BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is an illustration of a perspective view of the fiber filling machine of the present invention.
FIG. 2 is an illustration of the hopper and the blade assembly.
FIG. 3 is an illustration of a partial perspective view of the fiber filling machine, showing the dispensing assembly, motor, and blower.
FIG. 4 is an illustration of the housing of the dispensing assembly.
FIG. 5 is a perspective view of the paddle assembly.
FIG. 6 is a partial sectional view showing the paddle assembly and the housing.
FIG. 7 is an exploded plan view of the paddle assembly, showing the hollow central portion, blades, and V-shaped plates.
FIG. 8 is an illustration of the auxiliary fiber blowing system, which can be used with the fiber filling machine to blow fiber into the larger hopper.
FIG. 9 is an illustration of the inner construction of the chamber of the auxiliary fiber blowing system.
FIG. 10 is an illustration of a plan view of the fiber filling machine, showing its construction.
FIGURES—REFERENCE NUMERALS
10 . . . Fiber Filling Machine
11 . . . Hopper
12 . . . First Shaft
13 . . . Dispensing Assembly
14 . . . Housing
15 . . . Second Shaft
16 . . . Paddle Assembly
17 . . . First Semi-circular Surface
18 . . . Second Semi-circular Surface
19 . . . Bottom Surface
20 . . . First Aperture
21 . . . Second Aperture
22 . . . Central Hollow Portion
23 . . . Vane
24 . . . Motor
25 . . . Chain
26 . . . Sprocket
27 . . . Blade of the Paddle Assembly
28 . . . V-shaped Plate
29 . . . Flexible Sheet
30 . . . Pocket
31 . . . Bolt
32 . . . Nut
33 . . . Blower
34 . . . Air Inlet Hose
35 . . . Exit Hose
36 . . . Solenoid
37 . . . Auxiliary Fiber Blowing System
38 . . . Chamber
39 . . . Passageway
40 . . . Partition
41 . . . X-shaped Member
42 . . . Blade in the Hopper
43 . . . Opening
44 . . . Third Hose
DETAILED DESCRIPTION
Referring to the drawings, a preferred embodiment of a fiber filling machine 10 of the present invention is illustrated in FIGS. 1 through 9. The fiber filling machine 10 is a stand alone unit and mainly comprises a hopper, a dispensing assembly, a drive assembly and a blower.
Referring to FIGS. 1 and 2, the hopper 11 houses a first shaft 12 and a blade assembly mounted to the first shaft. The first shaft 12 is longitudinally disposed in the hopper. Fiber is introduced in the hopper and the blade assembly is rotated for fluffing and dispersing the fiber. The blade assembly comprises a first X-shaped member 41A, a second X-shaped member 41B at a distance from the first X-shaped member, and four blades 42. The central portions of the X-shaped members 41 include a hole to securely receive the first shaft 12. The blades 42 connect the four free ends of the two X-shaped members 41. Specifically, the four blades 42 connect first, second, third, and fourth free ends of the first X-shaped member 41A to the second, third, fourth, and first free ends of the second X-shaped member 41B, respectively.
Referring to FIGS. 3 and 4, the dispensing assembly 13 comprises a housing 14, a second shaft 15 longitudinally disposed in the housing and a paddle assembly 16. The housing 14 is disposed below the hopper 11 for receiving the fiber. The housing is defined by a first substantially semi-circular surface 17 with its curved side facing down, a second substantially semi-circular surface 18 opposite the first surface with its curved side facing down and a bottom surface 19 in connection with the curved sides of the first and second surfaces. The first surface 17 includes a first aperture 20 and the second surface includes a second aperture 21 that is in line with the first aperture. The width of the bottom surface 19 is defined by the distance between the first and second surfaces. The top of the housing 14 defines an opening that is contiguous with the hopper 11 for receiving the fiber.
The second shaft 15 is longitudinally disposed between the first and second surfaces 17 and 18 of the housing and above the first and second apertures 20 and 21. The paddle assembly 16 comprises a central hollow portion 22 and four vanes 23 projecting from the central hollow portion in a radial orientation, as seen in FIG. 5. The second shaft 15 is securely received in the central hollow portion 22 for rotating the paddle assembly.
Referring to FIG. 3, the drive assembly of the present invention comprises a single motor 24 for rotating both the first and second shafts 12 and 15 by chains and sprockets. A first chain 25A is used to connect the motor output and a first sprocket 26A on the second shaft 15. A second chain 25B is used to connect a second sprocket 26B on the second shaft 15 and a sprocket on the first shaft 12. Therefore, the motor 24 rotates both the paddle assembly and the blade assembly. The number of teeth and the diameter of the sprockets are selected to achieve the desired rotations per minute for the paddle and blade assemblies.
Referring to FIGS. 5 through 7, the paddle assembly 16 will now be described in detail. The assembly comprises a plurality of blades 27 projecting from the central hollow portion 22 in a radial orientation, an equal number of substantially V-shaped plates 28 and an equal number of flexible sheets 29. In order to form the vanes 23, each flexible sheet 29 is first overlapped over two adjacent blades 27 and a V-shaped plate 28 is then secured over the flexible sheet. The sheets 29 extend beyond the boundaries of the blades 27 and the V-shaped plates 28. The sheets 29 are dimensioned such that their edges contact the first, second and bottom surfaces 17, 18 and 19 of the housing during rotation of the paddle assembly. Also, during rotation, a pocket 30 is created when the first and second apertures 20 and 21 are between a pair of vanes. Due to the flexible edges of the sheets 29, the pocket 30 is substantially isolated from the hopper and the rest of the dispensing assembly.
The sheets 29 are made of rubber or other flexible and durable materials. The sheets are secured by using fasteners such as bolts 31 and nuts 32, and therefore, they are removable and can be replaced when worn out.
The output of the blower 33 is connected to the first aperture 20 using an air inlet hose 34. An exit hose 35 is connected to the second aperture 21. An inline gate valve is included in the air inlet hose 34. The inline gate valve is operated by an electric solenoid 36 switch in order to allow the air to pass through the air inlet hose 34 into the housing. The electric solenoid switch is associated with a foot pedal (not shown). When the foot pedal is depressed, the solenoid 36 will open the gate valve. The solenoid 36 will close the gate valve when the foot pedal is released. This feature is designed to allow the flow of the fiber and also to stop any overflow of fiber once stuffing is complete.
In order to operate the fiber filling machine 10, the motor 24 is activated by a switch (not shown). The shafts 12 and 15, and in turn, the blade and paddle assemblies start rotating. Fiber introduced in the hopper 11 is dispersed and gets collected between a pair of the vanes 23 of the paddle assembly 16. As the paddle assembly rotates further, the pocket 30 is created when the first and second apertures 20 and 21 are between a pair of vanes. The pocket 30 now contains the fiber. The foot pedal is depressed to engage the blower 33 and open the gate valve. The air from the blower output flows into the pocket 30 through the first aperture 20 and blows the fiber out through the second aperture 21 into the exit hose 35. The outlet of the exit hose 35 is inserted in a hollow cavity of a toy, pillow or other similar product that needs to be stuffed with fiber. The hollow cavity is then filled with appropriate amount of fiber.
Referring to FIGS. 8 and 9, the present invention can be provided with an auxiliary fiber blowing system 37 for blowing the fiber into the hopper. The auxiliary fiber blowing system 37 comprises a chamber 38 and a passageway 39 connecting the chamber 37 and the hopper 11. The chamber has two sections divided by a Partition 40. The first section includes an opening at top for receiving the fiber. The bottom portion of the first section is contiguous with the passageway 39. The partition includes an aperture at its bottom. A third hose is used to connect this aperture to the blower output. Fiber introduced from the opening is first collected at the bottom of the first section and then blown by the air from blower output into the hopper 11 through the passageway 39.
All features disclosed in this specification, including any accompanying claims, abstract, and drawings, may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. § 112, paragraph 6. In particular, the use of “step of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. § 112, paragraph 6.
Although preferred embodiments of the present invention have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.