The present invention relates to optical fibers used in optically guided airborne bodies such as air-to-ground or ground-to-ground missiles. More specifically, the present invention relates to an apparatus for winding such a fiber on a smooth bobbin.
Optical fiber dispensers are used for communication between a launcher, such as an airborne platform that carries the dispenser and from which the dispenser “pays out” the optical fiber, and a remotely operated object such as a remotely operated missile. The optical fiber is wound on a bobbin, which is normally pre-grooved on its external surface, the grove used to guide the winding of a first bottom layer of the fiber. A detailed description of a prior art dispenser is given for example in U.S. Pat. No. 5,607,532 to LoStracco. For proper, smooth and faultless functioning of the payout, it is necessary that throughout the payout operation the residual pack, i.e. that part of the optical fiber spool that is still on the bobbin, must riot loosen so that each turn of fiber remains in place in its original, slightly tensioned state until payout. The payout may be quite rapid, with speeds higher than 20 m/sec.
An optical fiber is made of at least two different materials, a fused silica inner part which guides the light and an elastomer coating. During winding of the optical fiber on the bobbin an adhesive is applied among the layers of the pack and between the bottom layer and the bobbin. In this way the individual turns of fiber in the pack are fixed so as to ensure that no loosening occurs prior to, and during the payout. The winding action and geometry may themselves cause problems such as optical losses due to micro-bends formed between crossing sections, pressure or tension.
Since the use of a pre-grooved tube limits the fiber that can be wound on the bobbing to a fiber with a given diameter tolerance, there is a clear advantage in providing a bobbin that is not pre-grooved. Such a smooth bobbin can then be used for winding fibers with a larger range of diameters, in addition to the saving involved in not needing to pre-groove the bobbin.
According to the present invention there is provided a helically guiding ring having an external circumferential surface and two substantially parallel side surfaces and attachable to a smooth bobbin, comprising a guiding slot formed in the external circumferential surface and a guiding path formed in one of the side surfaces and joining the guiding slot, whereby the ring is operative to guide the winding of a fiber of given diameter on the smooth bobbin.
According to the present invention there is provided a system for guiding a fiber with a given diameter in a helical path around a smooth surface, comprising a slotted helical ring and a conical bobbin having a smaller diameter aft end and a larger diameter front end, the slotted helical ring attached to the bobbin at the aft end, whereby the fiber can be inserted in the slot starting at the ring aft end and guided by the ring and the smooth surface to form a helical winding around the smooth surface.
According to the present invention there is provided a method of guiding the winding of a fiber around a smooth conical surface, comprising the steps of providing a helically guiding ring, the ring attachable to the smooth conical surface, and using the helically guiding ring and the smooth conical surface for guiding the winding of the fiber around the smooth conical surface.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The present invention describes an apparatus and method for winding an optical fiber of arbitrary diameter on a smooth bobbin. The apparatus includes a slotted helical ring attachable to, or integrated with a bobbin, the ring used to guide a fiber in its initial first turn in the winding. After the first turn, the winding of a base layer and subsequent layers is achieved without needing a grooved bobbin surface. The principles and operation of the apparatus of the present invention may be better understood with reference to the drawings and the accompanying description.
Referring now back to the figures,
Ring 104 has an external diameter Φ larger than that of aft end 26 by up to 1 mm, and most typically by 1-2 fiber diameters. Thus, for typical optical fibers with 250 μm diameter, the external ring diameter does not present any obstacle to fiber payout, down to the last layers on the bobbin. Typically, the payout of such fibers never reaches the last layers (closest to the bobbin), since this may cause fiber breaks.
In a preferred embodiment, ring 104 is a separate ring attachable to a bobbin by any known means such as bonding using various bonding techniques. For example, the ring can be glued to the bobbin, or matching threads can be provided in ring and bobbin for mutual attachment. Different rings with different slot sizes can be used with the same bobbin to wind different diameter fibers. In this case, significant savings are achieved by using one type of bobbin and different attachable rings for different fiber sizes. In another preferred embodiment, ring 104 may be an integral part of the bobbin, i.e. machined integrally with the bobbin. When separate, ring 104 is made preferably of the same material as the bobbin, e.g. hard resin, plastic, metal, etc. to prevent any mismatch or stress induced by such factors as temperature. During the winding of the base layer, an adhesive is applied among the individual windings and between the windings and the bobbin. The adhesive fixes the base layer to the bobbin. Upon completion, the base layer serves as guiding layer to a second layer, which is wound in the same clockwise direction but from right to left in
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made. In particular, although the invention was described in the context of optical fibers, it should be appreciated that it is equally applicable to any fiber-like structure that needs guiding when wound, spooled or coiled on a smooth guiding surface.
Number | Date | Country | Kind |
---|---|---|---|
154025 | Jan 2003 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2004/000051 | 1/19/2004 | WO | 00 | 10/27/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/065991 | 8/5/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
806748 | Nelson | Dec 1905 | A |
2599926 | Le Bus | Jun 1952 | A |
2620996 | Le Bus | Dec 1952 | A |
2892598 | Dudley | Jun 1959 | A |
4995698 | Myers | Feb 1991 | A |
5029960 | Hulderman et al. | Jul 1991 | A |
5181270 | Hsu et al. | Jan 1993 | A |
5607532 | LoStracco | Mar 1997 | A |
6073917 | Plummer | Jun 2000 | A |
Number | Date | Country | |
---|---|---|---|
20050173587 A1 | Aug 2005 | US |