Oil and natural gas wells often utilize wellbore components or tools that, due to their function, are only required to have limited service lives that are considerably less than the service life of the well. After a component or tool service function is complete, it must be removed or disposed of in order to recover the original size of the fluid pathway for use, including hydrocarbon production, CO2 sequestration, etc. Disposal of components or tools has conventionally been done by milling or drilling the component or tool out of the wellbore, which are generally time consuming and expensive operations.
In order to eliminate the need for milling or drilling operations, the removal of components or tools by dissolution of degradable polylactic polymers using various wellbore fluids has been proposed. However, these polymers generally do not have the mechanical strength, fracture toughness, or other mechanical properties necessary to perform the functions of wellbore components or tools over the operating temperature range of the wellbore, therefore, their application has been limited.
Other degradable materials have been proposed including certain degradable metal alloys formed from certain reactive metals in a major portion, such as aluminum, together with other alloy constituents in a minor portion, such as gallium, indium, bismuth, tin or combinations thereof, and without excluding certain secondary alloying elements, such as zinc, copper, silver, or combinations thereof. These materials can be formed by melting powders of the constituents and then solidifying the melt to form the alloy. That is, each constituent metal is melted and solidified together, without any physical separation among the constituents of the resultant alloy except as characterized by phase diagrams. These materials include many combinations that utilize metals, such as lead, cadmium, and the like that may not be suitable for release into the environment in conjunction with the degradation of the material. Also, their formation can involve various melting phenomena that result in alloy structures that are dictated by the phase equilibria and solidification characteristics of the respective alloy constituents and that may not result in optimal or desirable alloy microstructures, mechanical properties, or dissolution characteristics.
Therefore, the development of materials that can be used to form wellbore components and tools having the mechanical properties necessary to perform their intended function and then removed from the wellbore by controlled disintegration using wellbore fluids is very desirable.
The above and other deficiencies are overcome by, in an embodiment, a disintegrable powder compact comprising: a matrix; a plurality of dispersed particles comprising a particle core material dispersed in the matrix; a ferrous alloy comprising carbon disposed in one of the matrix or particle core material; and a secondary element disposed in the other of the matrix or particle core material, the matrix and the plurality of dispersed particles having different standard electrode potentials.
In another embodiment, a process for preparing a disintegrable powder compact, the process comprises: combining a primary particle comprising a ferrous alloy which comprises carbon; and a secondary particle to form a composition; compacting the composition to form a preform; and sintering the preform to form the disintegrable powder compact by forming a matrix from one of the primary particle or the secondary particle; and forming a plurality of dispersed particles from the other of the primary particle or the secondary particle, wherein the dispersed particles are dispersed in the matrix, the disintegrable powder compact is configured to disintegrate in response to contact with a disintegration fluid, and the primary particle and secondary particle have different standard electrode potentials.
In a further embodiment, a process for removing a slip, the process comprises: contacting the slip with a disintegrating fluid, the slip comprising a disintegrable powder compact which comprises: a matrix; a plurality of dispersed particles comprising a particle core material dispersed in the matrix; a ferrous alloy comprising carbon disposed in one of the matrix or particle core material; and a secondary element disposed in the other of the matrix or particle core material, the matrix and plurality of dispersed particles having different standard electrode potentials.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments is presented herein by way of exemplification and not limitation.
It has been found that powder metal compacts made of ferrous alloys containing carbon can beneficially be used for disintegrable articles. Such a disintegrable material is lightweight, can be magnetic or nonmagnetic, and has a large strength and hardness, which is greater than, e.g., magnesium based alloys or composites. The implant herein disintegrates with a controlled rate of corrosion. Moreover, the powder metal compact has a composition and microstructure that can be configured at the micro or nanoscale to control the material strength, ductility, or disintegration rate.
Furthermore, the powder metal compact herein can be made by powder metallurgy by consolidating metal powders that also can be coated with a metal element. The composition and microstructure of the powder metal compact thus is configured at the micro or nanoscale for a select dissolution rate while establishing a uniformity of the exterior and interior structure. Hence, as the powder metal compact disintegrates, it retains strength in the remaining portion throughout the disintegration period.
Moreover, the high strength, high ductility yet fully disintegrable powder metal compact can be made from materials that selectively and controllably disintegrate in response to contact with certain fluids, e.g., a downhole fluid. Such a disintegrable powder metal compact includes components that are selectively corrodible and have selectively tailorable disintegration rates and selectively tailorable material properties. Additionally, the disintegrable powder metal compact can have components that have varying compression, tensile strength, or disintegration rate. As used herein, “disintegrable” refers to a material, component, or article that is consumable, corrodible, degradable, dissolvable, weakenable, or otherwise removable. It is to be understood that use herein of the term “disintegrate,” or any of its forms (e.g., “disintegration”), incorporates the stated meaning. Such a powder metal compact will be referred to herein as a disintegrable powder compact.
According to an embodiment, a disintegrable powder compact includes a matrix, a plurality of dispersed particles including a particle core material dispersed in the matrix, a ferrous alloy comprising carbon disposed in one of the matrix or particle core material, and a secondary element disposed in the other of the matrix or particle core material. The matrix and the plurality of dispersed particles have different standard electrode potentials. The disintegrable powder compact thus is configured to disintegrate in response to contact with a disintegration fluid.
As shown in
With reference to
The ferrous alloy comprising carbon can include, besides carbon and iron, an element such as aluminum, boron, bismuth, cobalt, copper, chromium, lead, manganese, molybdenum, nickel, niobium, nitrogen, phosphorous, selenium, silicon, sulfur, tantalum, tellurium, titanium, tungsten, vanadium, zirconium, a rare earth element (e.g., a lanthanide such as cerium and the like), or a combination thereof. In addition, the ferrous alloy can include an alloy steel (e.g., manganese steel, nickel steel, nickel-chromium steel, molybdenum steel, chromium-molybdenum steel, nickel-chromium-molybdenum steel, nickel-molybdenum steel, chromium steel, chromium vanadium steel, tungsten-chromium steel, silicon-manganese steel, boron steel, leaded steel, and the like), carbon steel (e.g., high carbon content steel, low carbon content steel, medium carbon content steel, spring steel, plain carbon steel, resulfurized steel, resulfurized and rephosphorized steel, and the like), cast iron (e.g., meehanite, spheroidal graphite iron, and the like), stainless steel (e.g., austenitic stainless steel, austenitic chromium-nickel-manganese stainless steel, austenitic chromium-nickel stainless steel, ferritic stainless steel, heat-resisting chromium stainless steel, martensitic stainless steel, martensitic precipitation hardening stainless steel, duplex stainless steel such as ferritic/austenitic stainless steel, and the like), tool steel (e.g., cold work tool steel, hot work tool steel, plastic mold tool steel, and the like), or a combination thereof. Exemplary ferrous alloys include those designated by SAE International (formerly the Society of Automotive Engineers) as alloy steel (SAE grade 4130, 4140, 4142, 4340, 5160, 6150, 8620, and the like), carbon steel (SAE grade 1018, 1045, 1095, 1140, 1146, 1215, 12L14, and the like), stainless steel (SAE grade 301, 303, 304, 305, 316, 317, 321, 409, 410, 420, 430, 440, 904, and the like), tool steel (SAE grade A-2, A-3, A-4, A-5, A-6, A-7, A-8, A-9, D-1, H-13, M-2, M-3, M-4, M-5, M-6, M-7, O-1, S-5, and the like), and the like. In one embodiment, the ferrous alloy comprising carbon is a chromium, molybdenum, vanadium tool steel that also contains silicon, and magnesium.
The ferrous alloy comprising carbon can have various microstructures such as bainite, ledeburite, pearlite, spheroidite, tempered martensite, or a combination thereof. Moreover, the ferrous alloy comprising carbon also can have a phase such as ferrite, austentite, cementite, graphite, martensite, ε-carbide, or a combination thereof.
The carbon can be present in the ferrous alloy in an amount from 0.005 weight percent (wt %) to 5 wt %, specifically 0.005 wt % to 3 wt %, and more specifically 0.1 wt % to 2.5 wt %, based on a weight of the ferrous alloy particles. The iron can be present in the ferrous alloy in an amount from 50 wt % to 99.99 wt %, specifically 75 wt % to 99.9 wt %, and more specifically 80 wt % to 97.5 wt %, based on the weight of the ferrous alloy particles. Other elements, besides iron and carbon, can be present in the ferrous alloy in an amount from 0 wt % to 47.5 wt %, specifically 0 wt % to 25 wt %, more specifically 0 wt % to 10 wt %, further specifically 0 wt % to 5 wt %, yet more specifically 0 wt % to 2 wt %, and even more specifically 0 wt % to 1 wt %, based on the weight of the ferrous alloy particles.
The secondary element, which is disposed in the secondary particle 254 of powder 250, can include an element such as aluminum, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, silicon, zinc, a rare earth element, or a combination thereof. As used herein, “secondary element” refers to a single element or combination of elements such as a mixture, alloy, or a plurality of different elements, which can be covalently bonded together. In one embodiment, the secondary particle 254 includes a secondary element that is magnesium. In another exemplary embodiment, the secondary particle 254 includes a secondary element that is various Mg alloys, including various precipitation hardenable alloys, e.g., a precipitation hardenable Mg alloy. In some embodiments, the secondary element includes magnesium and an alloying element (e.g., aluminum, zinc, calcium, yttrium, zinc, and the like) where the alloying element is present in an amount from 0.1 weight percent (wt %) to 15 wt %, specifically 0.1 wt % to 10 wt %, more specifically 0.1 wt % to 5 wt %, and yet more specifically 0.1 wt % to 2 wt %, based on the weight of the secondary particle, the balance of the weight being, the secondary element, e.g., magnesium.
According to an embodiment, the magnesium alloy can include the following magnesium series of alloys AZ, AM, HK, HM, HZ, M, QE, QH, WE, ZC, ZE, ZK, or a combination thereof. In an additional embodiment, precipitation hardenable Mg alloys are particularly useful because they can strengthen the secondary particle 254 through both nanostructuring and precipitation hardening through the incorporation of particle precipitates as described herein.
The dispersed particle 214 and particle core material 218 or matrix 216 also can include a rare earth element, or a combination of rare earth elements. Exemplary rare earth elements include Sc, Y, La, Ce, Pr, Nd, Er, and the like. A combination comprising at least one of the foregoing rare earth elements can be used. Where present, the rare earth element can be present in an amount from 5 wt % or less, specifically 2 wt % or less, and more specifically 0.01 wt % to 2 wt %, based on the weight of the disintegrable powder compact.
The dispersed particle 214 and particle core material 218 also can include a nanostructured material 215. In an exemplary embodiment, the nanostructured material 215 is a material having a grain size (e.g., a subgrain or crystallite size) that is less than 200 nanometers (nm), specifically 10 nm to 200 nm, and more specifically an average grain size less than 100 nm. The nanostructure of the dispersed particle 214 can include high angle boundaries 227, which usually are used to define the grain size, or low angle boundaries 229 that can occur as substructure within a particular grain, which are sometimes used to define a crystallite size, or a combination thereof. It should be appreciated that the matrix 216 and grain structure (nanostructured material 215 including grain boundaries 227 and 229) of the dispersed particle 214 are distinct features of the disintegrable powder compact 200. Particularly, matrix 216 is not part of a crystalline or amorphous portion of the dispersed particle 214. That is, the matrix 216 is external to and is not part of the grain structure of the dispersed particle 214. Consequently, the dispersed particle 214 and the matrix 216 contact each other at an interfacial boundary region although atoms from either the dispersed particle 214 or the matrix 216 can diffuse during production of the disintegrable powder compact.
In an embodiment, the disintegrable powder compact 200 can also include an optional disintegration agent. The disintegration agent is disposed in the dispersed particle 214. In another embodiment, the disintegration agent is disposed external to the dispersed particle 214. In yet another embodiment, the disintegration agent is disposed in the dispersed particle 214 as well as external to the dispersed particle 214. The disintegrable powder compact 200 also includes the matrix 216 that comprises a metallic matrix material 220. The disintegration agent can be disposed in the matrix 216 among the metallic matrix material 220. An exemplary powder metal compact and method used to make the powder metal compact are disclosed in U.S. patent application Ser. Nos. 12/633,682, 12/633,688, 13/220,832, 13/220,822, and 13/358,307, the disclosure of each patent application is incorporated herein by reference in its entirety.
The disintegration agent can be included in the disintegrable powder compact 200 to control the disintegration rate of the disintegrable powder compact 200. The disintegration agent can be disposed in the dispersed particle 214, the matrix 216, or a combination thereof. According to an embodiment, the disintegration agent includes a metal, fatty acid, ceramic particle, or a combination thereof, the disintegration agent being disposed among the controlled electrolytic material to change the disintegration rate of the controlled electrolytic metallic material of the disintegrable powder compact. In one embodiment, the disintegration agent is disposed in the matrix 216 external to the dispersed particle 214. In an embodiment, the disintegration agent increases the disintegration rate of the disintegrable powder compact 200. In another embodiment, the disintegration agent decreases the disintegration rate of the disintegrable powder compact 200. The disintegration agent can be a metal including cobalt, copper, iron, nickel, tungsten, zinc, or a combination thereof. In a further embodiment, the disintegration agent is the fatty acid, e.g., fatty acids having 6 to 40 carbon atoms. Exemplary fatty acids include oleic acid, stearic acid, lauric acid, hyroxystearic acid, behenic acid, arachidonic acid, linoleic acid, linolenic acid, recinoleic acid, palmitic acid, montanic acid, or a combination thereof. In yet another embodiment, the disintegration agent is ceramic particles such as boron nitride, tungsten carbide, tantalum carbide, titanium carbide, niobium carbide, zirconium carbide, boron carbide, hafnium carbide, silicon carbide, niobium boron carbide, aluminum nitride, titanium nitride, zirconium nitride, tantalum nitride, or a combination thereof. Additionally, the ceramic particle can be one of the ceramic materials discussed below with regard to the strengthening agent. Such ceramic particles have a size of 5 μm or less, specifically 2 μm or less, and more specifically 1 μm or less. The disintegration agent can be present in an amount effective to cause disintegration of the disintegrable powder compact 200 at a desired disintegration rate, specifically about 0.25 wt % to 15 wt %, specifically 0.25 wt % to 10 wt %, specifically 0.25 wt % to 1 wt %, based on the weight of the disintegrable powder compact.
In an exemplary embodiment, the matrix 216 includes aluminum, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, silicon, tungsten, zinc, a rare earth element, an oxide thereof, a nitride thereof, a carbide thereof, an intermetallic compound thereof, a cermet thereof, or a combination thereof. The dispersed particle 214 can be present in an amount from 50 wt % to 95 wt %, specifically 60 wt % to 95 wt %, and more specifically 70 wt % to 95 wt %, based on the weight of the disintegrable powder compact. Further, the metal matrix material can be present in an amount from 5 wt % to 70 wt %, specifically 10 wt % to 60 wt %, and more specifically 10 wt % to 30 wt %, based on the weight of the disintegrable powder compact.
In another embodiment, the disintegrable powder compact includes other particles that are dispersed in the matrix in addition to the dispersed particles 214. The disintegrable powder compact can include a plurality of secondary particles dispersed in the matrix. The secondary particles are different from the dispersed particles and the matrix and include an element such as aluminum, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, silicon, tungsten, zinc, a rare earth element, ferrous alloy, an oxide thereof, nitride thereof, carbide thereof, intermetallic compound thereof, cermet thereof, or a combination thereof.
Referring again to
In disintegrable powder compact 200, the dispersed particle 214 can be dispersed throughout the matrix 216 and can have a spherical shape or spheroidal shape such as a prolate or oblate spheroidal shape. Moreover, the matrix 216 is substantially continuous to surround the dispersed particles 214 such that individual dispersed particles 214 do not directly contact one another, while in some embodiments a dispersed particle 214 directly contacts another dispersed particle 214 without interposed matrix 216 therebetween. The size of the particles that make up the dispersed particles 214 can be from 50 nm to 800 μm, specifically 500 nm to 600 μm, and more specifically 1 μm to 500 μm. The particle size of which can be monodisperse or polydisperse, and the particle size distribution can be unimodal or bimodal. Size here refers to the largest linear dimension of a particle.
Referring to
According to an embodiment, the metal compact is formed from a combination of, for example, powder constituents. As illustrated in
In an embodiment, for a primary particle 252 that has a coating (e.g., 72, 74, 76, 78) and that forms the dispersed particles 214 in the disintegrable powder compact 200, the coating layer can remain disposed on and intact on the primary particle 252. In another embodiment, for a secondary particle 254 that has a coating (e.g., 72, 74, 76, 78) of the secondary element and that forms the dispersed particles 214 in the disintegrable powder compact 200, the coating layer can remain disposed on and intact on the secondary particle 254. Moreover, the matrix 216 and coating (72, 74, 76, 78) of the secondary element have different standard electrode potentials. In an embodiment, the coating (72, 74, 76, 78) of the secondary element and particle core material 218 (e.g., ferrous alloy particle core material 66 or secondary element particle core materials 68, 70) are different from each other. In some embodiments, the coating (72, 74, 76, 78) completely surrounds the particle core material (66, 68, 70) and blocks contact between the particle core material (66, 68, 70) and the matrix 216.
According to an embodiment, the ferrous alloy particles and secondary particles are combined and processed to form the disintegrable powder compact. The ferrous alloy can be present in an amount from 5 wt % to 95 wt %, specifically 50 wt % to 95 wt %, and more specifically 65 wt % to 95 wt %, based on a weight of the disintegrable powder compact. The secondary element can be present in an amount from 5 wt % to 95 wt %, specifically 5 wt % to 50 wt %, and more specifically 5 wt % to 35 wt %, based on the weight of the disintegrable powder compact. Further, the disintegrable powder compact is configured to disintegrate in response to contact with a disintegration fluid.
The nanostructure 215 shown in
The substantially-continuous matrix 216 (see
The use of the term substantially continuous matrix is intended to describe the extensive, regular, continuous, and interconnected nature of the distribution of matrix material 220 within the disintegrable powder compact 200. As used herein, “substantially continuous” describes the extension of the matrix material 220 throughout the disintegrable powder compact 200 such that it extends between and envelopes substantially all of the dispersed particle 214. Substantially continuous is used to indicate that complete continuity and regular order of the matrix 216 around individual particles of the dispersed particles 214 are not required. For example, some primary particles 252 that form the dispersed particles 214 may become bridged during sintering of the disintegrable powder compact 200, thereby causing localized discontinuities to result within the matrix 216, even though in the other portions of the disintegrable powder compact 200 the matrix 216 is substantially continuous and exhibits the structure described herein. Since the matrix 216 generally comprises the interdiffusion and bonding of identical particles (either primary particles 252 or secondary particles 254) of adjacent powder particles, the matrix 216 formed has a local thickness (i.e., between dispersed particles 214) of approximately the sum of the diameters of the particles that combine to form the matrix 216 between the dispersed particles 214. Depending on the relative amounts of the primary particles 252 and secondary particles 254, the distance between dispersed particles 214 in the matrix 216 of the ferrous disintegrable powder compact can vary and can be greater than the sum of the diameters of two particles that combine to form the matrix 216 (e.g., the sum of diameters of 3 particles and greater) up to many times greater than this distance. In some embodiments, the distance between dispersed particles 214 is on the micron scale, instead of on the nanometer scale. That is, adjacent dispersed particles 214 can be separated by one micrometer or greater due to the amount of matrix 216 therebetween. An average distance between dispersed particles 214 in the matrix 216 can be greater than or equal to 1 μm, specifically from 1 μm to 250 μm, more specifically 1 μm to 125 μm, and yet more specifically 1 μm to 75 μm. The use of the term dispersed particle is intended to convey the discontinuous and discrete distribution of particle core material 218 within disintegrable powder compact 200. The distribution of individual particle core material 218 may or may not form a repeated pattern in the disintegrable powder compact 200.
Embedded particle 224 can be embedded by any suitable method, including, for example, by ball milling or cryomilling hard particles together with the primary or secondary particles (252, 254). A precipitate particle 226 can include any particle that can be precipitated within the dispersed particles 214, including precipitate particles 226 consistent with the phase equilibria of constituents of the materials, particularly metal alloys, of interest and their relative amounts (e.g., a precipitation hardenable alloy), and including those that can be precipitated due to non-equilibrium conditions, such as may occur when an alloy constituent that has been forced into a solid solution of the alloy in an amount above its phase equilibrium limit, as is known to occur during mechanical alloying, is heated sufficiently to activate diffusion mechanisms that enable precipitation. Dispersoid particles 228 can include nanoscale particles or clusters of elements resulting from the manufacture of the primary or secondary particles (252, 254), such as those associated with ball milling, including constituents of the milling media (e.g., balls) or the milling fluid (e.g., liquid nitrogen) or the surfaces of the primary or secondary particles (252, 254) themselves (e.g., metallic oxides or nitrides). Dispersoid particles 228 can include an element such as, for example, Ca, Si, Mo, Fe, Ni, Cr, Mn, N, O, C, H, and the like. The additive particles 222 can be disposed anywhere in conjunction with primary or secondary particles (252, 254) and the dispersed particles 214. In an exemplary embodiment, additive particles 222 can be disposed within or on the surface of dispersed particles 214 as illustrated in
In an embodiment, the disintegrable powder compact optionally includes a strengthening agent. The strengthening agent increases the material strength of the disintegrable powder compact. Exemplary strengthening agents include a ceramic, polymer, metal, nanoparticles, cermet, and the like. In particular, the strengthening agent can be silica, glass fiber, carbon fiber, carbon black, carbon nanotubes, oxides, carbides, nitrides, silicides, borides, phosphides, sulfides, cobalt, nickel, iron, tungsten, molybdenum, tantalum, titanium, chromium, niobium, boron, zirconium, vanadium, silicon, palladium, hafnium, aluminum, copper, or a combination thereof. According to an embodiment, a ceramic and metal is combined to form a cermet, e.g., tungsten carbide, cobalt nitride, and the like. Exemplary strengthening agents particularly include magnesia, mullite, thoria, beryllia, urania, spinels, zirconium oxide, bismuth oxide, aluminum oxide, magnesium oxide, silica, barium titanate, cordierite, boron nitride, tungsten carbide, tantalum carbide, titanium carbide, niobium carbide, zirconium carbide, boron carbide, hafnium carbide, silicon carbide, niobium boron carbide, aluminum nitride, titanium nitride, zirconium nitride, tantalum nitride, hafnium nitride, niobium nitride, boron nitride, silicon nitride, titanium boride, chromium boride, zirconium boride, tantalum boride, molybdenum boride, tungsten boride, cerium sulfide, titanium sulfide, magnesium sulfide, zirconium sulfide, or a combination thereof.
In one embodiment, the strengthening agent is a particle with size from 100 μm or less, specifically 10 μm or less, and more specifically 500 nm or less. In another embodiment, a fibrous strengthening agent can be combined with a particulate strengthening agent. It is believed that incorporation of the strengthening agent can increase the strength and fracture toughness of the disintegrable powder compact. Without wishing to be bound by theory, finer (i.e., smaller) sized particles can produce a stronger disintegrable powder compact as compared with larger sized particles. Moreover, the shape of the strengthening agent can vary and includes fiber, sphere, rod, tube, and the like. The strengthening agent can be present in an amount of 0.01 wt % to 20 wt %, specifically 0.01 wt % to 10 wt %, and more specifically 0.01 wt % to 5 wt %.
In a process for preparing a disintegrable powder compact or article thereof (e.g., a slip, pressure plug, frac plug, and the like), the process includes combining a primary particle including a ferrous alloy that comprises carbon with a secondary particle to form a composition; compacting the composition to form a preform; and sintering the preform to form the disintegrable powder compact by forming a matrix from one of the primary particle or the secondary particle and forming a plurality of dispersed particles from the other of the primary particle or the secondary particle. Sintering can be accompanied with or followed by pressing the material to form the disintegrable powder compact or article thereof.
The members of the composition can be mixed, milled, blended, and the like to form the powder 10 as shown in
In an embodiment, the method further includes coating the primary particle or secondary particle with an element comprising aluminum, calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, silicon, zinc, a rare earth element, or a combination thereof prior to combining the primary particle and the secondary particle. The disintegrable powder compact 200 can have any desired shape or size, including that of a cylindrical billet, bar, sheet, toroid, or other form that may be machined, formed or otherwise used to form useful articles of manufacture, including various wellbore tools and components. Pressing is used to form the disintegrable powder compact or article thereof (e.g., a slip, frac plug, pressure plug, and the like) from the sintering and pressing processes used to form the disintegrable powder compact 200 by deforming the primary particles 252 and secondary particles 254 to provide the full density and desired macroscopic shape and size of the disintegrable powder compact 200 as well as its microstructure. The morphology (e.g., a spherical or spheroidal shape) of the individual dispersed particles 214 in the matrix 216 results from sintering and deformation of the powder particles, i.e., the primary or secondary particles (252, 254), as they are compacted, interdiffuse, and deform to fill the interparticle spaces in the forming disintegrable powder compact 200 (
According to an embodiment, the method additionally includes treating a surface of the disintegrable powder compact or article thereof. Treating the surface can include various heat, chemical, physical, or irradiation treatments that modify the surface of the disintegrable powder compact and can improve properties such as hardness, chemical compatibility, ductility, disintegration resistance, disintegration enhancement, and the like. All of the surface of the disintegrable powder compact or only a portion of the total surface of the disintegrable powder compact can be treated. Exemplary treatments include carburizing, nitriding, carbonitriding, boriding, flame hardening, induction hardening, laser beam hardening, electron beam hardening, hard chromium plating, electroless nickel plating, thermal spraying, weld hardfacing, ion implantation, or a combination thereof. As a consequence of treating the surface, the disintegrable powder compact includes a surface hardened product of the matrix and dispersed particles formed in response to subjecting the disintegrable powder compact to the surface treatment, e.g., carburizing, nitriding, carbonitriding, boriding, flame hardening, induction hardening, laser beam hardening, electron beam hardening, hard chromium plating, electroless nickel plating, thermal spraying, weld hardfacing, ion implantation, or a combination thereof. The surface hardened product can include, e.g., formation of a covalent bond (single or multiple bond), dangling bond (e.g., a lone electron pair), carbon-nitrogen species, carbon-boron species, carbon-oxygen species, carbon-chromium species, iron-nitrogen species, iron-carbon species, iron-oxygen species, iron-boron species, iron chromium species, a crystalline facet, a reactive site, a passivation layer, and the like.
The disintegrable ferrous compact can be made using liquid phase sintering, injection molding, casting, or a combination thereof. According to an embodiment, a process for making the compact includes combining a primary particle including a ferrous alloy that comprises carbon with a secondary particle to form a composition; and subjecting the composition to liquid phase sintering, injection molding, casting, or a combination thereof. The temperature and pressure can be the same as the temperature used for powder metallurgy involving compacting and sintering described above. In an embodiment, the temperature that is used during, e.g., can be less than, equal to, or greater than the melting temperature of the secondary particles but less than the melting temperature of the primary particles that include a ferrous alloy comprising carbon. In some embodiments, the temperature is equal to or greater than the melting temperature of the secondary particles and less than the melting temperature of the primary particles. In this manner, the secondary particles melt such that they can form a binder to bind the primary particles together.
The disintegrable powder compact has beneficial properties for use in, for example, a downhole environment such as that encountered in a subterranean borehole, frac vein, reservoir, and the like. In an embodiment, a disintegrable article made of the disintegrable powder compact has an initial shape that can be run downhole or, before being disposed in a downhole location, manipulated, e.g., by bending, elongating (such as by stretching), cutting, or drilling to be formed into an appropriate shape, which can be run downhole. The disintegrable powder compact is strong and ductile with a percent elongation from 0.1% to 75%, specifically 5% to 75%, and more specifically 5% to 40%, based on the original size of the disintegrable powder compact. The disintegrable powder compact has a hardness from 20 to 65, and specifically 25 to 60, based on Rockwall hardness scale C. The density of the disintegrable powder compact herein is from 1.5 grams per cubic centimeter (g/cm3) to 8.5 g/cm3, and specifically 2.0 g/cm3 to 8.0 g/cm3. The disintegrable powder compact has a compressive strength from 15 kilopounds per square inch (ksi) to 150 ksi, and specifically 30 ksi to 150 ksi. The yield strength of the disintegrable powder compact is from 30 ksi to 100 ksi, and specifically 40 ksi to 80 ksi. To deform the disintegrable powder compact a setting pressure of up to about 10,000 psi, and specifically about 9,000 psi can be used. In an embodiment, an article can have a plurality of components made of the disintegrable powder compact. Such components of the disintegrable article can have the same or different material properties, such as percent elongation, compressive strength, tensile strength, and the like. Moreover, as the amount of the ferrous alloy comprising carbon increases in the disintegrable powder compact, the modulus of elasticity or hardness also increases. In an embodiment, as the amount of the ferrous alloy comprising carbon increases from 50 wt % to 90 wt % (based on the weight of the disintegrable powder compact), the modulus of elasticity increases from 55 gigapascals (GPa) to 130 GPa.
Thus, in an embodiment, the disintegrable powder compact (and an article thereof) have a percent elongation at failure greater than 5%, specifically greater than 30%, more specifically greater than 35%, based on the original size of the disintegrable implant; compressive strength 50 ksi to 150 ksi; or yield strength from 30 ksi to 100 ksi, and specifically 60 ksi to 80 ksi. In an embodiment, the article comprising the disintegrable powder compact can include multiple components that are combined or interwork, e.g., a slip and tubular. The components of the article can have the same or different material properties, such as percent elongation, compressive strength, tensile strength, and the like.
Unlike elastomeric materials, the disintegrable article herein that includes the disintegrable powder compact has a temperature rating up to 1200° F., specifically up to 1000° F., and more specifically 800° F., allowing high working temperatures for processing the implant. The disintegrable article is temporary in that the article is selectively and tailorably disintegrable in response to contact with a fluid, e.g., a downhole fluid, or change in condition (e.g., pH, temperature, pressure, time, and the like). Moreover, in an embodiment with multiple components of the disintegrable article, each component can have the same or different disintegration rate or reactivity with the fluid. Exemplary downhole fluids include brine, mineral acid, organic acid, or a combination comprising at least one of the foregoing. The brine can be, for example, seawater, produced water, completion brine, or a combination thereof. The properties of the brine can depend on the identity and components of the brine. Seawater, as an example, contains numerous constituents such as sulfate, bromine, and trace metals, beyond typical halide-containing salts. On the other hand, produced water can be water extracted from a production reservoir (e.g., hydrocarbon reservoir), produced from the ground. Produced water also is referred to as reservoir brine and often contains many components such as barium, strontium, and heavy metals. In addition to the naturally occurring brines (seawater and produced water), completion brine can be synthesized from fresh water by addition of various salts such as KCl, NaCl, ZnCl2, MgCl2, or CaCl2 to increase the density of the brine, such as 10.6 pounds per gallon of CaCl2 brine. Completion brines typically provide a hydrostatic pressure optimized to counter the reservoir pressures downhole. The above brines can be modified to include an additional salt. In an embodiment, the additional salt included in the brine is NaCl, KCl, NaBr, MgCl2, CaCl2, CaBr2, ZnBr2, NH4Cl, sodium formate, cesium formate, and the like. The salt can be present in the brine in an amount from about 0.5 wt. % to about 50 wt. %, specifically about 1 wt. % to about 40 wt. %, and more specifically about 1 wt. % to about 25 wt. %, based on the weight of the composition.
In another embodiment, the downhole fluid is a mineral acid that can include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, or a combination comprising at least one of the foregoing. In yet another embodiment, the downhole fluid is an organic acid that can include a carboxylic acid, sulfonic acid, or a combination comprising at least one of the foregoing. Exemplary carboxylic acids include formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, proprionic acid, butyric acid, oxalic acid, benzoic acid, phthalic acid (including ortho-, meta- and para-isomers), and the like. Exemplary sulfonic acids include alkyl sulfonic acid or aryl sulfonic acid. Alkyl sulfonic acids include, e.g., methane sulfonic acid. Aryl sulfonic acids include, e.g., benzene sulfonic acid or toluene sulfonic acid. In one embodiment, the alkyl group may be branched or unbranched and may contain from one to about 20 carbon atoms and can be substituted or unsubstituted. The aryl group can be alkyl-substituted, i.e., may be an alkylaryl group, or may be attached to the sulfonic acid moiety via an alkylene group (i.e., an arylalkyl group). In an embodiment, the aryl group may be substituted with a heteroatom. The aryl group can have from about 3 carbon atoms to about 20 carbon atoms and include a polycyclic ring structure.
According to an embodiment, the fluid includes halogen ions (e.g., chloride, bromide, iodide, and the like), mineral oxides (e.g., phosphate, sulfate, nitrate, and the like), organic oxides (acetate, formate, carboxylate, and the like), acids (e.g., Bronsted acid, Lewis acid, acetic acid, pyruvic acid, uric acid, hydrochloric acid, protons, hydronium, and the like), bases (Bronsted base, Lewis base, hydroxide, ammonia, urea, and the like), or a combination thereof. The properties of the fluid can depend on the identity and components of the fluid, and the chemical or physical properties of the fluid can be selected depending on the article in order to cause disintegration of the article over a desirable time period or operating condition of the downhole environment. It is contemplated that such fluid includes brine or another fluid that can include an agent that causes disintegration of the disintegrable article herein, e.g., an agent that is a source of halogen ions or mineral oxides, and the like. In an embodiment, the fluid includes various salts such as KCl, NaCl, ZnCl2, MgCl2, CaCl2, NaBr, CaBr2, ZnBr2, NH4Cl, sodium formate, cesium formate, and the like. The salt can be present in the fluid in an amount from 0.2 wt. % to 50 wt. %, specifically 0.5 wt. % to 30 wt. %, and more specifically 1 wt. % to 25 wt. %, based on the weight of the composition. Moreover, the fluid can be naturally occurring or synthetic, circulating or non-circulating, or a combination thereof.
The disintegration rate (also referred to as rate of corrosion) of the disintegrable powder compact is 0 milligram per square centimeter per hour (mg/cm2/hr) to 200 mg/cm2/hr, specifically 10 mg/cm2/hr to 200 mg/cm2/hr, and more specifically 50 mg/cm2/hr to 200 mg/cm2/hr. The disintegration rate is variable upon the composition, difference in standard electrode potentials of the matrix and dispersed particles (e.g., in no particular order, the secondary element and the ferrous alloy comprising carbon), and processing conditions used to form the disintegrable powder compact herein. Particularly, the disintegration rate is determined by the microstructure of the disintegrable powder compact having the dispersed particles (with or without a coating layer) surrounded by and in contact with the matrix. It should be appreciated that ordinary metal alloys fail to possess the control over disintegration provided by the electrochemical interfaces between the dispersed particles and the matrix and microstructure of the disintegrable powder compact herein.
Without wishing to be bound by theory, the unexpectedly controllable disintegration rate of the disintegrable powder compact herein is due to the microstructure that provides the electrochemical interface between the dispersed particles and the matrix. As discussed above, such microstructure is provided by using powder metallurgical processing (e.g., compaction and sintering) of powders of primary and secondary particles, wherein one of primary or secondary particles produces the matrix, and the other of primary or secondary particles produces the particle core material of the dispersed particles. It is believed that the intimate proximity of the matrix to the particle core material of the dispersed particles in the disintegrable powder compact produces galvanic sites for rapid and tailorable disintegration of the dispersed particles and matrix. Such electrolytic sites occur at electrochemical interfaces between the dispersed particles and the matrix that are missing in single metals or alloys that lack a matrix and dispersed particles having different standard electrode potentials. For illustration,
Moreover, the microstructure of the disintegrable powder compact herein is controllable by selection of powder metallurgical processing conditions and chemical materials used in the powders and coatings. Therefore, the disintegration rate is selectively tailorable as illustrated for disintegrable powder compacts of various compositions in
Not only does the microstructure of the disintegrable powder compact govern the disintegration rate behavior of the disintegrable powder compact but also affects the strength of the disintegrable powder compact. Consequently, the disintegrable powder compacts herein also have a selectively tailorable material strength yield (and other material properties), in which the material strength yield varies due to the processing conditions and the materials used to produce the disintegrable powder compact. The microstructural morphology of the substantially continuous, matrix (
Thus, the disintegrable powder compacts herein can be configured to provide a wide range of selectable and controllable corrosion or disintegration behavior from very low corrosion rates to extremely high disintegration rates, particularly disintegration rates that are both lower and higher than those of powder compacts that do not incorporate dispersed particles in a matrix, such as a compact formed from powder of a ferrous alloy comprising carbon through the same compaction and sintering processes in comparison to those that include such dispersed particles in the various matrices described herein. These disintegrable powder compacts also can be configured to provide substantially enhanced properties as compared to compacts formed from pure metal (e.g., pure Mg) particles that do not include the coating layers described herein. Moreover, metal alloys (formed by, e.g., casting from a melt or formed by metallurgically processing a powder) without the dispersed particles in the matrix also do not have the selectively tailorable material and chemical properties or microstructure as the disintegrable powder compacts herein.
As mentioned above, the disintegrable powder compact is used to produce disintegrable articles that can be used as tools or implements, e.g., in a downhole environment. The material strength of the disintegrable powder compact herein is greater than that of other pure metals and alloys already in use in some downhole tools, and articles of the disintegrable powder compact have a high strength to bulk ratio. As such, the article can be used for downhole tools that experience large tensile loading or that benefit from high hardness or high elongation. Furthermore, the article is completely or partially disintegrable in response to contact with a fluid and does not need mechanical intervention for disintegration or removal from a downhole location. Additionally, the disintegration is tailorable and can be greater or much greater than the rate of rusting of other materials in the presence of a wellbore fluid. Moreover, the high ductility of the disintegrable powder compact herein enables the article to be manipulated (such as bending or otherwise changed) by, e.g., an engineer, technician or machinist, so that the article attains a particular shape. In a particular embodiment, the article is a slip, frac plug, pressure plug, or other downhole tool with a large hardness, ductility, and yield strength and tailorable disintegration rate, or a disintegrable powder compact microstructure herein. In another embodiment, a plurality of articles can be used alone or in combination as a disintegrable system.
According to an embodiment, the article of the disintegrable powder compact can be removed non-mechanically from a location, e.g., a borehole or frac vein. The disintegration of disintegrable powder compacts by non-mechanical disintegration can be accomplished by contact with a fluid, which initiates an electrochemical reaction or other disintegration mechanism. Such disintegration of the article can include departure or removal of metal or other constituent of the disintegrable powder compact. Such disintegration reduces the mass of the disintegrable powder compact or number density of the constituents of the disintegrable powder compact.
According to an embodiment, a disintegrable article includes the disintegrable powder compact having dispersed particles in the matrix and including a secondary element and a ferrous alloy comprising carbon such that the article is configured to disintegrate in response to contact with the fluid. In an embodiment, the article includes a plurality of components, and each component is made of a disintegrable powder compact and has a same or different disintegration rate. In one embodiment, the plurality of components includes a first component and a second component attached to or interworking with the first component. It is contemplated that each component of the article is made of the disintegrable powder compact and removable non-mechanically from a downhole environment such as by disintegration in response to contact with a fluid. It should be appreciated that the disintegration rates of the components of the article are independently selectively tailorable as discussed above, and that the components of the article can have independently selectively tailorable material properties such as yield strength, compressive strength, and disintegration rate.
The disintegrable implant can have any shape. Exemplary shapes include a rod, pin, screw, plane, cone, frustocone, ellipsoid, spheroid, toroid, sphere, cylinder, their truncated shapes, asymmetrical shapes, including a combination of the foregoing, and the like.
In addition to being selectively corrodible, the article herein can deform in situ, e.g., to conform to a space in which it is disposed or other shape. The shape can be due to pressure exerted onto the article before or after disposal in a location. Further, the pressure can occur in situ by, e.g., hydraulic pressure, or by, e.g., machining or other process. According to an embodiment, the article maintains an original shape, i.e., the shape of the article prior to disposal in the location, such as being run downhole. Deformation of the article can occur in any direction, e.g., a radial direction, a length direction, and the like. The deformation can include stretching, compressing, twisting, and the like. Thus, the article can be a temporary article with an initial shape that can be disposed and subsequently deformed under pressure or can be deformed prior to disposal. Alternatively, due to the strength of the article, the article can be used to deform or modify the shape of another item that the article contacts. In an embodiment, the article is a disintegrable slip that bites into a casing and can deform a wall of the casing in order to set a downhole element, e.g., a packer, tubular, and the like.
One embodiment of a slip element 10 is shown in
In this embodiment, the substrate 14 is made from the disintegrable powder compact herein that is disintegrable upon exposure to a fluid. The outer surface 12 can include a surface hardened material provided by surface treating the substrate 14. The slip is controllably disintegrable and has good strength and toughness in comparison to other degradable materials.
In some embodiments, the outer surface 12 can include a coating that is the same or different as the disintegrable powder compact of the substrate 14. Such coating can be a different disintegrable material than the substrate 14, a nondisintegrable material, a composite or composition including a nondisintegrable material and the disintegrable material of the substrate 14 or some other disintegrable material, etc.
In an embodiment, the outer surface 12 is a product of surface hardening the substrate 14, a graded layer 18 can present between the outer surface 12 and the substrate 14. The graded layer 18 can be, e.g., a functionally graded surface hardened layer transitioning from the disintegrable powder compact material of the substrate 14 to the surface hardened disintegrable powder compact material at the outer surface 12.
The ability of the slip element 10 to anchor other components is at least partially dependent on the hardness of the outer surface 12 (i.e., the ability of the teeth 16 to bite into a tubular). Thus, performance of the slip element 10 can be improved by selecting a material for the disintegrable powder compact of the substrate 14 that has a hardness suitable for biting into a tubular wall (typically a steel casing), that can disintegrated. Additionally, when present, the surface hardened product of the disintegrable powder compact in functionally graded layer 18 further can increase the strength of the slip element 10 to provide enhanced biting or other physical engagement with the tubular wall.
According to an embodiment, the slip element 10 can be arranged to disintegrate relatively slowly by selecting a disintegrable powder compact with a slow disintegration rate. Similarly, the slip element 10 can be arranged to disintegrate relatively rapidly by selecting a disintegrable powder compact with a high disintegration rate. Exposure to the proper downhole fluid can thus be made to have little, no, or great initial impact on the functioning of the slip element 10. In embodiments including the functionally graded layer 18 (e.g., a surfaced hardened disintegrable powder compact layer), the rate of degradation can also be set to increase as the percentage of the surface hardened material decreases or the composition of the material changes in or proximate to the substrate 14. In this way, the graded layer 18 can be used as a time-delay mechanism or disintegration rate variable for decreasing or increasing degradation of the slip element 10. That is, exposure of the slip element 10 to a downhole fluid can result in significant degradation of the slip element 10 after some predetermined amount of time or, alternatively, can significantly increase the initial rate of disintegration. For this reason, it may be advantageous in some embodiments to include a relatively thick graded layer 18 to accommodate a variable rate of disintegration of the slip element 10.
In the embodiment of
The molding 22 could be broken, cracked, or removed, for example, by a drilling or milling operation in order to expose the substrate 14 to the fluid from the surface 40 of the slip element 10 opposing surface 12. Especially if the molding 22 is made from a disintegrable powder compact, it will be relatively easy to remove by disintegration in response to contact with a downhole fluid. If the molding 22 is made of phenolic material, it can be removed by milling. Such a drilling, milling, or fluid disintegration operation could be initiated to break, crack, or remove the molding 22 or a portion thereof, paused to enable the downhole fluids to degrade the substrate 14, and recommenced to remove any remaining material. Alternatively, the milling or drilling operation could be commenced simultaneously with the degradation of the slip element 10, with any portion, e.g., a chunk, of the slip element 10 that remains downhole continuing to disintegrate so that it does not have to be fished out. In other embodiments, the molding 22 can have a passage that is openable upon actuation of a sleeve or other valve mechanism to trigger disintegration of the slip element 10.
Also illustrated in
Another way to minimize an amount of material that is left downhole is proposed with reference to
A factor that impacts the selectively tailorable material and chemical properties of the slip or other article made from the disintegrable powder compact is the constituents of the disintegrable powder compact, i.e., the metallic matrix or the dispersed particle disposed in the matrix. The compressive and tensile strengths and disintegration rate are determined by the chemical identity and relative amount of these constituents as well as the difference in their respective standard electrode potentials. Thus, these properties can be regulated by the constituents of the disintegrable powder compact.
According to an embodiment, a process for removing the slip includes contacting the slip with a disintegrating fluid and non-mechanically removing the slip from its location. Such removal includes disintegrating the slip by contacting the implant with a fluid that can include brine or other downhole fluids. Thus, unlike corrosion-resistant downhole tools, the disintegrable article disintegrates in situ in contact with the fluid so that the article does not need to be removed by a subsequent operation.
The disintegrable powder compact, articles, and methods herein are further illustrated by the following non-limiting example.
Example. A disintegrable powder compact was prepared by combining 50 wt % Cr—Mo steel with 50 wt % Mg—Zn alloy (based on the total weight of the powder particles) into an attritor mill followed by milling and mixing therein. The resultant mixture was transferred to a mold and subjected to compaction at a pressure of 30 ksi for 5-15 minutes at room temperature to form a preform. The preform was subsequently sintered and forged at 350° C.-500° C. for 60-120 minutes to form a disintegrable powder compact cylinder having a diameter of 4 inches and length of 5 inches, weight of 3060 grams, and theoretical density of 2.97 g/cm3. A scanning electron micrograph of a sample of the cylinder is shown in
The cylinder was machined to provide a coupon having a 0.5 inch diameter and 1 inch length with an initial weight of 11 g. The coupon was subjected to disintegration testing by immersing the coupon in a vessel filled with an aqueous solution of 3 wt % KCl, based on the weight of the solution, held at 200° F. (93° C.) at 1 atmosphere. As the coupon disintegrated, its mass loss and dimensions were determined periodically over a total time of 24 hours by weighing the dry coupon and measuring the length and diameter of the coupon. Between measurements, the coupon was returned to the vessel for further disintegration. For example after 4 hours, the weight of the coupon was 4.55 g. The average rate of disintegration (corrosion) of the coupon was 160 mg/cm2/hour. Comparatively, under identical conditions, the disintegration rates of a sample of pure Cr—Mo steel and a sample of pure Mg—Zn alloy respectively are about 0 mg/cm2/hour and 1 mg/cm2/hour.
A second coupon of the disintegrable powder compact was subjected to mechanical testing. The disintegrable powder compact had a compressive strength of 60±5 ksi (as forged/annealed) and 90±5 ksi after solution treatment and aging.
While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation. Embodiments herein can be used independently or can be combined.
All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. The ranges are continuous and thus contain every value and subset thereof in the range. Unless otherwise stated or contextually inapplicable, all percentages, when expressing a quantity, are weight percentages. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including at least one of that term (e.g., the colorant(s) includes at least one colorants). “Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event occurs and instances where it does not. As used herein, “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like.
As used herein, “a combination thereof” refers to a combination comprising at least one of the named constituents, components, compounds, or elements.
All references are incorporated herein by reference.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. “Or” means “and/or.” It should further be noted that the terms “first,” “second,” “primary,” “secondary,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity). The conjunction “or” is used to link objects of a list or alternatives and is not disjunctive; rather the elements can be used separately or can be combined together under appropriate circumstances.
Number | Name | Date | Kind |
---|---|---|---|
3368882 | Ellis | Feb 1968 | A |
4021205 | Matsuda et al. | May 1977 | A |
4678510 | Jandeska, Jr. et al. | Jul 1987 | A |
5759227 | Takahashi et al. | Jun 1998 | A |
8535604 | Baker | Sep 2013 | B1 |
20110212339 | Binder et al. | Sep 2011 | A1 |
20120103135 | Xu et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
03111523 | May 1991 | JP |
Entry |
---|
ASM International, “Process Selection Guide,” Surface Hardening of Steels: Understanding the Basics (#06952G), www.asminternational.org, ASM International, 2002, 16 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; PCT/US2014/013567; dated May 14, 2014, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20140262327 A1 | Sep 2014 | US |