The preferred sensor, however, is a nonsaturable sensor, since this sensor type has high sensitivity and a large dynamic range. This allows the sensor to be placed in close proximity to the applied field magnetizing source, preferably magnets, and still retain high sensitivity. The described configuration of the preferred embodiment has the result that objects are sensed, and an alarm triggered, by threat objects on both sides of the pillar. The present invention, then, is ideal for placement in the ante-room to the magnet room, the last resort for meaningful ferromagnetic detection.
As use of only the earth's magnetic field, or the MRI fringing field, for magnetization of the threat object is inadequate, the present invention utilizes its own magnetizing means. The preferred embodiment utilizes permanent magnets, although magnetic ferrite strips or coils may alternatively be used, and the magnets preferably consist of four barium ferrite ceramic magnets, each 4 inches wide by 6 inches long by one inch thick. As shown in
Because of the large magnetic field in the pillar, detection sensors with a wide dynamic range and high sensitivity are desirable. Nonsaturable magneto-resistors are well suited for this application, and they are used in the preferred embodiments of the threat detection pillar and the variable aperture portal.
In many MRI centers, the use of a large and expensive portal may be appropriate. A challenging situation, however, is when a large steel building frame member exists on one side of the entrance to the MRI room. This can affect the performance of the portal's sensors which are very close to the frame member. In these instances, the present invention's free-standing detection pillar, located on the opposite side of the entrance from the frame member, may provide a better solution to the ferromagnetic object screening problem of that particular MRI center.
An array of several sensors or multiple-sensor configurations maximizes the chances that a small target object will be close enough to a sensor to be detected. In the case of the pillar of the present invention, the use of an array of sensors or multiple-sensor configurations is preferred, but, alternatively, in cases where only large targets, like floor scrubbers, are to be detected, a single sensor or multiple-sensor configuration located near the floor is all that is required. Likewise, in the most basic embodiment of the present invention, a single sensor or multiple-sensor configuration can be utilized for each of the pillars configuring the variable aperture portal.
The preferred embodiment is to employ 3 to 6 sensors or multiple-sensor configurations for each pillar, and employ the multiple-sensor configurations in a gradiometer sensor configuration. The preferred sensor is a nonsaturable magneto-resistive sensor.
This disclosure is merely illustrative of the preferred embodiments of the invention and no limitations are intended other than as described in the appended claims.
This application relies upon U.S. Provisional Patent Application No. 60/640,337, filed on Dec. 30, 2004, and entitled “Ferromagnetic Detection Pillar and Variable Aperture Portal.”
Number | Date | Country | |
---|---|---|---|
60640337 | Dec 2004 | US |