Implantable medical devices, such as cardiac pacemakers, cardiac defibrillators, and neurostimulators, receive and/or deliver electrical signals to/from portions of the body via sensing and/or stimulating leads. Implantable medical devices typically include a metal housing (typically titanium) having a hermetically sealed interior space which isolates the internal circuitry, connections, power sources, and other device components from body fluids. A feedthrough device (often referred to simply as a feedthrough) establishes electrical connections between the hermetically sealed interior space and the exterior bodily fluid side of the device.
Feedthroughs typically include an insulator (e.g., a ceramic material) and electrical conductors or feedthrough pins which extend through the insulator to provide electrical pathways between the exterior and the hermetically sealed interior. A frame-like metal ferrule is disposed about a perimeter surface of the insulator, with the ferrule and insulator being joined to one another, such as by a brazing or soldering process. The ferrule, in-turn, is arranged to fit within a corresponding opening in the metal housing, and is mechanically and hermetically attached to the housing, typically via welding (e.g., laser welding), with the insulator electrically insulating the feedthrough pins from one another and from the metal ferrule and housing.
However, mechanical strains resulting from the welding of the ferrule to the housing can potentially damage the insulator and the interface between the insulator and the ferrule, and thereby compromise the hermetic seal between the feedthrough and the housing. For these and other reasons there is a need for the example ferrules described by the disclosure.
The accompanying drawings are included to provide a further understanding of embodiments and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and together with the description serve to explain principles of embodiments. Other embodiments and many of the intended advantages of embodiments will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the invention is defined by the appended claims.
It is to be understood that the features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.
According to one example, as illustrated, ferrule 60 includes a metal frame body 62 to which insulator 52 is attached, and which is to attach to metal housing 32 (e.g., see
In one example, insulator body 52 includes a number of openings or vias 56 through which conducting elements 54 pass, where conducting elements 54 are formed of an electrically conductive material to provide electrically conductive pathways from the external body fluid side 38 of housing 32 to hermetically sealed interior space 34. Insulator body 52 is formed of a non-electrically conductive material, such as a ceramic material (e.g., aluminum oxide (Al2O3)), for example, and electrically isolates conducting elements 54 from one another and from ferrule 56 (and housing 32).
In one example, a perimeter surface of insulator body 52 is metalized (through a sputter coating process, for example) to provide a thin metal coating 58 thereon. In one example, ferrule 60 is joined to insulator 52 via metal coating 58 using a braze 59, such as of gold, for example, to form a biocompatible and hermetic seal. In one example, the interior surfaces of vias 56 are similarly coated with thin metal coating 58 and a braze 59 (e.g. gold) is used to couple conducting elements 54 to insulator 52 to form a biocompatible and hermetic seal.
With reference to
While welding is effective at forming a hermetic seal between ferrule 60 and housing 32, the molten metal at weld joint 72 contracts as it cools. With housing 32 being generally stationary relative to ferrule 60, the contraction of weld joint 72 results in horizontal and/or vertical forces, illustrated as Fh and Fv, being applied to ferrule 60, with Fh pulling ferrule 60 toward housing 32, and Fv pulling ferrule 60 toward interior space 34 of housing 32. If contraction forces Fh and Fv are great enough, ferrule 60 may pull away and separate from insulator body 52, and may even fracture insulator body 52, thereby compromising the hermitic seal between feedthrough 50 and housing 32 and rendering medical device 30 unusable.
In one example, spacer flange 100 has a thickness, Th1, between a top surface 100a and a bottom surface 100b, first frame body 80 has a thickness, Th2, between a bottom surface 86 and a top surface 88, and second frame body 90 has a thickness, Th3, between a top surface 95a and a top surface 95b. In one example, thickness Th1 of spacer flange 100 is less than thickness Th2 of first frame body 80, and less than thickness Th3 of second frame body 90, such that a gap, g, is formed between first frame body 80 and second frame body 90. As will be described in greater detail below, by making spacer flange 100 thinner and, thus, less mechanically rigid than first frame body 80, spacer flange 100 deflects relative to first frame body 80 in response to forces being applied to second frame body 90 to reduce transmission of forces from second frame 90 to first frame 80, such as weld strain from the second frame body to the first frame body, for example, and thereby reduce potential strain on a braze connection, for example.
As will be described in great detail below, first medical device component 20 may be any number of components, such as a medical device housing and a feedthrough assembly, for example, and second medical device component 22 may be any number of components, such as a medical device housing or another metallic component, such as a ferrule of another component, for example.
Continuing with
As will be described in greater detail below (e.g.,
With reference to
By employing second frame body 90 for connecting to housing 32, and by spacing second frame body 90 from first frame body 80 and making second frame body 90 and spacer flange 100 less mechanically rigid relative to first frame body 80 and braze joint 59, ferrule 78, in accordance with the application, reduces transmission of mechanical strain to first frame body 80, braze joint 59, and insulator body 52. Instead, such mechanical strain is relieved via deflection of second frame body 90 and spacer flange 100 by horizontal and vertical weld forces Fh and Fv, with weld joint 110 continuing to provide a hermetic seal between housing 32 and second frame body 90.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
This Non-Provisional Patent Applications claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 62/979,565, filed Feb. 21, 2020, ENTITLED “FERRULE WITH STRAIN RELIEF SPACER FOR IMPLANTABLE MEDICAL DEVICE,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3979187 | Scherer | Sep 1976 | A |
4152540 | Duncan et al. | May 1979 | A |
4217137 | Kraska et al. | Aug 1980 | A |
4315054 | Sack et al. | Feb 1982 | A |
4352951 | Kyle | Oct 1982 | A |
4354964 | Hing et al. | Oct 1982 | A |
4362792 | Bowsky et al. | Dec 1982 | A |
4456786 | Kyle | Jun 1984 | A |
4488673 | Hopper, Jr. | Dec 1984 | A |
4602956 | Partlow et al. | Jul 1986 | A |
4678868 | Kraska et al. | Jul 1987 | A |
4737601 | Gartzke | Apr 1988 | A |
4774953 | Foote | Oct 1988 | A |
4782209 | Caers et al. | Nov 1988 | A |
4816621 | Huebner et al. | Mar 1989 | A |
4991582 | Byers et al. | Feb 1991 | A |
4992910 | Evans | Feb 1991 | A |
5043535 | Lin | Aug 1991 | A |
5046262 | Kerbaugh | Sep 1991 | A |
5245999 | Dahlberg et al. | Sep 1993 | A |
5272283 | Kuzma | Dec 1993 | A |
5306891 | Fleming et al. | Apr 1994 | A |
5333095 | Stevenson et al. | Jul 1994 | A |
5407119 | Churchill et al. | Apr 1995 | A |
5408066 | Trapani et al. | Apr 1995 | A |
5513793 | Malmgren | May 1996 | A |
5515604 | Horine et al. | May 1996 | A |
5654106 | Purnell et al. | Aug 1997 | A |
5683435 | Truex et al. | Nov 1997 | A |
5693580 | Brow et al. | Dec 1997 | A |
5738270 | Malmgren | Apr 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5769874 | Dahlberg | Jun 1998 | A |
5782891 | Hassler et al. | Jul 1998 | A |
5796019 | Lupton et al. | Aug 1998 | A |
5821011 | Taylor et al. | Oct 1998 | A |
5851222 | Taylor et al. | Dec 1998 | A |
5855711 | Araki et al. | Jan 1999 | A |
5861714 | Wei et al. | Jan 1999 | A |
5866851 | Taylor et al. | Feb 1999 | A |
5867361 | Wolf | Feb 1999 | A |
5870272 | Seifried et al. | Feb 1999 | A |
5902326 | Lessar | May 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
6093476 | Horiuchi et al. | Jul 2000 | A |
6232004 | Lasater | May 2001 | B1 |
6275369 | Stevenson et al. | Aug 2001 | B1 |
6284080 | Haq et al. | Sep 2001 | B1 |
6414835 | Wolf et al. | Jul 2002 | B1 |
6490148 | Allen et al. | Dec 2002 | B1 |
6579492 | Wehler | Jun 2003 | B2 |
6586675 | Bealka et al. | Jul 2003 | B1 |
6643903 | Stevenson et al. | Nov 2003 | B2 |
6660116 | Wolf et al. | Dec 2003 | B2 |
6765779 | Stevenson et al. | Jul 2004 | B2 |
6768629 | Allen et al. | Jul 2004 | B1 |
6985347 | Stevenson et al. | Jan 2006 | B2 |
6999818 | Stevenson et al. | Feb 2006 | B2 |
7035076 | Stevenson | Apr 2006 | B1 |
7035077 | Brendel | Apr 2006 | B2 |
7038900 | Stevenson et al. | May 2006 | B2 |
7068491 | Burdon et al. | Jun 2006 | B1 |
7107099 | O'Phelan et al. | Sep 2006 | B1 |
7136273 | Stevenson et al. | Nov 2006 | B2 |
7145076 | Knappen et al. | Dec 2006 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7174223 | Dalton et al. | Feb 2007 | B2 |
7222419 | Horng et al. | May 2007 | B2 |
7260434 | Lim et al. | Aug 2007 | B1 |
7274963 | Spadgenske | Sep 2007 | B2 |
7437817 | Zhang et al. | Oct 2008 | B2 |
7480988 | Ok et al. | Jan 2009 | B2 |
7502217 | Zhao et al. | Mar 2009 | B2 |
7561917 | Wegrzyn, III et al. | Jul 2009 | B2 |
7564674 | Frysz et al. | Jul 2009 | B2 |
7569452 | Fu et al. | Aug 2009 | B2 |
7630768 | Coffed et al. | Dec 2009 | B1 |
7668597 | Engmark et al. | Feb 2010 | B2 |
7706124 | Zhao et al. | Apr 2010 | B2 |
7720538 | Janzig et al. | May 2010 | B2 |
7725190 | Iyer | May 2010 | B2 |
7736191 | Sochor | Jun 2010 | B1 |
7742817 | Malinowski et al. | Jun 2010 | B2 |
7747321 | Fischbach et al. | Jun 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7765005 | Stevenson | Jul 2010 | B2 |
7794256 | Sochor | Sep 2010 | B1 |
7818876 | Suaning | Oct 2010 | B2 |
7901761 | Jiang et al. | Mar 2011 | B1 |
7930032 | Teske et al. | Apr 2011 | B2 |
7970474 | Starke | Jun 2011 | B2 |
7989080 | Greenberg et al. | Aug 2011 | B2 |
8000804 | Wessendorf et al. | Aug 2011 | B1 |
8065009 | Biggs | Nov 2011 | B2 |
8131369 | Taylor et al. | Mar 2012 | B2 |
8131376 | Faraji et al. | Mar 2012 | B1 |
8155743 | Rundle et al. | Apr 2012 | B2 |
8163397 | Ok et al. | Apr 2012 | B2 |
8179658 | Brendel et al. | May 2012 | B2 |
8189333 | Foster | May 2012 | B2 |
8288654 | Taylor et al. | Oct 2012 | B2 |
8346362 | Kinney et al. | Jan 2013 | B2 |
8355785 | Hammond et al. | Jan 2013 | B1 |
8373965 | Iyer | Feb 2013 | B2 |
8391983 | Lim | Mar 2013 | B2 |
8494635 | Troetzschel et al. | Jul 2013 | B2 |
8497435 | Nagata et al. | Jul 2013 | B2 |
8528201 | Troetzschel et al. | Sep 2013 | B2 |
8552311 | Koester et al. | Oct 2013 | B2 |
8604341 | Barry et al. | Dec 2013 | B2 |
8653384 | Tang | Feb 2014 | B2 |
8656736 | Terao | Feb 2014 | B2 |
8659870 | Brendel et al. | Feb 2014 | B2 |
8742268 | Reisinger et al. | Jun 2014 | B2 |
8755887 | Troetzschel et al. | Jun 2014 | B2 |
8825162 | Reisinger | Sep 2014 | B2 |
8886320 | Troetzschel et al. | Nov 2014 | B2 |
8894914 | Pavlovic | Nov 2014 | B2 |
8929987 | Troetzschel et al. | Jan 2015 | B2 |
9431801 | Markham et al. | Aug 2016 | B2 |
9478959 | Markham et al. | Oct 2016 | B2 |
9653893 | Markham et al. | May 2017 | B2 |
10418798 | Markham et al. | Sep 2019 | B2 |
10770879 | Markham et al. | Sep 2020 | B2 |
20010013756 | Mori et al. | Aug 2001 | A1 |
20010018012 | Harmand et al. | Aug 2001 | A1 |
20010034966 | Golubkov et al. | Nov 2001 | A1 |
20010041227 | Hislop | Nov 2001 | A1 |
20010050837 | Stevenson et al. | Dec 2001 | A1 |
20020139556 | Ok et al. | Oct 2002 | A1 |
20020166739 | Naerheim | Nov 2002 | A1 |
20030109903 | Berrang et al. | Jun 2003 | A1 |
20040023101 | Jacobson et al. | Feb 2004 | A1 |
20040116976 | Spadgenske | Jun 2004 | A1 |
20040128016 | Stewart | Jul 2004 | A1 |
20060025866 | Serafin, Jr. et al. | Feb 2006 | A1 |
20060247714 | Taylor et al. | Nov 2006 | A1 |
20060259093 | Stevenson et al. | Nov 2006 | A1 |
20070041164 | Greenberg et al. | Feb 2007 | A1 |
20070150020 | Hokanson et al. | Jun 2007 | A1 |
20070183118 | Fu et al. | Aug 2007 | A1 |
20070217121 | Fu et al. | Sep 2007 | A1 |
20070276389 | Franke et al. | Nov 2007 | A1 |
20080060834 | Eck et al. | Mar 2008 | A1 |
20080071313 | Stevenson et al. | Mar 2008 | A1 |
20080119906 | Starke | May 2008 | A1 |
20080203917 | Maya | Aug 2008 | A1 |
20080269831 | Erickson | Oct 2008 | A1 |
20090192578 | Biggs | Jul 2009 | A1 |
20090281586 | Lim | Nov 2009 | A1 |
20100023086 | Lim | Jan 2010 | A1 |
20100109966 | Mateychuk et al. | May 2010 | A1 |
20100121438 | Jarvik | May 2010 | A1 |
20100202096 | Iyer | Aug 2010 | A1 |
20100241206 | Truex et al. | Sep 2010 | A1 |
20100258342 | Parker | Oct 2010 | A1 |
20100258540 | Tamura et al. | Oct 2010 | A1 |
20110032658 | Iyer | Feb 2011 | A1 |
20110034965 | Troetzschel et al. | Feb 2011 | A1 |
20110034966 | Troetzschel et al. | Feb 2011 | A1 |
20110048770 | Reiterer et al. | Mar 2011 | A1 |
20110094768 | Davis et al. | Apr 2011 | A1 |
20110106228 | Reiterer et al. | May 2011 | A1 |
20110108320 | Lakner | May 2011 | A1 |
20110186349 | Troetzschel et al. | Aug 2011 | A1 |
20110190885 | Troetzschel et al. | Aug 2011 | A1 |
20110232961 | Teske | Sep 2011 | A1 |
20110232962 | Teske | Sep 2011 | A1 |
20120006576 | Barry et al. | Jan 2012 | A1 |
20120127627 | Brendel et al. | May 2012 | A1 |
20120193117 | Specht et al. | Aug 2012 | A1 |
20120193118 | Kempf et al. | Aug 2012 | A1 |
20120193119 | Kempf et al. | Aug 2012 | A1 |
20120193125 | Pavlovic et al. | Aug 2012 | A1 |
20120193141 | Reisinger et al. | Aug 2012 | A1 |
20120194981 | Kempf et al. | Aug 2012 | A1 |
20120197326 | Pavlovic | Aug 2012 | A1 |
20120197327 | Specht | Aug 2012 | A1 |
20120197335 | Reisinger | Aug 2012 | A1 |
20120197368 | Reisinger | Aug 2012 | A1 |
20120200011 | Pavlovic | Aug 2012 | A1 |
20120203294 | Troetzschel | Aug 2012 | A1 |
20120209100 | De Beeck et al. | Aug 2012 | A1 |
20120309237 | Marzano | Dec 2012 | A1 |
20130035733 | Breyen et al. | Feb 2013 | A1 |
20130060312 | Iyer et al. | Mar 2013 | A1 |
20130184797 | Tang et al. | Jul 2013 | A1 |
20130299233 | Troetzschel et al. | Nov 2013 | A1 |
20140008121 | Troetzschel et al. | Jan 2014 | A1 |
20140144014 | Troetzschel et al. | May 2014 | A1 |
20140151114 | Morioka | Jun 2014 | A1 |
20140262493 | Markham et al. | Sep 2014 | A1 |
20140262494 | Reisinger et al. | Sep 2014 | A1 |
20140345934 | Markham et al. | Nov 2014 | A1 |
20140368298 | Reisinger | Dec 2014 | A1 |
20150165220 | Markham | Jun 2015 | A1 |
20160126712 | Markham et al. | May 2016 | A1 |
20160271400 | Kronmueller et al. | Sep 2016 | A1 |
20160358699 | Stevenson et al. | Dec 2016 | A1 |
20190290921 | Stevenson | Sep 2019 | A1 |
20210265084 | Holmberg | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
102614588 | Aug 2012 | CN |
102872529 | Jan 2013 | CN |
69729719 | Jul 2005 | DE |
102006054249 | May 2008 | DE |
102008021064 | Oct 2009 | DE |
102009035971 | Feb 2011 | DE |
102009035972 | Apr 2011 | DE |
102010006837 | Aug 2011 | DE |
102010006838 | Aug 2011 | DE |
102010006689 | Sep 2011 | DE |
102010006690 | Sep 2011 | DE |
0877400 | Nov 1998 | EP |
0916364 | May 1999 | EP |
1685874 | Aug 2006 | EP |
1754511 | Feb 2007 | EP |
2398026 | Dec 2011 | EP |
H1-148760 | Jun 1989 | JP |
H2-133378 | May 1990 | JP |
03073450 | Sep 2003 | WO |
2004110555 | Dec 2004 | WO |
2008103166 | Aug 2008 | WO |
2010091435 | Aug 2010 | WO |
2013075797 | May 2013 | WO |
Entry |
---|
Hussain, et al., “Electrical conductivity of an insulator matrix (alumina) and conductor particle (molybdenum) composites”. Journal of the European Ceramic Society, vol. 23, Issue 2, Feb. 2003, pp. 315-321. |
Gil et al., “Grain Growth Kinetics of Pure Titanium,” Scripta Metallurgica et Materialia, vol. 33, No. 8, pp. 1361-1366 (Oct. 15, 1995). |
Exner, Horst et al., “Laser Joining of Ceramics in Liquid Phase,” pp. 1-8 (Nov. 8, 2011). |
Number | Date | Country | |
---|---|---|---|
20210260385 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62979565 | Feb 2020 | US |