Ferrule with strain relief spacer for implantable medical device

Information

  • Patent Grant
  • 11701519
  • Patent Number
    11,701,519
  • Date Filed
    Monday, February 22, 2021
    3 years ago
  • Date Issued
    Tuesday, July 18, 2023
    a year ago
Abstract
On example provides a ferrule for an implantable medical device including a first frame body having a first perimeter surface to make a brazed connection to a first medical device component, and a second frame body having a first perimeter surface to make a welded connection to a second medical device component. A spacer flange connects a second perimeter surface of the first frame body to a second perimeter surface of the second frame body, a thickness between a top surface and bottom of the spacer flange being less than a thickness between a top surface and a bottom surface of the first frame body such that the spacer flange is to deflect relative to the first frame body in response to forces being applied to the second frame body so as to reduce transmission of weld strain from the second frame body to the first frame body.
Description
BACKGROUND

Implantable medical devices, such as cardiac pacemakers, cardiac defibrillators, and neurostimulators, receive and/or deliver electrical signals to/from portions of the body via sensing and/or stimulating leads. Implantable medical devices typically include a metal housing (typically titanium) having a hermetically sealed interior space which isolates the internal circuitry, connections, power sources, and other device components from body fluids. A feedthrough device (often referred to simply as a feedthrough) establishes electrical connections between the hermetically sealed interior space and the exterior bodily fluid side of the device.


Feedthroughs typically include an insulator (e.g., a ceramic material) and electrical conductors or feedthrough pins which extend through the insulator to provide electrical pathways between the exterior and the hermetically sealed interior. A frame-like metal ferrule is disposed about a perimeter surface of the insulator, with the ferrule and insulator being joined to one another, such as by a brazing or soldering process. The ferrule, in-turn, is arranged to fit within a corresponding opening in the metal housing, and is mechanically and hermetically attached to the housing, typically via welding (e.g., laser welding), with the insulator electrically insulating the feedthrough pins from one another and from the metal ferrule and housing.


However, mechanical strains resulting from the welding of the ferrule to the housing can potentially damage the insulator and the interface between the insulator and the ferrule, and thereby compromise the hermetic seal between the feedthrough and the housing. For these and other reasons there is a need for the example ferrules described by the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of embodiments and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and together with the description serve to explain principles of embodiments. Other embodiments and many of the intended advantages of embodiments will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.



FIG. 1 is a block and schematic diagram generally illustrating an example of an implantable medical device, according to one example.



FIG. 2A is a cross-sectional view generally illustrating an example of a known feedthrough device for an implantable medical device.



FIG. 2B is a cross-sectional view generally illustrating welding of a known feedthrough device to an implantable medical device.



FIG. 2C is a cross-sectional view generally illustrating welding of a known feedthrough device to an implantable medical device.



FIG. 3 is a cross-sectional view generally illustrating a portion of a ferrule for an implantable medical device, according to one example of the disclosure.



FIG. 4A is a cross-sectional view generally illustrating a ferrule, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 4B is a cross-sectional view generally illustrating a portion of the ferrule of FIG. 4A, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 4C is a top view generally illustrating the ferrule of FIGS. 4A and 4B, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 5 is a cross-sectional view generally illustrating a ferrule, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 6A is a cross-sectional view generally illustrating welding of a feedthrough device including the ferrule of FIG. 5 to a housing, according to one example of the disclosure.



FIG. 6B is a cross-sectional view generally illustrating the welding of the ferrule of FIG. 5 to a housing, according to one example of the disclosure.



FIG. 6C is a cross-sectional view generally illustrating the welding of the ferrule of FIG. 5 to a housing, according to one example of the disclosure.



FIG. 6D is a cross-sectional view generally illustrating an example of a feedthrough device including a ferrule in accordance with the disclosure.



FIG. 7A is a cross-sectional view generally illustrating a ferrule, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 7B is a top view generally illustrating the ferrule of FIG. 7A, according to one example of the disclosure, for use with a feedthrough device for an implantable medical device.



FIG. 8 is a cross-sectional view generally illustrating a ferrule for an implantable medical device, according to one example of the disclosure.





DETAILED DESCRIPTION

In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the invention is defined by the appended claims.


It is to be understood that the features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.



FIG. 1 is a block and schematic diagram generally illustrating an example of an implantable medical device 30 (e.g., a cardiac pacemaker) employing a feedthrough device including a ferrule in accordance with the disclosure. Implantable medical device 30 includes a hermetically sealed metal case or housing 32, typically formed of titanium, which defines a hermetically sealed interior space 34 in which device electronics 36 are disposed and protected from fluids of the body fluid side 38 external to housing 32. A header 40 attaches to housing 32 and includes a connector block 42 which typically includes one or more sockets for connecting to one or more sensing and/or stimulating leads 44 that extend between implantable medical device 30 and desired regions of the body (e.g., the human heart and brain). A feedthrough device 50 establishes electrical pathways or connections through housing 32 that maintain the integrity of hermetically sealed interior space 34 and provide electrical connection of leads 44 to internal device electronics 36.



FIG. 2A is a cross-sectional view generally illustrating an example of a feedthrough device 50, such as for use with medical device 30 of FIG. 1, including an insulator assembly 51 having an insulator body 52 through which pass a number of feedthrough pins or conducting elements 54, and an example of a known ferrule 60 for connecting to insulator body 52 and for connecting feedthrough device 50 to housing 32 of medical device 30.


According to one example, as illustrated, ferrule 60 includes a metal frame body 62 to which insulator 52 is attached, and which is to attach to metal housing 32 (e.g., see FIGS. 2B and 2C below). Although not explicitly illustrated in the cross-sectional view of FIG. 2A, frame body 62 is a frame-like or ring-like body having an interior perimeter surface 64 which defines an opening 66 to receive insulator body 52 and to which insulator body 52 is attached. Frame-like metal body 62 may be of any suitable geometric shape (e.g., circular, oval, rectangular, etc.). In examples, such as illustrated by FIG. 2A, ferrule 60 may include one or more flanges extending from frame body 62, such as insulator flange 68 for assisting in connection to insulator body 52, and housing flange 69 for assisting in connection to housing 32 of medical device 30. Ferrule 56 comprises a bio-compatible material (e.g., titanium) which is to be mechanically and hermetically attached to housing 32, such as by laser welding, or similar techniques (see FIGS. 2B and 2C).


In one example, insulator body 52 includes a number of openings or vias 56 through which conducting elements 54 pass, where conducting elements 54 are formed of an electrically conductive material to provide electrically conductive pathways from the external body fluid side 38 of housing 32 to hermetically sealed interior space 34. Insulator body 52 is formed of a non-electrically conductive material, such as a ceramic material (e.g., aluminum oxide (Al2O3)), for example, and electrically isolates conducting elements 54 from one another and from ferrule 56 (and housing 32).


In one example, a perimeter surface of insulator body 52 is metalized (through a sputter coating process, for example) to provide a thin metal coating 58 thereon. In one example, ferrule 60 is joined to insulator 52 via metal coating 58 using a braze 59, such as of gold, for example, to form a biocompatible and hermetic seal. In one example, the interior surfaces of vias 56 are similarly coated with thin metal coating 58 and a braze 59 (e.g. gold) is used to couple conducting elements 54 to insulator 52 to form a biocompatible and hermetic seal.


With reference to FIGS. 2B and 2C, feedthrough 50 is attached to housing 32 by welding ferrule 60 to housing 32, such as by laser welding (as indicated by lasers 70), where the welded connection forms a hermetic seal between feedthrough 50 and housing 32. In one example, both ferrule 60 and housing 32 may be made of titanium. In other examples, other suitable biocompatible and weld-compatible materials may be employed.


While welding is effective at forming a hermetic seal between ferrule 60 and housing 32, the molten metal at weld joint 72 contracts as it cools. With housing 32 being generally stationary relative to ferrule 60, the contraction of weld joint 72 results in horizontal and/or vertical forces, illustrated as Fh and Fv, being applied to ferrule 60, with Fh pulling ferrule 60 toward housing 32, and Fv pulling ferrule 60 toward interior space 34 of housing 32. If contraction forces Fh and Fv are great enough, ferrule 60 may pull away and separate from insulator body 52, and may even fracture insulator body 52, thereby compromising the hermitic seal between feedthrough 50 and housing 32 and rendering medical device 30 unusable.



FIG. 3 is a cross-sectional view illustrating a portion of a ferrule 78 employing a strain relief spacer for use with an implantable medical device, in accordance with one example of the disclosure. In one example, ferrule 78 includes a first frame body 80 having a first perimeter surface, such as perimeter surface 82, to make a brazed connection to a first medical device component 20, and a second frame body 90 having a first perimeter surface, such as perimeter surface 92, to make a welded connection to a second medical device component 22. A spacer flange 100 extends between and connects a second perimeter surface of first frame body 80, such as perimeter surface 84, with second perimeter surface of second frame body 90, such as perimeter surface 94, so as to space and cantilever second frame body 90 from first frame body 80. In one example, first frame body 80, second frame body 90, and extension flange 90 are formed of a single, monolithic piece of material (e.g., titanium). Although not explicitly illustrated in the cross-sectional view of FIG. 3, ferrule 78 is a frame-like or ring-like body (e.g., see FIGS. 4C and 7B).


In one example, spacer flange 100 has a thickness, Th1, between a top surface 100a and a bottom surface 100b, first frame body 80 has a thickness, Th2, between a bottom surface 86 and a top surface 88, and second frame body 90 has a thickness, Th3, between a top surface 95a and a top surface 95b. In one example, thickness Th1 of spacer flange 100 is less than thickness Th2 of first frame body 80, and less than thickness Th3 of second frame body 90, such that a gap, g, is formed between first frame body 80 and second frame body 90. As will be described in greater detail below, by making spacer flange 100 thinner and, thus, less mechanically rigid than first frame body 80, spacer flange 100 deflects relative to first frame body 80 in response to forces being applied to second frame body 90 to reduce transmission of forces from second frame 90 to first frame 80, such as weld strain from the second frame body to the first frame body, for example, and thereby reduce potential strain on a braze connection, for example.


As will be described in great detail below, first medical device component 20 may be any number of components, such as a medical device housing and a feedthrough assembly, for example, and second medical device component 22 may be any number of components, such as a medical device housing or another metallic component, such as a ferrule of another component, for example.



FIGS. 4A-4C generally illustrate one example of a ferrule 78, in accordance with the application, which, as will be described in greater detail below, reduces or inhibits transmission of mechanical strain to insulator body 52 and to the braze joint between ferrule 78 and insulator body 52 created by the welding of ferrule 80 to housing 32.



FIG. 4A is a cross-sectional view of ferrule 78, where ferrule 78 includes a first frame body 80 having a perimeter surface 82 for attachment to insulator assembly 51, and a second frame body 90 having a perimeter surface 92 for attachment to a housing 32. In one example, as illustrated, perimeter surface 82 of first frame body 80 is continuous interior surface defining an interior opening 66 to receive insulator assembly 51, and perimeter surface 92 of second frame body 90 is a continuous exterior surface for connecting to housing 32 (e.g., via welding). A spacer flange 100 extends between and connects first frame body 80 with second frame body 90 so as to space second frame body 90 from first frame body 80. In one example, first frame body 80, second frame body 90, and extension flange 90 are of a single, monolithic piece of material (e.g., titanium).



FIG. 4B is an enlarged cross-sectional view of a portion of ferrule 78. In one example, as illustrated, spacer flange 100 extends between an exterior perimeter surface 84 of first frame body 80, which is opposite perimeter surface 82, to a perimeter surface 94 of second frame body 90, which is opposite perimeter surface 92, where perimeter surface 92 represents an exterior perimeter surface of second frame body 90 and perimeter surface 94 represents an interior perimeter surface of second frame body 90. While extension flange 100 is illustrated in FIG. 4 as extending from exterior perimeter surface 84 in a fashion flush with a bottom surface 86 of first frame body 80, in other examples, extension flange 100 may extend from exterior perimeter surface 84 at any position between bottom surface 86 and top surface 88. Additionally, in other examples, extension flange 100 may extend from a perimeter surface of first frame body 80 other than a perimeter surface which is opposite the perimeter surface 82 to which housing 32 is to be attached (e.g., see FIG. 7A).


Continuing with FIG. 4B, first frame body 80 has depth, D1, between perimeter surfaces 82 and 84, and second frame body 90 has a depth, D2, between perimeter surfaces 92 and 94. In one example, as illustrated, D2<D1. Additionally, as described above, spacer flange 100 has a thickness, Th1, between top and bottom surfaces 100a and 100b, while first and second frame bodies 80 and 90, respectively, have thicknesses Th2 and Th3. In one example, as illustrated, spacer flange 100 extends perpendicularly to perimeter surfaces 94 and 94. In one example, Th1<Th3<Th2, such that first and second frame bodies 80 and 90 and spacer flange 100 together form a channel 102 that spaces second frame body 90 from first frame body 80 body a gap distance, g, of channel 102.


As will be described in greater detail below (e.g., FIGS. 6B and 6C), by spacing second frame body 90 from first frame body 80 via spacer flange 100, and by making second frame body 90 and spacer flange 100 less mechanically rigid relative to first frame body 80 (e.g., D2<D1; Th1<Th3<Th2), ferrule 78, according to the application, reduces the transfer of mechanical strain to first frame body 80 and the braze joint with insulator body 52 caused by weld forces Fh and Fv introduced by welding of second frame body 90 to housing 32.



FIG. 4C is top view of ferrule 78 of FIGS. 4A and 4B illustrating interior opening 66 defined by interior perimeter surface 82 of first frame body 80, and second frame body 90 spaced from first frame body 80 by gap, g, by spacer flange 100. In the example implementation of FIGS. 4A-4C, first and second frame bodies 80 and 90 are concentric relative to one another, with first frame body 80 representing a first or inner ferrule for connection to insulator body 52, and second frame body 90 representing a second or outer ferrule for connection to housing 32. In other implementations, such as illustrated by FIGS. 7A and 7B below, first and second frame bodies 80 and 90 may be parallel with one another rather than concentric. Also, while illustrated as being generally rectangular in shape in FIG. 4C, first and second frame bodies 80 and 90, and s spacer flange 100 may have any suitable geometric shape (e.g., oval, circular). By employing a first ferrule (e.g., first frame body 80) for connection to the insulator body, and a second ferrule (e.g., second frame body 90) for connection to the housing, and by cantilevering the second ferrule from the first ferrule (via spacer flange 100) and making the cantilever and second ferrule less mechanically rigid than the first ferrule, ferrule 78, as disclosed herein, reduces mechanical strain on the connection between the first ferrule and the insulator body generated by welding of the second ferrule to the housing.



FIG. 5 is a cross-sectional view illustrating another example of ferrule 78, in accordance with the disclosure. The implementation of FIG. 5 is similar to the example of FIGS. 4A-4C, except that first frame body 80 includes an insulator flange 89 extending from interior perimeter surface 82 to provide assistance in attachment of insulator body 52 to first frame body 80, and second frame body 90 includes a housing flange 96 to provide assistance in attachment of housing 32 to second frame body 90. Additionally, spacer flange 100 is not disposed flush with bottom surface 86 of first frame body 80, but is positioned along exterior perimeter surface 84 between bottom and top surfaces 86 and 88 such that housing 32 is generally flush with insulator body 52.



FIGS. 6A-6C are cross-sectional views generally illustrating the welding of feedthrough device 50 employing ferrule 78 of FIG. 5, in accordance with the disclosure, to housing 32, such as via laser welding (as indicated by lasers 70). FIG. 6B is an enlarged view illustrating portions of feedthrough device 50 of FIG. 6A. In one example, if horizontal weld force, Fh, generated by cooling and contraction of weld joint 110 is great enough, horizontal force Fv results in enough torque being applied to second frame body 90 to deflect frame body 90 about its base 112 where it joins extension flange 100, as indicated by deflection angle θ1. In one example, the magnitude of horizontal force, Fh, needed to generate enough torque to deflect second frame body 90 about base 112 is less than an amount of horizontal force, Fh, needed to apply enough torque to first frame body 80 (via spacer flange 100) to damage braze joint 59 between first frame body 80 and insulator body 52 and/or to fracture insulator body 52.


With reference to FIG. 6C, if vertical weld force, Fv, generated by cooling and contraction of weld joint 110 is great enough, vertical force Fv results in enough torque being applied to second frame body 90 to deflect spacer flange 100 about its base 114 where it joins first frame body 80, as indicated by deflection angle θ2. In one example, the magnitude of vertical force, Fv, needed to generate enough torque to deflect spacer flange 100 about base 114 is less than an amount of vertical force, Fv, needed to apply enough torque to first frame body 80 to damage braze joint 59 between first frame body 80 and insulator body 52 and/or to fracture insulator body 52.


By employing second frame body 90 for connecting to housing 32, and by spacing second frame body 90 from first frame body 80 and making second frame body 90 and spacer flange 100 less mechanically rigid relative to first frame body 80 and braze joint 59, ferrule 78, in accordance with the application, reduces transmission of mechanical strain to first frame body 80, braze joint 59, and insulator body 52. Instead, such mechanical strain is relieved via deflection of second frame body 90 and spacer flange 100 by horizontal and vertical weld forces Fh and Fv, with weld joint 110 continuing to provide a hermetic seal between housing 32 and second frame body 90.



FIG. 6D is a cross-sectional view generally illustrating another example of ferrule 78, in accordance with the example. In the example implementation of FIG. 6D, second frame body 90 extends to a height, H1, above housing flange 96 which is greater than a thickness, Th4, of housing 32 to better enable successful welds to be made between second frame body 90 and housing 32 when housing 32 is non-planar, as illustrated by the gap, g2, between housing flange 96 and housing 32 on the right-hand side of FIG. 6D. In one example, when an offset distance, Do, between housing 32 and top surface 91 of second frame body 90 does not exceed 50% of the thickness, Th4, of housing 32, a successful weld is possible between housing 32 and second frame body 90.



FIGS. 7A and 7B respectively illustrate cross-sectional and top views generally illustrating another example of ferrule 78, in accordance with the disclosure. In the example implementation of FIGS. 7A and 7B, rather than being concentrically positioned relative to one another, such as illustrated by FIG. 5, first and second frame bodies 80 and 90 are positioned parallel with one another. Rather than extending from a perimeter surface of first frame body 80 which is opposite interior perimeter surface 82 to which insulator body 52 is to be connected, spacer flange 100 extends from bottom surface 86. Deflection of second frame body 90 and spacer flange 100 in response to weld forces resulting from welding of housing 32 to exterior perimeter surface 92 of frame body 90 is similar to that described above by FIGS. 6A-6C.



FIG. 8 illustrates another example of ferrule 78, according to the example, where ferrule 78 is employed to connect housing 32 (e.g., a ceramic housing 32) to a metal ferrule 122 of a feedthrough device 120, where metal ferrule 122 is connected to insulator assembly 51 via braze joint 59. In one example, perimeter surface 82 of first frame body 80 is first connected to housing 32 (where housing 32 comprises a ceramic material) via a braze joint 124. Subsequently, perimeter surface 92 of second frame body 90 is welded to metal ferrule 122 of feedthrough device 120, as indicated by weld joint 126, where spacer flange 100 reduces weld strain on braze joint 124 resulting from cooling of weld joint 126.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.

Claims
  • 1. A ferrule for an implantable medical device comprising: a first frame body having a first perimeter surface to make a brazed connection to a first medical device component, and an opposing second perimeter surface;a second frame body having a first perimeter surface to make a welded connection to a second medical device component, and an opposing second perimeter surface facing the second perimeter surface of the first frame body; anda spacer flange extending between and connecting the second perimeter surface of the first frame body with the second perimeter surface of the second frame body, a thickness between a top surface and bottom of the spacer flange being less than a thickness between a top surface and a bottom surface of the first frame, and a depth between the first and second perimeter surfaces of the second frame body being less than a depth between the first and second perimeter surface of the first frame body such that the spacer flange and second frame body are to deflect relative to the first frame body in response to forces being applied to the second frame body so as to reduce transmission of weld strain from the second frame body to the first frame body.
  • 2. The ferrule of claim 1, the first medical device component comprising an insulator body of an insulator assembly, and the second medical device component comprising a medical device housing.
  • 3. The ferrule of claim 2, the first and second surfaces of the first frame body being non-parallel to one another, and the first and second perimeter surfaces of the second frame body being opposing perimeter surfaces.
  • 4. A ferrule for an implantable medical device comprising: a first frame body having a first perimeter surface to make a brazed connection to a first medical device component;a second frame body having a first perimeter surface to make a welded connection to a second medical device component; anda spacer flange extending between and connecting a second perimeter surface of the first frame body with a second perimeter surface of the second frame body, a thickness between a top surface and bottom of the spacer flange being less than a thickness between a top surface and a bottom surface of the first frame such that the spacer flange is to deflect relative to the first frame body in response to forces being applied to the second frame body so as to reduce transmission of weld strain from the second frame body to the first frame body, the first medical device component comprising an insulator body of an insulator assembly, and the second medical device component comprising a medical device housing, and the second frame body including a housing flange extending perpendicularly from the first perimeter surface, a height of the second frame body extending perpendicularly from the housing flange being greater than a thickness of the medical device housing by up to 50 percent the thickness of the medical device housing.
  • 5. The ferrule of claim 1, the first medical device component comprising a medical device housing, and the second medical device component comprising a ferrule of a feedthrough device.
  • 6. The ferrule of claim 5, the first and second perimeter surfaces of the first frame body being opposing perimeter surfaces, and the first and second perimeter surfaces of the second frame body being opposing perimeter surfaces.
  • 7. A ferrule for an implantable medical device, the ferrule comprising: a first frame body having a first perimeter surface for making a braze connection to attach to an insulator assembly of the implantable medical device, and having a second perimeter surface opposite the first perimeter;a second frame body having a first perimeter surface for making a welded connection to attach to a housing of the implantable medical device, and having a second perimeter surface opposite the first perimeter surface; anda spacer flange that connects between the second perimeter surfaces of the first frame body and the second perimeter of the second frame body to and cantilever the second frame body from the first frame body, a depth between the first and second perimeter surfaces of the second frame body being less than a depth between the first and second perimeter surfaces of the first frame body such that the spacer flange and second frame body deflect relative to the first frame body in response to forces applied to the second frame body to limit transfer of forces from the second frame body to the first frame body.
  • 8. The ferrule of claim 7, a thickness between a top and bottom surface of the spacer flange being less than a thickness of the first frame body in a direction parallel to the second perimeter surface.
  • 9. The ferrule of claim 7, wherein the spacer flange extends perpendicularly between first frame body and the second frame body.
  • 10. The ferrule of claim 7, the first perimeter surface of the first frame body being an interior perimeter surface defining an interior opening for attachment to the insulator assembly, the second perimeter surface of the first frame body being an exterior perimeter surface opposite the interior perimeter surface, the spacer flange extending from the exterior surface of the first frame body to the second perimeter surface of the second frame body, the second perimeter surface of the second frame body being an interior perimeter surface and the first perimeter surface of the second frame body being an opposing exterior perimeter surface for attachment to the housing.
  • 11. The ferrule of claim 7, the first frame body disposed concentrically with the second frame body.
  • 12. The ferrule of claim 7, the first frame body disposed in parallel with the second frame body.
  • 13. A feedthrough device for an implantable medical device comprising: a ferrule, the ferrule comprising: a first frame body having a first perimeter surface defining an interior opening, and having a second perimeter surface extending perpendicularly from the first perimeter surface;a second frame body having a first perimeter surface to attach to a housing of the implantable medical device, and a having a second perimeter surface opposite to the first perimeter surface and facing the second perimeter surface of the first frame body; anda spacer flange that connects between the second perimeter surface of the first and the second perimeter surface of the second frame body to cantilever the second frame body from the first frame body, the spacer flange to deflect relative to the first frame body in response to forces applied to the second frame body to reduce transfer of forces from the second frame body to the first frame body; andan insulator assembly disposed within the interior opening, the insulator body including:an insulator body hermetically coupled to the first perimeter surface of the first frame body; anda number of conductive elements extending through the insulator body.
  • 14. The feedthrough device of claim 13, wherein the first and second perimeter surfaces of the second frame body are disposed perpendicularly to the first perimeter surface of the first frame body.
CROSS-REFERENCE TO RELATED APPLICATION

This Non-Provisional Patent Applications claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 62/979,565, filed Feb. 21, 2020, ENTITLED “FERRULE WITH STRAIN RELIEF SPACER FOR IMPLANTABLE MEDICAL DEVICE,” which is incorporated herein by reference.

US Referenced Citations (201)
Number Name Date Kind
3979187 Scherer Sep 1976 A
4152540 Duncan et al. May 1979 A
4217137 Kraska et al. Aug 1980 A
4315054 Sack et al. Feb 1982 A
4352951 Kyle Oct 1982 A
4354964 Hing et al. Oct 1982 A
4362792 Bowsky et al. Dec 1982 A
4456786 Kyle Jun 1984 A
4488673 Hopper, Jr. Dec 1984 A
4602956 Partlow et al. Jul 1986 A
4678868 Kraska et al. Jul 1987 A
4737601 Gartzke Apr 1988 A
4774953 Foote Oct 1988 A
4782209 Caers et al. Nov 1988 A
4816621 Huebner et al. Mar 1989 A
4991582 Byers et al. Feb 1991 A
4992910 Evans Feb 1991 A
5043535 Lin Aug 1991 A
5046262 Kerbaugh Sep 1991 A
5245999 Dahlberg et al. Sep 1993 A
5272283 Kuzma Dec 1993 A
5306891 Fleming et al. Apr 1994 A
5333095 Stevenson et al. Jul 1994 A
5407119 Churchill et al. Apr 1995 A
5408066 Trapani et al. Apr 1995 A
5513793 Malmgren May 1996 A
5515604 Horine et al. May 1996 A
5654106 Purnell et al. Aug 1997 A
5683435 Truex et al. Nov 1997 A
5693580 Brow et al. Dec 1997 A
5738270 Malmgren Apr 1998 A
5750926 Schulman et al. May 1998 A
5769874 Dahlberg Jun 1998 A
5782891 Hassler et al. Jul 1998 A
5796019 Lupton et al. Aug 1998 A
5821011 Taylor et al. Oct 1998 A
5851222 Taylor et al. Dec 1998 A
5855711 Araki et al. Jan 1999 A
5861714 Wei et al. Jan 1999 A
5866851 Taylor et al. Feb 1999 A
5867361 Wolf Feb 1999 A
5870272 Seifried et al. Feb 1999 A
5902326 Lessar May 1999 A
5905627 Brendel et al. May 1999 A
6093476 Horiuchi et al. Jul 2000 A
6232004 Lasater May 2001 B1
6275369 Stevenson et al. Aug 2001 B1
6284080 Haq et al. Sep 2001 B1
6414835 Wolf et al. Jul 2002 B1
6490148 Allen et al. Dec 2002 B1
6579492 Wehler Jun 2003 B2
6586675 Bealka et al. Jul 2003 B1
6643903 Stevenson et al. Nov 2003 B2
6660116 Wolf et al. Dec 2003 B2
6765779 Stevenson et al. Jul 2004 B2
6768629 Allen et al. Jul 2004 B1
6985347 Stevenson et al. Jan 2006 B2
6999818 Stevenson et al. Feb 2006 B2
7035076 Stevenson Apr 2006 B1
7035077 Brendel Apr 2006 B2
7038900 Stevenson et al. May 2006 B2
7068491 Burdon et al. Jun 2006 B1
7107099 O'Phelan et al. Sep 2006 B1
7136273 Stevenson et al. Nov 2006 B2
7145076 Knappen et al. Dec 2006 B2
7174219 Wahlstrand et al. Feb 2007 B2
7174223 Dalton et al. Feb 2007 B2
7222419 Horng et al. May 2007 B2
7260434 Lim et al. Aug 2007 B1
7274963 Spadgenske Sep 2007 B2
7437817 Zhang et al. Oct 2008 B2
7480988 Ok et al. Jan 2009 B2
7502217 Zhao et al. Mar 2009 B2
7561917 Wegrzyn, III et al. Jul 2009 B2
7564674 Frysz et al. Jul 2009 B2
7569452 Fu et al. Aug 2009 B2
7630768 Coffed et al. Dec 2009 B1
7668597 Engmark et al. Feb 2010 B2
7706124 Zhao et al. Apr 2010 B2
7720538 Janzig et al. May 2010 B2
7725190 Iyer May 2010 B2
7736191 Sochor Jun 2010 B1
7742817 Malinowski et al. Jun 2010 B2
7747321 Fischbach et al. Jun 2010 B2
7761165 He et al. Jul 2010 B1
7765005 Stevenson Jul 2010 B2
7794256 Sochor Sep 2010 B1
7818876 Suaning Oct 2010 B2
7901761 Jiang et al. Mar 2011 B1
7930032 Teske et al. Apr 2011 B2
7970474 Starke Jun 2011 B2
7989080 Greenberg et al. Aug 2011 B2
8000804 Wessendorf et al. Aug 2011 B1
8065009 Biggs Nov 2011 B2
8131369 Taylor et al. Mar 2012 B2
8131376 Faraji et al. Mar 2012 B1
8155743 Rundle et al. Apr 2012 B2
8163397 Ok et al. Apr 2012 B2
8179658 Brendel et al. May 2012 B2
8189333 Foster May 2012 B2
8288654 Taylor et al. Oct 2012 B2
8346362 Kinney et al. Jan 2013 B2
8355785 Hammond et al. Jan 2013 B1
8373965 Iyer Feb 2013 B2
8391983 Lim Mar 2013 B2
8494635 Troetzschel et al. Jul 2013 B2
8497435 Nagata et al. Jul 2013 B2
8528201 Troetzschel et al. Sep 2013 B2
8552311 Koester et al. Oct 2013 B2
8604341 Barry et al. Dec 2013 B2
8653384 Tang Feb 2014 B2
8656736 Terao Feb 2014 B2
8659870 Brendel et al. Feb 2014 B2
8742268 Reisinger et al. Jun 2014 B2
8755887 Troetzschel et al. Jun 2014 B2
8825162 Reisinger Sep 2014 B2
8886320 Troetzschel et al. Nov 2014 B2
8894914 Pavlovic Nov 2014 B2
8929987 Troetzschel et al. Jan 2015 B2
9431801 Markham et al. Aug 2016 B2
9478959 Markham et al. Oct 2016 B2
9653893 Markham et al. May 2017 B2
10418798 Markham et al. Sep 2019 B2
10770879 Markham et al. Sep 2020 B2
20010013756 Mori et al. Aug 2001 A1
20010018012 Harmand et al. Aug 2001 A1
20010034966 Golubkov et al. Nov 2001 A1
20010041227 Hislop Nov 2001 A1
20010050837 Stevenson et al. Dec 2001 A1
20020139556 Ok et al. Oct 2002 A1
20020166739 Naerheim Nov 2002 A1
20030109903 Berrang et al. Jun 2003 A1
20040023101 Jacobson et al. Feb 2004 A1
20040116976 Spadgenske Jun 2004 A1
20040128016 Stewart Jul 2004 A1
20060025866 Serafin, Jr. et al. Feb 2006 A1
20060247714 Taylor et al. Nov 2006 A1
20060259093 Stevenson et al. Nov 2006 A1
20070041164 Greenberg et al. Feb 2007 A1
20070150020 Hokanson et al. Jun 2007 A1
20070183118 Fu et al. Aug 2007 A1
20070217121 Fu et al. Sep 2007 A1
20070276389 Franke et al. Nov 2007 A1
20080060834 Eck et al. Mar 2008 A1
20080071313 Stevenson et al. Mar 2008 A1
20080119906 Starke May 2008 A1
20080203917 Maya Aug 2008 A1
20080269831 Erickson Oct 2008 A1
20090192578 Biggs Jul 2009 A1
20090281586 Lim Nov 2009 A1
20100023086 Lim Jan 2010 A1
20100109966 Mateychuk et al. May 2010 A1
20100121438 Jarvik May 2010 A1
20100202096 Iyer Aug 2010 A1
20100241206 Truex et al. Sep 2010 A1
20100258342 Parker Oct 2010 A1
20100258540 Tamura et al. Oct 2010 A1
20110032658 Iyer Feb 2011 A1
20110034965 Troetzschel et al. Feb 2011 A1
20110034966 Troetzschel et al. Feb 2011 A1
20110048770 Reiterer et al. Mar 2011 A1
20110094768 Davis et al. Apr 2011 A1
20110106228 Reiterer et al. May 2011 A1
20110108320 Lakner May 2011 A1
20110186349 Troetzschel et al. Aug 2011 A1
20110190885 Troetzschel et al. Aug 2011 A1
20110232961 Teske Sep 2011 A1
20110232962 Teske Sep 2011 A1
20120006576 Barry et al. Jan 2012 A1
20120127627 Brendel et al. May 2012 A1
20120193117 Specht et al. Aug 2012 A1
20120193118 Kempf et al. Aug 2012 A1
20120193119 Kempf et al. Aug 2012 A1
20120193125 Pavlovic et al. Aug 2012 A1
20120193141 Reisinger et al. Aug 2012 A1
20120194981 Kempf et al. Aug 2012 A1
20120197326 Pavlovic Aug 2012 A1
20120197327 Specht Aug 2012 A1
20120197335 Reisinger Aug 2012 A1
20120197368 Reisinger Aug 2012 A1
20120200011 Pavlovic Aug 2012 A1
20120203294 Troetzschel Aug 2012 A1
20120209100 De Beeck et al. Aug 2012 A1
20120309237 Marzano Dec 2012 A1
20130035733 Breyen et al. Feb 2013 A1
20130060312 Iyer et al. Mar 2013 A1
20130184797 Tang et al. Jul 2013 A1
20130299233 Troetzschel et al. Nov 2013 A1
20140008121 Troetzschel et al. Jan 2014 A1
20140144014 Troetzschel et al. May 2014 A1
20140151114 Morioka Jun 2014 A1
20140262493 Markham et al. Sep 2014 A1
20140262494 Reisinger et al. Sep 2014 A1
20140345934 Markham et al. Nov 2014 A1
20140368298 Reisinger Dec 2014 A1
20150165220 Markham Jun 2015 A1
20160126712 Markham et al. May 2016 A1
20160271400 Kronmueller et al. Sep 2016 A1
20160358699 Stevenson et al. Dec 2016 A1
20190290921 Stevenson Sep 2019 A1
20210265084 Holmberg Aug 2021 A1
Foreign Referenced Citations (23)
Number Date Country
102614588 Aug 2012 CN
102872529 Jan 2013 CN
69729719 Jul 2005 DE
102006054249 May 2008 DE
102008021064 Oct 2009 DE
102009035971 Feb 2011 DE
102009035972 Apr 2011 DE
102010006837 Aug 2011 DE
102010006838 Aug 2011 DE
102010006689 Sep 2011 DE
102010006690 Sep 2011 DE
0877400 Nov 1998 EP
0916364 May 1999 EP
1685874 Aug 2006 EP
1754511 Feb 2007 EP
2398026 Dec 2011 EP
H1-148760 Jun 1989 JP
H2-133378 May 1990 JP
03073450 Sep 2003 WO
2004110555 Dec 2004 WO
2008103166 Aug 2008 WO
2010091435 Aug 2010 WO
2013075797 May 2013 WO
Non-Patent Literature Citations (3)
Entry
Hussain, et al., “Electrical conductivity of an insulator matrix (alumina) and conductor particle (molybdenum) composites”. Journal of the European Ceramic Society, vol. 23, Issue 2, Feb. 2003, pp. 315-321.
Gil et al., “Grain Growth Kinetics of Pure Titanium,” Scripta Metallurgica et Materialia, vol. 33, No. 8, pp. 1361-1366 (Oct. 15, 1995).
Exner, Horst et al., “Laser Joining of Ceramics in Liquid Phase,” pp. 1-8 (Nov. 8, 2011).
Related Publications (1)
Number Date Country
20210260385 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62979565 Feb 2020 US