The present invention relates to a measuring device and more particularly to one configured for measuring fetal movement.
Fetal movement, uterine contraction, and fetal heart rate are three major physiological parameters by which to know a fetus's condition during its mother's pregnancy. Fetal movement refers to a fetus's movement in the uterus, uterine contraction refers particularly to the pressure generated by such contraction, and fetal heart rate refers to the speed of the fetus's heartbeats. Of the three parameters, fetal movement provides the earliest and most readily detectable signal and hence constitutes the most clinically recommended method for a pregnant woman to monitor her unborn baby's health by herself. This explains why pregnancy instruction manuals typically include a fetal movement record and encourage an expectant mother to measure fetal movement regularly to ensure the fetus's safety. However, measuring fetal movement by oneself is very time-consuming. During the eighth week of pregnancy, there is one fetal movement at least every 13 minutes. In the 20th week, the average number of fetal movements per 12 hours is about 200, and the number increases to about 575 in the 32nd week. For a pregnant woman, therefore, counting the number of fetal movements is by no means easy. Not only is the identification of fetal movement highly subjective, but also the prolonged counting process is difficult to carry out on a daily basis.
As a solution, Taiwan Patent No. 1267369, entitled “METHOD FOR AUTOMATIC FEEDBACK OF A PREGNANT WOMAN'S AND A FETUS'S PHYSIOLOGICAL STATE”, discloses using several different monitoring approaches and setting the monitoring cycle and times automatically. If the user responds well to the preset monitoring scheme, the default monitoring times remain. If the monitoring results prove unsatisfactory, the monitoring cycle or times will be modified, and the pregnant user, notified. By applying different monitoring approaches alternately, analyzing the results corresponding to different monitoring times and monitoring approaches as a whole, and repeating the monitoring process automatically based on automatic feedback, more detailed monitoring results can be obtained, allowing the pregnant user to be fully aware of the fetus's condition as well as her own and seek proper medical assistance when necessary. This patented method, however, is not designed for multipoint measurement and requires electrode pads to be attached to the user's skin in order to detect myoelectric signals, wherein the pads attached to the skin may cause discomfort to the user and are subject to interference. Besides, the '369 patent does not disclose how to determine, exclude, or prevent misjudgment attributable to, non-fetal movement that results from the user's own body movement, nor can the patented method locate each fetal movement; thus, the results and accuracy of fetal movement measurement leave something to be desired.
Taiwan Patent No. 1392480, entitled “APPARATUS AND METHOD FOR MATERNAL-FETAL SURVEILLANCE”, discloses a uterine contraction and fetal movement monitoring apparatus for monitoring a woman user's and a fetus's state. The monitoring apparatus includes a set of sensors, a signal pre-processor, a first signal post-processor, a first analyzing unit, a second signal post-processor, a second analyzing unit, and a third analyzing unit. The set of sensors are attached to the abdomen of a maternal body and provide at least three measuring leads. The signal pre-processor receives multiple sensing signals from the set of sensors, reduces noise in the signals, amplifies the characterizing signal portions, and outputs a set of characterizing signals. The first signal post-processor receives the set of characterizing signals from the signal pre-processor and filters out noise to obtain information related to the maternal body and the fetus, including electrocardiogram signals and uterine myoelectric signals of the maternal body and electrocardiogram signals of the fetus. The first analyzing unit is configured for calculating the fetus's sympathetic nerve activity level signal according to the information obtained by the first signal post-processor. The second signal post-processor receives the set of characterizing signals from the signal pre-processor and derives therefrom multiple fetal electrocardiogram complex waveforms and multiple uterine contraction signal waveforms that correspond to the leads respectively. The second analyzing unit analyzes the fetal electrocardiogram complex waveforms to obtain the fetal electrocardiogram complex waveform corresponding to each lead and a maternal electrocardiogram complex waveform, thereby determining whether there is a change in fetal position. The second analyzing unit also derives a uterine contraction state signal from the uterine contraction signals. The third analyzing unit determines the occurrence or absence of fetal movement by applying a fetal movement identification method, taking into account the uterine contraction state signal, the energy change signals, and the fetus's sympathetic nerve activity level signal, wherein the sympathetic nerve activity level signal serves to increase the accuracy of fetal movement identification. As the apparatus and method of the '480 patent still rely on electrode pads (i.e., sensors) attached to a pregnant user's skin to detect myoelectric signals, the discomfort and potential interference associated with the use of such pads remain. Moreover, the '480 patent does not disclose how to determine, exclude, or prevent misjudgment attributable to, non-fetal movement that results from the user's own body movement.
It is an objective of the present invention to provide a fetal movement measuring device that measures fetal movement by a non-contact method and that uses asynchronous multipoint measurement to locate each fetal movement.
The fetal movement measuring device of the present invention includes a wearable article, a plurality of measurement units, and a mobile device. The wearable article is configured to be worn on a pregnant woman's abdomen. The measurement units are provided separately on the outer surface of the wearable article. Each measurement unit includes a fetal movement sensor for sensing a dynamic physiological signal of the abdomen and a power supply element electrically connected to the fetal movement sensor to supply necessary electricity thereto. The mobile device is configured for receiving information from the fetal movement sensors and is pre-installed with a fetal movement algorithm. The mobile device receives the dynamic physiological signals sensed respectively by the fetal movement sensors and performs synchronous-signal analysis and determination through the fetal movement algorithm. When it is determined that the dynamic physiological signals have synchronous signal components, the mobile device removes the synchronous signal components, and the fetal movement algorithm performs calculation on the remaining signal components to generate fetal movement information, which includes a fetal movement location and a fetal movement magnitude.
The present invention is advantageous in that a pregnant woman only has to wear the wearable article and start the fetal movement measuring device, and fetal movement signals will be monitored continually, which is very convenient. Also, the measurement units are provided on the wearable article and therefore not in direct contact with the user's skin, which is a far cry from the conventional devices whose analysis is based on the measurement of physiological signals, such as those configured for analyzing myoelectric signals. Thus, the present invention provides enhanced comfort during use and is less susceptible to interference as compared with the prior art. Furthermore, as the present invention uses an asynchronous multipoint approach to calculate the location and time of each fetal movement, the accuracy of fetal movement measurement is higher than in the prior art, and the data obtained are of higher reference value in subsequent medical treatment than those obtained with the conventional devices.
The foregoing and others features and effects of the present invention will be detailed below with reference to some illustrative embodiments in conjunction with the accompanying drawings.
Referring to
In this embodiment, the measurement units 2 are respectively received in the pockets 15 on the outer surface of the wearable article 1, and yet assembly of the measurement units 2 and the wearable article 1 is not limited to the pocket-based design disclosed herein. For instance, clips or attaching elements may be used instead, as long as the elements or structures used can couple the measurement units 2 to the outer surface of the wearable article 1 in a detachable manner.
Each measurement unit 2 includes a fetal movement sensor 21 for sensing a dynamic physiological signal of the abdomen 41, a power supply element 22 electrically connected to the fetal movement sensor 21 to supply necessary electricity thereto, and a signal transmission module 23 electrically connected to both the fetal movement sensor 21 and the power supply element 22. The fetal movement sensors 21 may be inertia-based or pressure-based and in this embodiment are inertial measurement units (IMUs) by way of example, wherein each IMU includes a 3-axis accelerometer and a 3-axis gyroscope. The power supply elements 22 are batteries. Each fetal movement sensor 21 is configured for transmitting information to the mobile device 3 via the corresponding signal transmission module 23 by a wireless communication method.
In this embodiment, the mobile device 3 is implemented as a smartphone by way of example but is not limited thereto. For example, the mobile device 3 may alternatively be a tablet computer, a personal digital assistant, a smart watch, or the like. The mobile device 3 is pre-installed with a fetal movement algorithm for analyzing, making judgements about, and computing with the dynamic physiological signals of the pregnant women 4's abdomen 41 received respectively by the fetal movement sensors 21, in order to obtain accurate fetal movement information.
To use the fetal movement measuring device, referring to
Each fetal movement sensor 21 transmits the dynamic physiological signal sensed to the mobile device 3 via the corresponding signal transmission module 23, and the mobile device 3 performs synchronous-signal analysis and determination on the dynamic physiological signals by executing the fetal movement algorithm. Referring to
where V is the propagation velocity of the vibration wave; T0 is the time at which the fetal movement occurs; Tn is the time at which each fetal movement sensor 21 receives the vibration wave; n is an integer; X0, Y0, and Z0 are coordinates of the location of the fetal movement; and Xn, Yn, and Zn are coordinates of the location of each fetal movement sensor 21. In this embodiment, four fetal movement sensors 21 are used, so n=1, 2, 3, or 4 is substituted separately into equation (1) to obtain the following equations (2) to (5):
As T0 and V0 are fixed values, let T0=0 and V=1, and equation (1) can be simplified as equation (6). By substituting n=1, 2, 3, or 4 separately into equation (6), the following equations (7) to (10) are obtained:
T
n
2=(X0−Xn)2+(Y0−Yn)2+(Z0−Zn)2 (6)
T
1
2=(X0−X1)2+(Y0−Y1)2+(Z0−Z1)2 (7)
T
2
2=(X0−X3)2+(Y0−Y2)2+(Z0−Z3)2 (8)
T
3
2=(X0−X3)2+(Y0−Y3)2+(Z0−Z3)2 (9)
T
4
2=(X0−X4)2+(Y0−Y4)2+(Z0−Z4)2 (10)
With the X-, Y-, and Z-axis coordinates of the location of each fetal movement sensor 21 being aliquots, equation (6) can be further simplified as the following geometric equations (11) to (13):
(X0−Xn-(n-1))2 . . . (X0−Xn-2)2(X0−Xn-1)2(X0−Xn)2=Tn-(n-1)2:Tn-12:Tn-12:Tn2 (11)
(Y0−Yn-(n-1))2 . . . (Y0−Yn-2)2(Y0−Yn-1)2(Y0−Yn)2=Tn-(n-1)2:Tn-22:Tn-12:Tn2 (12)
(Z0−Zn-(n-1))2 . . . (Z0−Zn-1)2(Z0−Zn-1)2(Z0−Zn)2=Tn-(n-1)2:Tn-22:Tn-12:Tn2 (13)
By substituting n=1, 2, 3, or 4 separately into equations (11) to (13), the following equations (14) to (16) are obtained, from which the coordinates of the location (X0, Y0, Z0) of the fetal movement can be determined:
(X0−X1)2(X0−X2)2(X0−X3)2(X0−X4)2=T12:R32:T32:R42 (14)
(Y0−Y1)2(Y0−Y2)2(Y0−Y3)2(Y0−Y4)2=R22:T21:T32:T43 (15)
(Z0−Z1)2(Z0−Z2)2(Z0−Z3)2(Z0−Z4)2=T12:T22:T32:T42 (16)
After determining the location of the fetal movement, the magnitude of the fetal movement can be calculated from the time at which each fetal movement sensor 21 receives the fetal movement wave and the largest amplitude detected by each fetal movement sensor 21, as shown by equation (17):
where A0 is the magnitude of the fetal movement, An is an amplitude, k is a correction coefficient, (X0, Y0, Z0) indicates the location of the fetal movement, (Xn, Yn, Zn) indicates the location of each fetal movement sensor 21, and n is still an integer. In this embodiment, four fetal movement sensors 21 are used, so n=1, 2, 3, or 4.
Having obtained the fetal movement information, the mobile device 3 not only can display the information on its screen for view by the pregnant woman 4, but also can send the information through the Internet 5 to a cloud server 6 in order to be downloaded from the cloud server 6 and used by a medical monitoring apparatus 7.
The fetal movement measuring device is wearable and therefore readily adaptable to the pregnant woman 4's daily activities such as cooking, sleeping, shopping, and so on. Also, the measuring units 2 coupled to the wearable article 1 are compact, lightweight, and hence capable of measuring the number of fetal movements without affecting the pregnant woman 4's daily life. The pregnant woman 4 can do whatever she wants and never has to worry whether fetal movement has been measured. The mobile device 3 may be further provided with a detection module (not shown) and a prompt module (not shown) electrically connected to the detection module. The detection module is configured for detecting whether the pregnant woman 4 has put on the wearable article 1. If the detection module detects that the wearable article 1 is not worn by the pregnant woman 4, the prompt module will output a prompt sound, prompting or reminding the pregnant woman 4 to put on the wearable article 1 and wear it properly, lest the pregnant woman 4 forget to do so.
In summary of the above, the fetal movement measuring device of the present invention is so designed that the pregnant woman 4 only has to wear the wearable article 1 and start the fetal movement measuring device, and fetal movement signals will be monitored continually without affecting the pregnant woman 4's daily life. As the measurement units 2 are provided separately on the outer surface of the wearable article 1 and measure fetal movement in a non-contact manner, i.e., without direct contact with the pregnant woman 4's skin, the present invention is more comfortable and less susceptible to interference than its prior art counterparts. Furthermore, the location and time of each fetal movement are obtained by asynchronous multipoint measurement to provide more accurate measurement results than conventionally achievable, and the data obtained are of higher reference value in subsequent medical treatment than those obtained in a traditional way. In addition, the mobile device 3 may be provided with a detection module and a prompt module so that when the detection module detects that the wearable article 1 is not worn by the pregnant woman 4, the prompt module will output a prompt sound to remind the pregnant woman 4 to put on the wearable article 1 and wear it properly. Thus, the fetal movement measuring device features great convenience of use on the whole.
The foregoing description of the embodiments should be able to enable a full understanding of the operation, use, and effects of the present invention. Those embodiments, however, are only some preferred ones of the invention and are not intended to be restrictive of the scope of the invention. All simple equivalent changes and modifications based on the contents of this specification and the appended claims should fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
105108296 | Mar 2016 | TW | national |