The present invention is directed toward methods and devices for manipulating particles within flow using linear geometries.
A laser beam may be focused to a diffraction-limited spot with a high numerical-aperture objective allowing micron-sized objects in solution to be trapped in three dimensions into the region of highest light intensity. In 1970, Ashkin introduced and demonstrated the feasibility of this non-contact manipulation technique, dubbed optical or laser tweezers. Because the focused laser beam encounters an index of refraction mismatch between the particle and surrounding solution light is redirected, which induces a change in light momentum that must be balanced by the object. The net effect of this phenomenon is the immobilization of small micron-sized objects in the laser beam's focus. This tool has received broad interest because it allows non-contact, non-invasive and precise manipulation of objects in solution on the microscopic scale and has been applied in fields including chemistry, biology, colloidal, and polymer science. The utility of optical trapping in these various fields has led to interest in its implementation within microfluidic systems where, for example, direct cell manipulation would be a significant aid (e.g. lab-on-a-chip applications). However, the dynamic nature of such flowing systems, particularly those focused upon microscale separations, demand an optical trapping technique that can be spatially translated.
Dynamic optical trapping techniques based on rapidly-scanned mirrors or holographic array generators are powerful and demonstrate the capabilities of optical-based manipulation, however, they require significant associated optical hardware which hinders implementation for biomedical research and medical point of care applications. To overcome this barrier, embodiments of the present invention employ various schemes that take advantage of the nature of microfluidic fluid dynamics and use relatively inexpensive diode laser bars for the manipulation of particles in microscale geometries. This approach allows control of objects within the dimensions of the emitter, typically a 1 mm by 100-200 mm line and is uniquely facilitated by the confining microchannel geometries in which optical trapping occurs. Traditionally, and in non-confining 3D systems, design of the optical trap requires high numerical aperture (NA) objectives and tightly-focused Gaussian beams. This design is driven by the need to create strong optical gradients in the axial-dimension to overcome gravity and optical scattering forces. With a pseudo-2D confining geometry that limits particle translation to a flowing microfluidic plane, optical intensity gradients in the lateral dimensions dominate particle motion thus greatly diminishing optical requirements. Taking full advantage of this, it can be demonstrated that the use of inexpensive cylindrical plastic fibers as the sole optical component required to focus laser radiation for optical trapping-based separations within microchannels.
Thus, a new and effective approach for integrating diode bar based optical trapping within microfluidic geometries using optical fiber is provided herein. Because of the elongated geometry of the emitter, such cylindrical physical systems provide an inexpensive and easily integrated optical focusing tool. To demonstrate its utility the effective trapping forces in flowing microfluidic systems have been measured and compared to model-based predictions. The results demonstrate that line-based optical trapping within confining environments has a number of advantages including significantly reduced local intensities for equivalent trapping forces, preventing damage to cells when this is a design factor. In addition, the optical pressure arising from the low-NA optics employed here produces a push toward the channel wall that can be used advantageously by moving cells to streamlines of lower velocity, lowering drag and the required optical trapping intensities.
In accordance with at least some embodiments of the present invention, a method is provided that generally comprises:
These and other advantages will be apparent from the disclosure of the invention(s) contained herein. The above-described embodiments and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described in detail below.
Referring initially to
The trapping force was estimated experimentally by gradually increasing microfluidic flow rate at constant laser power (˜750 mW in the sample plane) until the particles within the flow passed through the laser trap at near zero velocity despite the applied optical force. At this point the trapping force is approximately balanced with the drag force of the flowing fluid estimated using a CCD camera and particle distances measured between frames taken every 1/30th of a second. Different trap angles (0°, 20°, 30°, 45°, 60°) relative to flow were used in our measurements with the component of the resulting force vector in the direction normal to the line trap averaged to obtain the experimental value for a given particle size.
To determine net restoring forces with varying illumination geometries, a modeling approach can be used that allows calculation of local stress, which can be integrated to obtain desired values. This approach may be based on the modeling of cell “stretching” forces where the classic Mie ray optics approach is extended to calculation of local stress profiles across the front and back sphere surfaces. In calculations, the laser light source may be treated as an infinite number of rays coming in parallel to the vertical axis with the field modeled using a Gaussian with a spot of tunable size and focus position:
where ω0 is the minimum spot size, k is the wavenumber, Rc is the radius of curvature of the Gaussian beam, and ζ is the Guoy phase term. The reflectance and transmittance (T=1−RR) may be taken into account due to the cell front and back interfaces, using the polarization-dependent Fresnel equations:
where φ0 and β are the front and back ray angles relative to the normal and the n are the refractive indices. In this model, the net force at each position on the cell surface is the change in momentum of the incident ray minus those of the transmitted and reflected rays. To simplify calculations multiple reflections may be neglected and have verified results quantitatively by integration of the calculated local stress over the top and bottom surfaces, obtaining the net trapping force and comparing these to results available in the literature.
Experiments demonstrate that optical fiber can be used as an inexpensive means of focusing line-trap illumination within microfludic systems. Qualitatively, smaller fiber provides a tighter focus and more efficient optical trapping but is more difficult to couple to the emitter leading to greater losses. In accordance with at least some embodiments of the present invention, a 1 mm diameter fiber provides a balance between NA (providing a value of ˜0.55 in air) and light collection with minimal losses. As illustrated in
In traditional implementation of the optical trapping technique, high-index particles are driven to the center of the trap focus where the net force is zero. In the flowing systems used here with the additional drag forces present, pseudo-equilibrium will occur at positions offset from the trap and particle center.
Though one goal of the present invention is to demonstrate the utility of fiber-based diode-bar focusing, current modeling approaches allow quantitative prediction of trapping force for a given particle size and diode laser intensity. When comparing our predictions and those values determined experimentally a number of corrections and assumptions must be made. Experimental measurements consist of particle velocity from which an estimated maximum restoring force is extracted using values for the Stokes drag on a sphere. It is well known however that the Stokes drag is modified in the presence of confining plates. In addition, as quantified in the calculations of
The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the invention.
Moreover though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This Application claims the benefit of U.S. Provisional Application No. 60/975,429, filed Sep. 26, 2007, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60975429 | Sep 2007 | US |