The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
Fibers 12 or 13 are removed from the accumulation area of the fibers of the retaining ducts 11 and 11′ by intake rolls 16 and 16′ and beaten out with a beater roll 17 or 17′ and transferred into first fiber feed duct 19 or second fiber feed duct 19′. The different fiber types 12 or 13 are combined to form a fiber mixture 32 in a combining region 20. Fiber mixture 32 reaches a conveyor duct 21 and can accumulate shortly before intake roll 22 of a carding device or a part of a carding device.
The metering of fiber types 12 and 13 takes place through, e.g., the control of the removal speeds of the fibers by intake rolls 16, 16′ and/or beater roll 17, 17′. Intake rolls 16, 16′ can be embodied to run slowly, such that they convey the fibers against a spring-mounted groove (not shown). The fibers are hereby drawn in and compressed into a thin compact fiber cake (not shown).
The fiber cake conveyed downwards between intake rolls 16, 16′ and groove is subsequently trimmed off or beaten out at the lower end of the groove by respectively one rapidly running beater roll 17, 17′. The fibers are thereby loosened, separated and carried into ducts 19, 19′. A supporting air flow can be used hereby, which is not shown in
If the fiber cake leaves the effective range of leaf-spring battery 24, it is gathered and taken on by rapidly running roll 25. Rolls 25, 26 and 27 are embodied as or with a teasel or equipped with sawtooth assemblies or trapezoid-tooth assemblies. The roll speeds increase from roll 25 to roll 27.
After the fibers of fiber mixture 32 have been held in the assembly of roll 25 for a rotation of approx. 180°, fibers 32 are transferred tangentially to counter-rotating roll 26. Since roll 26 rotates more quickly than roll 25 and in particular has a finer teasel structure or a finer sawtooth assembly or trapezoid-tooth assembly, a longitudinal alignment, parallelization and separation of the fibers takes place during the transfer.
After fibers 32 have been held on the circumference in the assembly of roll 26 for approx. 180°, fibers 32 are transferred tangentially in turn to counter-rotating roll 27. Since roll 27 rotates more quickly than roll 26 and has, in particular, a finer teasel-like structure or a finer sawtooth assembly or trapezoid-tooth assembly, a longitudinal alignment, parallelization and separation of the fibers again takes place during the transfer. After fibers 32 have been held in the assembly of roll 27 for 180°, fibers 32 are transferred tangentially upwards into an air flow 44 of the channel or suction duct 28. Subsequently, fiber mixture 32 reaches a suction belt 29 of a suction rod conveyor 30. Air flow 44 can additionally be separated from the fiber mixture or fiber/granulate mixture via a lateral suctioning 45 (or 45′ in
A conventional rod-forming device, such as, e.g., according to FIG. 10 of European Patent Application No. EP 1 464 241 A1, is connected to the suction rod conveyor, which is not shown in the figure. In this regard, the disclosure of EP 1 464 241 A1 is incorporated by reference herein in its entirety. After a fiber cake has been produced on suction belt 29 of suction rod conveyor 30, the fiber cake is usually trimmed, fed to a forming device in order to produce a fiber rod with the desired cross-sectional geometry from the fibers forming from which the fiber cake or fiber web is formed and optionally to wrap the fiber rod with a wrapping material in order subsequently to be cut to length in filter rods.
Instead of a direct injection of fibers 32 into suction duct 28, fibers 32 can be dropped first onto an endless apron and subsequently suctioned into a suction duct according to EP 1 584 248 A1, such that, preferably, one roll more or one roll less is then used in the carding device.
In
In contrast to the exemplary embodiment according to
To this end, granulate 43 is fed from a granulate container 33 to a drop duct with a metering roll 34. The drop duct ends in a chamber with an accelerating roll 35 that flings the granulate tangentially in the direction of suction rod conveyor 30 into suction duct 28. A good intermixing of the granulate with the fibers thus occurs. A fiber web 41 or a filter material web 41 then forms on a suction belt of the suction rod conveyor 30.
In order to render possible a higher production speed or a higher throughput of material and to increase the number of filter rods per unit of time, it is possible to provide two suction belts 29, 29′, as indicated in
To this end, as indicated in
According to
Through the structure according to the invention the size of the rod-maker (rod-making machine) for filter production is considerably reduced, since a suction rod conveyor can be arranged directly at the separating device. Moreover, the air consumption is reduced, since the transport stream and mixing process in an otherwise conventional long channel are omitted.
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 018 102.6 | Apr 2006 | DE | national |