The present disclosure generally relates to fiber optic adapter assemblies for connecting optical fibers, and more particularly to fiber optic adapter assemblies including a conversion housing and a release housing
Optical fibers are used in an increasing number and variety of applications, such as a wide variety of telecommunications and data transmission applications. As a result, fiber optic networks include an ever increasing number of terminated optical fibers and fiber optic cables that can be conveniently and reliable mated with corresponding optical receptacles in the network. These terminated optical fibers and fiber optic cables are available in a variety of connectorized formats including, for example, hardened OptiTap® and OptiTip® connectors, field-installable UniCam® connectors, preconnectorized single or multi-fiber cable assemblies with SC, FC, or LC connectors, etc., all of which are available from Corning Incorporated, with similar products available from other manufacturers, as is well documented in the patent literature.
The optical receptacles with which the aforementioned terminated fibers and cables are coupled are commonly provided at optical network units (ONUs), network interface devices (NIDs), and other types of network devices or enclosures, and often require hardware that is sufficiently robust to be employed in a variety of environments under a variety of installation conditions. These conditions may be attributable to the environment in which the connectors are employed, or the habits of the technicians handling the hardware. Consequently, there is a continuing drive to enhance the robustness of these connectorized assemblies, while preserving quick, reliable, and trouble-free optical connection to the network.
Fiber optic connectors, connectorized cable assemblies, closure assemblies, and methods for connecting fiber optic connectors to, and disconnecting fiber optic connectors from closure assemblies are disclosed herein.
In a first aspect A1, the present disclosure provides a fiber optic connector assembly comprising a connector housing defining a rotationally-discrete locking portion defined on an outer surface of the connector housing, an adapter assembly selectively coupled to the connector housing, the adapter assembly comprising a conversion housing extending around the connector housing and defining a conversion front end and a conversion retention member that is positionable between an engaged position, in which the conversion retention member restricts movement of the connector housing with respect to the adapter assembly in an axial direction, and a disengaged position, in which the connector housing is movable with respect to the adapter assembly in the axial direction, and a release housing positioned between the conversion housing and the connector housing, the release housing defining a release front end positionable at least partially within the conversion housing, and a release face selectively engageable with the conversion retention member and configured to move the conversion retention member from the engaged position to the disengaged position.
In a second aspect A2, the present disclosure provides the fiber optic connector assembly of aspect A1, further comprising a boot coupled to the release housing opposite the release front end.
In a third aspect A3, the present disclosure provides the fiber optic connector assembly of either of aspects A1 or A2, wherein the conversion retention member of the conversion housing defines forwardly-facing connector engagement face, and the rotationally-discrete locking portion of the connector housing defining a connector locking face.
In a fourth aspect A4, the present disclosure provides the fiber optic connector assembly of aspect A3, wherein the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face.
In a fifth aspect A5, the present disclosure provides the fiber optic connector assembly of aspect A4, wherein the release face faces inward in a radial direction that is transverse to the axial direction.
In a sixth aspect A6, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A5, wherein the release housing defines one or more release faces that are selectively engageable with the conversion housing.
In a seventh aspect A7, the present disclosure provides the fiber optic connector assembly of aspect A6, wherein the one or more release faces face outwardly in a radial direction that is transverse to the axial direction.
In an eighth aspect A8, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A7, wherein the conversion housing defines a conversion inner sidewall and a forward conversion ledge and a conversion inner space, and wherein the conversion retention member extends rearwardly from the forward conversion ledge into the conversion inner space.
In a ninth aspect A9, the present disclosure provides the fiber optic connector assembly of aspect A8, wherein the conversion retention member intersects the forward conversion ledge at a transition intersection, wherein at least a portion of the transition intersection is transverse to the forward conversion ledge and the conversion retention member.
In a tenth aspect A10, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A9, wherein the release housing defines a release outer surface extending the axial direction, and a release slot extending through the release outer surface, and wherein the conversion retention member is positioned at least partially within the release slot in the engaged position.
In an eleventh aspect A11, the present disclosure provides the fiber optic connector assembly of aspect A10, wherein the release housing defines a release retainer extending over at least a portion of the release slot.
In a twelfth aspect A12, the present disclosure provides the fiber optic connector assembly of either of aspects A10 or A11, wherein the release housing defines a release face positioned adjacent to the release slot, wherein the release face faces outward in a radial direction that is transverse to the axial direction.
In a thirteenth aspect A13, the present disclosure provides the fiber optic connector assembly of aspect A12, wherein the release face of the release housing is a first release face, and wherein the release housing further comprises a second release face, wherein the first release face and the second release face are positioned on opposite sides of the release slot.
In a fourteenth aspect A14, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A13, wherein the conversion front end defines a forward conversion keying feature structurally configured to engage an SC connector.
In a fifteenth aspect A15, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A14, wherein the release housing defines an inward release keying portion and wherein the connector housing defines a connector keying portion that is engaged with the inward release keying portion.
In a sixteenth aspect A16, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A15, wherein the release housing defines an outward release keying portion and wherein the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.
In a seventeenth aspect A17, the present disclosure provides the fiber optic connector assembly of aspect A1, wherein the conversion retention member of the conversion housing defines forwardly-facing connector engagement face, the rotationally-discrete locking portion of the connector housing defining a connector locking face engaged with the forwardly-facing connector engagement face when the conversion retention member is in the engaged position, the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face, the release housing defines one or more release faces that are selectively engageable with the conversion housing, and the release face faces inward in a radial direction that is transverse to the axial direction.
In an eighteenth aspect A18, the present disclosure provides a fiber optic connector assembly comprising a connector housing defining a locking portion on an outer surface of the connector housing, and a connector keying portion on the outer surface of the connector housing, an adapter assembly selectively coupled to the connector housing, the adapter assembly comprising a conversion housing extending around the connector housing and defining a conversion front end and a conversion retention member selectively engaged with the locking portion of the connector housing, and a release housing positioned between the conversion housing and the connector housing, the release housing defining an inward release keying portion engaged with the connector keying portion, and a release face that is selectively engageable with the conversion retention member.
In a nineteenth aspect A19, the present disclosure provides the fiber optic connector assembly of aspect A18, wherein the conversion housing defines a forward conversion keying feature structurally configured to engage an SC connector.
In a twentieth aspect A20, the present disclosure provides the fiber optic connector assembly of aspect A19, wherein the conversion housing further defines a conversion guide extending outward from the conversion housing and aligned with the forward conversion keying feature.
In a twenty-first aspect A21, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A20, wherein the release housing defines an outward release keying portion on a release outer surface of the release housing.
In a twenty-second aspect A22, the present disclosure provides the fiber optic connector assembly of aspect A21, wherein the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.
In a twenty-third aspect A23, the present disclosure provides the fiber optic connector assembly of aspect A22, wherein the rearward conversion keying feature defines a slot engaged with the outward release keying portion of the release housing.
In a twenty-fourth aspect A24, the present disclosure provides the fiber optic connector assembly of any of aspects A21-A23, wherein the outward release keying portion is formed as a positive surface projection extending outward from the release outer surface and defines opposing outward release contact surfaces.
In a twenty-fifth aspect A25, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A24, wherein the connector keying portion is formed as a negative cut out and defines opposing connector contact surfaces.
In a twenty-sixth aspect A26, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A23, wherein the inward release keying portion is formed as a positive surface projection extending inward from a release inner surface in a radial direction that is transverse to an axial direction.
In a twenty-seventh aspect A27, the present disclosure provides the fiber optic connector assembly of aspect A18, wherein the conversion housing defines a forward conversion keying feature structurally configured to engage an SC connector, the release housing defines an outward release keying portion on a release outer surface of the release housing, and the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.
In a twenty-eighth aspect A28, the present disclosure provides a method for disconnecting a fiber optic connector from a closure, the method comprising moving a release housing in an axial direction with respect to a conversion housing engaged with a connector housing, wherein the conversion housing comprises a conversion retention member engaged with a rotationally-discrete locking portion of the connector housing, engaging the conversion retention member of the conversion housing with a release face of the release housing, thereby moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing, and removing the connector housing from the conversion housing.
In a twenty-ninth aspect A29, the present disclosure provides the method of aspect A28, wherein moving the release housing in the axial direction with respect to the conversion housing comprises moving a boot coupled to the release housing in the axial direction with respect to the conversion housing.
In a thirtieth aspect A30, the present disclosure provides the method of either of aspects A28 or A29, wherein moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing comprises deflecting the conversion retention member in a radially-outward direction.
In a thirty-first aspect A31, the present disclosure provides the method of any of aspects A28-A30, wherein moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing comprises moving a forwardly-facing connector engagement face out of the conversion retention member radially outward from a connector engagement face of rotationally-discrete locking portion of the connector housing.
Additional features of fiber optic connectors, connectorized cable assemblies, closure assemblies, and methods for connecting fiber optic connectors to, and disconnecting fiber optic connectors from closure assemblies will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to embodiments of optical adapter assemblies, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. Embodiments described herein are directed to fiber optic connector assemblies including a connector housing and an adapter assembly including a conversion housing and a release housing. The conversion housing may generally permit the connector housing to be engaged with a dissimilar coupling, for example of a closure. The connector housing may be selectively coupled to, and may be releasable from the conversion housing via the release housing, thereby allowing the connector housing to be selectively coupled to and released from the dissimilar coupling and/or closure.
As used herein, the term “longitudinal direction” refers to the forward-rearward direction of the components described herein (i.e., in the +/−z-direction as depicted). The term “lateral direction” refers to the cross-wise direction of the components (i.e., in the +/−x-direction as depicted), and is transverse to the longitudinal direction. The term “vertical direction” refers to the upward-downward direction of the components (i.e., in the +/−y-direction as depicted). The term “axial direction” generally refers to the longitudinal direction of fiber optic connector assemblies described herein. The term “radial direction” refers to the direction extending outward from the longitudinal direction of fiber optic connector assemblies described herein (i.e., in the R-direction as depicted). The term “circumferential direction refers to the direction extending around the longitudinal direction of fiber optic connector assemblies described herein (i.e., in the C-direction as depicted).
Referring initially to
However, with fiber optic connector assemblies 100 positioned adjacent to one another in the vertical direction and the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted), it may be difficult for users to insert and remove the fiber optic connector assemblies 100 from the closure 200. In particular, space between adjacent fiber optic connector assemblies 100 in the vertical direction and the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted, respectively) may be minimal. Minimal distance between the fiber optic connector assemblies 100 may make it difficult for a user to manipulate any of the fiber optic connector assemblies 100 to remove or insert the fiber optic connector assemblies 100 to the closure 200.
Referring to
In some embodiments, the fiber optic connector assembly 100 further includes a boot 102 coupled to the release housing 170. The boot 102 and the release housing 170 may be selectively movable with respect to the conversion housing 140 in the longitudinal direction (i.e., in the +/−z-direction as depicted), as described in greater detail herein.
In some embodiments, the fiber optic connector assembly 100 may include a grommet 132 and/or a washer 134. The connector housing 110 may be passed through the grommet 132 and/or the washer 134, and the grommet 132 and/or the washer 134 may restrict environmental elements (e.g., water, humidity, etc.) from reaching an interior of the fiber optic connector assembly 100. While in the embodiment depicted in
Referring to
The connector housing 110 includes a connector keying portion 114 defined on the outer surface 116 of the connector housing 110. In embodiments, the connector keying portion 114 may be rotationally discrete on the outer surface 116 of the connector housing 110. As used herein, the term “rotationally” discrete represents a limited width-wise extent along the outer surface 116 of the connector housing 110, as the connector housing 110 is rotated in the circumferential direction C.
In embodiments, the connector keying portion 114 includes pair of opposing connector contact surfaces 115. The opposing connector contact surfaces 115 are structurally configured to inhibit rotation of the connector housing 110 in the circumferential direction C when engaged with a complementary keying portion of, for example, an optical connection port. However, some optical connection ports, such as those of the closure 200 (
For example and referring to
When assembled, the connector housing 110 may be at least partially inserted into the release housing 170. In embodiments, the connector keying portion 114 of the connector housing 110 is engageable with the inward release keying portion 182 of the release housing 170. For example, in the embodiment depicted in
While in the embodiment depicted in
Referring to
In embodiments, the release housing 170 defines an outward release keying portion 184 positioned on the release outer surface 172. The outward release keying portion 184 generally includes outward release contact surfaces 185 that are positioned opposite one another. For example, in the embodiment depicted in
Referring to
In embodiments, the conversion housing 140 includes a conversion retention member 150. The conversion retention member 150 generally defines a forwardly-facing connector engagement face 144 that is structurally configured to engage an engagement face of the connector housing 110 (
In some embodiments, the conversion retention member 150 defines a rearwardly-facing ramp 151 opposite the forwardly-facing connector engagement face 144. The rearwardly-facing ramp 151 may face rearward in the longitudinal direction (i.e., in the −z-direction as depicted) and may face at least partially inward in the radial direction R. When the connector housing 110 (
In some embodiments, the conversion retention member 150 defines a forwardly-facing conversion release face 153. In the embodiment depicted in
Referring to
As shown in
In embodiments, the conversion retention member 150 intersects at the forward conversion ledge 152 at a transition intersection 156. Without being bound by theory, the shape and structure of the transition intersection 156 impacts the movement of the conversion retention member 150 in the radial direction R, for example, under the application of force. While in the embodiment depicted in
For example and referring to
Referring to
As shown in
Referring to
As noted above, the connector housing 110 may be rotationally aligned with respect to the release housing 170 via the connector keying portion 114 (
In some embodiments, the conversion housing 140 defines a forward conversion keying feature 158. The forward conversion keying feature 158 may cooperate with a slot 22 (
In embodiments, the connector housing 110 defines a rotationally-discrete locking portion 112 on the outer surface 116 of the connector housing 110. In some embodiments, the rotationally-discrete locking portion 112 defines a connector locking face 113 that, in the embodiment depicted in
Referring to
More particularly and referring to
As the release faces 178 of the release housing 170 engage the forwardly-facing conversion release faces 153 of the conversion retention member 150, the release faces 178 move the conversion retention member 150 outward in the radial direction R. For example and as noted above, in some embodiments, the conversion release faces 153 of the conversion retention member 150 may be face inward in the radial direction R. Accordingly, as the release housing 170 moves rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the rearward movement of the release housing 170 may resolve into an outwardly radial force acting on the conversion retention member 150. Similarly, in embodiments in which the release faces 178 face outwardly in the radial direction R, as the release housing 170 moves rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the rearward movement of the release housing 170 may resolve into an outwardly radial force acting on the conversion retention member 150.
As the conversion retention member 150 moves outward in the radial direction R the forwardly-facing connector engagement face 144 from the conversion retention member 150 disengages the rotationally-discrete locking portion 112 of the connector housing 110. With forwardly-facing connector engagement face 144 of the conversion retention member 150 disengaged from the rotationally-discrete locking portion 112 of the connector housing 110, the connector housing 110 can be removed from the conversion housing 140.
As such, the connector housing 110 can be disengaged from the conversion housing 140, and accordingly the coupling 20, through movement of the release housing 170 in the longitudinal direction (i.e., in the −z-direction as depicted). In this way, the connector housing 110 can be removed from the coupling 20 even when there is minimal distance between the connector housing 110 and other connector housings in the radial direction R. More particularly, while the conversion retention member 150 moves outward in the radial direction R to move from the engaged position to the disengaged position, this movement is generally within the conversion inner space 154. As such, the connector housing 110 can be disengaged from the conversion housing 140, and accordingly from the coupling 20, without requiring movement of components external to the conversion housing 140 in the radial direction R. Because the connector housing 110 can be disengaged from the conversion housing 140, and accordingly the coupling 20, without requiring movement of components external to the conversion housing 140 in the radial direction R, couplings 20 can be positioned adjacent to one another so as to minimize the distance between adjacent connector housings 110. In this way, closures 200 (
Referring to
Referring to
As shown in
Accordingly, embodiments described herein are generally directed to fiber optic connector assemblies including a connector housing and an adapter assembly including a conversion housing and a release housing. The conversion housing may generally permit the connector housing to be engaged with a dissimilar coupling, for example of a closure. The connector housing may be selectively coupled to, and may be releasable from the conversion housing via the release housing, thereby allowing the connector housing to be selectively coupled to and released from the dissimilar coupling and/or closure.
It is noted that recitations herein of a component of the present disclosure being “structurally configured” in a particular way, to embody a particular property, or to function in a particular manner, are structural recitations, as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “structurally configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application No. 63/119,622, filed Nov. 30, 2020, the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3074107 | Kiyoshi et al. | Jan 1963 | A |
3532783 | Pusey et al. | Oct 1970 | A |
3792284 | Kaelin | Feb 1974 | A |
3912362 | Hudson | Oct 1975 | A |
4003297 | Mott | Jan 1977 | A |
4077567 | Ginn et al. | Mar 1978 | A |
4148557 | Garvey | Apr 1979 | A |
4167303 | Bowen et al. | Sep 1979 | A |
4168109 | Dumire | Sep 1979 | A |
4188088 | Andersen et al. | Feb 1980 | A |
4336977 | Monaghan et al. | Jun 1982 | A |
4354731 | Mouissie | Oct 1982 | A |
4373777 | Borsuk et al. | Feb 1983 | A |
4413880 | Forrest et al. | Nov 1983 | A |
4423922 | Porter | Jan 1984 | A |
4440471 | Knowles | Apr 1984 | A |
4461537 | Raymer et al. | Jul 1984 | A |
4515434 | Margolin et al. | May 1985 | A |
4547937 | Collins | Oct 1985 | A |
4560232 | O'Hara | Dec 1985 | A |
4615581 | Morimoto | Oct 1986 | A |
4634214 | Cannon et al. | Jan 1987 | A |
4634858 | Gerdt et al. | Jan 1987 | A |
4684205 | Margolin et al. | Aug 1987 | A |
4688200 | Poorman et al. | Aug 1987 | A |
4690563 | Barton et al. | Sep 1987 | A |
4699458 | Ohtsuki et al. | Oct 1987 | A |
4705352 | Margolin et al. | Nov 1987 | A |
4711752 | Deacon et al. | Dec 1987 | A |
4715675 | Kevern et al. | Dec 1987 | A |
4723827 | Shaw et al. | Feb 1988 | A |
4741590 | Caron | May 1988 | A |
4763983 | Keith | Aug 1988 | A |
4783137 | Kosman et al. | Nov 1988 | A |
4842363 | Margolin et al. | Jun 1989 | A |
4844570 | Tanabe | Jul 1989 | A |
4854664 | Mccartney | Aug 1989 | A |
4856867 | Gaylin | Aug 1989 | A |
4877303 | Caldwell et al. | Oct 1989 | A |
4902238 | Iacobucci | Feb 1990 | A |
4913514 | Then | Apr 1990 | A |
4921413 | Blew | May 1990 | A |
4944568 | Danbach et al. | Jul 1990 | A |
4960318 | Nilsson et al. | Oct 1990 | A |
4961623 | Midkiff et al. | Oct 1990 | A |
4964688 | Caldwell et al. | Oct 1990 | A |
4979792 | Weber et al. | Dec 1990 | A |
4994134 | Knecht et al. | Feb 1991 | A |
4995836 | Toramoto | Feb 1991 | A |
5007860 | Robinson et al. | Apr 1991 | A |
5016968 | Hammond et al. | May 1991 | A |
5028114 | Krausse et al. | Jul 1991 | A |
5058984 | Bulman et al. | Oct 1991 | A |
5067783 | Ampert | Nov 1991 | A |
5073042 | Mulholland et al. | Dec 1991 | A |
5076656 | Briggs et al. | Dec 1991 | A |
5085492 | Kelsoe et al. | Feb 1992 | A |
5088804 | Grinderslev | Feb 1992 | A |
5091990 | Eung et al. | Feb 1992 | A |
5095176 | Harbrecht et al. | Mar 1992 | A |
5129023 | Anderson et al. | Jul 1992 | A |
5131735 | Berkey et al. | Jul 1992 | A |
5134677 | Leung et al. | Jul 1992 | A |
5136683 | Aoki et al. | Aug 1992 | A |
5142602 | Cabato et al. | Aug 1992 | A |
5146519 | Miller et al. | Sep 1992 | A |
5155900 | Grois et al. | Oct 1992 | A |
5162397 | Descamps et al. | Nov 1992 | A |
5180890 | Pendergrass et al. | Jan 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5210810 | Darden et al. | May 1993 | A |
5212752 | Stephenson et al. | May 1993 | A |
5214732 | Beard et al. | May 1993 | A |
5224187 | Davisdon | Jun 1993 | A |
5231685 | Hanzawa et al. | Jul 1993 | A |
5245683 | Belenkiy et al. | Sep 1993 | A |
5263105 | Johnson et al. | Nov 1993 | A |
5263239 | Ziemek | Nov 1993 | A |
5276750 | Manning | Jan 1994 | A |
5313540 | Ueda et al. | May 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5321917 | Franklin et al. | Jun 1994 | A |
5367594 | Essert et al. | Nov 1994 | A |
5371823 | Barrett et al. | Dec 1994 | A |
5375183 | Edwards et al. | Dec 1994 | A |
5381494 | O'Donnell et al. | Jan 1995 | A |
5390269 | Palecek et al. | Feb 1995 | A |
5394494 | Jennings et al. | Feb 1995 | A |
5394497 | Erdman et al. | Feb 1995 | A |
5408570 | Cook et al. | Apr 1995 | A |
5416874 | Giebel et al. | May 1995 | A |
5425121 | Cooke et al. | Jun 1995 | A |
5452388 | Rittle et al. | Sep 1995 | A |
5519799 | Murakami et al. | May 1996 | A |
5553186 | Allen | Sep 1996 | A |
5557696 | Stein | Sep 1996 | A |
5569050 | Loyd | Oct 1996 | A |
5588077 | Woodside | Dec 1996 | A |
5600747 | Yamakawa et al. | Feb 1997 | A |
5603631 | Kawahara et al. | Feb 1997 | A |
5608828 | Coutts et al. | Mar 1997 | A |
5631993 | Cloud et al. | May 1997 | A |
5647045 | Robinson et al. | Jul 1997 | A |
5673346 | Wano et al. | Sep 1997 | A |
5682451 | Lee et al. | Oct 1997 | A |
5694507 | Walles | Dec 1997 | A |
5748821 | Schempp et al. | May 1998 | A |
5761359 | Chudoba et al. | Jun 1998 | A |
5781686 | Robinson et al. | Jul 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5789701 | Wettengel et al. | Aug 1998 | A |
5790740 | Cloud et al. | Aug 1998 | A |
5791918 | Pierce | Aug 1998 | A |
5796895 | Jennings et al. | Aug 1998 | A |
RE35935 | Cabato et al. | Oct 1998 | E |
5818993 | Chudoba et al. | Oct 1998 | A |
5857050 | Jiang et al. | Jan 1999 | A |
5862290 | Burek et al. | Jan 1999 | A |
5867621 | Luther et al. | Feb 1999 | A |
5883999 | Cloud et al. | Mar 1999 | A |
5884000 | Cloud et al. | Mar 1999 | A |
5884001 | Cloud et al. | Mar 1999 | A |
5884002 | Cloud et al. | Mar 1999 | A |
5884003 | Cloud et al. | Mar 1999 | A |
5887099 | Csipkes et al. | Mar 1999 | A |
5913001 | Nakajima et al. | Jun 1999 | A |
5920669 | Knecht et al. | Jul 1999 | A |
5923804 | Rosson | Jul 1999 | A |
5925191 | Stein et al. | Jul 1999 | A |
5926596 | Edwards et al. | Jul 1999 | A |
5960141 | Sasaki et al. | Sep 1999 | A |
5961344 | Rosales et al. | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
5993070 | Tamekuni et al. | Nov 1999 | A |
RE36592 | Giebel et al. | Feb 2000 | E |
6030129 | Rosson | Feb 2000 | A |
6035084 | Haake et al. | Mar 2000 | A |
6045270 | Weiss et al. | Apr 2000 | A |
6079881 | Roth | Jun 2000 | A |
6094517 | Yuuki | Jul 2000 | A |
6108482 | Roth | Aug 2000 | A |
6112006 | Foss | Aug 2000 | A |
6149313 | Giebel et al. | Nov 2000 | A |
6151432 | Nakajima et al. | Nov 2000 | A |
RE37028 | Cooke et al. | Jan 2001 | E |
6173097 | Throckmorton et al. | Jan 2001 | B1 |
6179482 | Takizawa et al. | Jan 2001 | B1 |
6188822 | McAlpine et al. | Feb 2001 | B1 |
6193421 | Tamekuni et al. | Feb 2001 | B1 |
RE37079 | Stephenson et al. | Mar 2001 | E |
RE37080 | Stephenson et al. | Mar 2001 | E |
6200040 | Edwards et al. | Mar 2001 | B1 |
6206579 | Selfridge et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6220762 | Kanai et al. | Apr 2001 | B1 |
6224268 | Manning et al. | May 2001 | B1 |
6224270 | Nakajima et al. | May 2001 | B1 |
6229944 | Yokokawa et al. | May 2001 | B1 |
6234683 | Waldron et al. | May 2001 | B1 |
6234685 | Carlisle et al. | May 2001 | B1 |
6249628 | Rutterman et al. | Jun 2001 | B1 |
6256438 | Gimblet | Jul 2001 | B1 |
6261006 | Selfridge | Jul 2001 | B1 |
6264374 | Selfridge et al. | Jul 2001 | B1 |
6287016 | Weigel | Sep 2001 | B1 |
6293710 | Lampert et al. | Sep 2001 | B1 |
6298190 | Waldron et al. | Oct 2001 | B2 |
6305849 | Roehrs et al. | Oct 2001 | B1 |
6321013 | Hardwick et al. | Nov 2001 | B1 |
6356390 | Hall, Jr. | Mar 2002 | B1 |
6356690 | McAlpine et al. | Mar 2002 | B1 |
6357929 | Roehrs et al. | Mar 2002 | B1 |
6371660 | Roehrs et al. | Apr 2002 | B1 |
6375363 | Harrison et al. | Apr 2002 | B1 |
6379054 | Throckmorton et al. | Apr 2002 | B2 |
6386891 | Howard et al. | May 2002 | B1 |
6402388 | Mazu et al. | Jun 2002 | B1 |
6404962 | Hardwick et al. | Jun 2002 | B1 |
6409391 | Chang | Jun 2002 | B1 |
D460043 | Fan Wong | Jul 2002 | S |
6422764 | Marrs et al. | Jul 2002 | B1 |
6427035 | Mahony | Jul 2002 | B1 |
6428215 | Nault | Aug 2002 | B1 |
6439780 | Mudd et al. | Aug 2002 | B1 |
6466725 | Battey et al. | Oct 2002 | B2 |
6496641 | Mahony | Dec 2002 | B1 |
6501888 | Gimblet et al. | Dec 2002 | B2 |
6522804 | Mahony | Feb 2003 | B1 |
6529663 | Parris et al. | Mar 2003 | B1 |
6533468 | Nakajima et al. | Mar 2003 | B2 |
6536956 | Uther et al. | Mar 2003 | B2 |
6539147 | Mahony | Mar 2003 | B1 |
6540410 | Childers et al. | Apr 2003 | B2 |
6542652 | Mahony | Apr 2003 | B1 |
6542674 | Gimblet | Apr 2003 | B1 |
6546175 | Wagman et al. | Apr 2003 | B1 |
6554489 | Kent et al. | Apr 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6599026 | Fahrnbauer et al. | Jul 2003 | B1 |
6599027 | Miyake et al. | Jul 2003 | B2 |
6614980 | Mahony | Sep 2003 | B1 |
6618526 | Jackman et al. | Sep 2003 | B2 |
6619697 | Griffioen et al. | Sep 2003 | B2 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6625375 | Mahony | Sep 2003 | B1 |
6629782 | McPhee et al. | Oct 2003 | B2 |
6644862 | Berto et al. | Nov 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6668127 | Mahony | Dec 2003 | B1 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6678442 | Gall et al. | Jan 2004 | B2 |
6678448 | Moisel et al. | Jan 2004 | B2 |
6685361 | Rubino et al. | Feb 2004 | B1 |
6695489 | Nault | Feb 2004 | B2 |
6702475 | Giobbio et al. | Mar 2004 | B1 |
6714708 | McAlpine et al. | Mar 2004 | B2 |
6714710 | Gimblet | Mar 2004 | B2 |
6729773 | Finona et al. | May 2004 | B1 |
6738555 | Cooke et al. | May 2004 | B1 |
6748146 | Parris | Jun 2004 | B2 |
6748147 | Quinn et al. | Jun 2004 | B2 |
6771861 | Wagner et al. | Aug 2004 | B2 |
6785450 | Wagman et al. | Aug 2004 | B2 |
6789950 | Oder et al. | Sep 2004 | B1 |
6809265 | Gladd et al. | Oct 2004 | B1 |
6841729 | Sakabe et al. | Jan 2005 | B2 |
6848838 | Doss et al. | Feb 2005 | B2 |
6856748 | Elkins et al. | Feb 2005 | B1 |
6877906 | Mizukami et al. | Apr 2005 | B2 |
6880219 | Griffioen et al. | Apr 2005 | B2 |
6899467 | McDonald et al. | May 2005 | B2 |
6908233 | Nakajima et al. | Jun 2005 | B2 |
6909821 | Ravasio et al. | Jun 2005 | B2 |
6916120 | Zimmel et al. | Jul 2005 | B2 |
6918704 | Marrs et al. | Jul 2005 | B2 |
6944387 | Howell et al. | Sep 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
6970629 | Lail et al. | Nov 2005 | B2 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7011454 | Caveney et al. | Mar 2006 | B2 |
7013074 | Battey et al. | Mar 2006 | B2 |
7025507 | De Marchi | Apr 2006 | B2 |
7033191 | Cao | Apr 2006 | B1 |
7044650 | Tran et al. | May 2006 | B1 |
7052185 | Rubino et al. | May 2006 | B2 |
7079734 | Seddon et al. | Jul 2006 | B2 |
7088899 | Reagan et al. | Aug 2006 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7090409 | Nakajima et al. | Aug 2006 | B2 |
7103255 | Reagan et al. | Sep 2006 | B2 |
7103257 | Donaldson et al. | Sep 2006 | B2 |
7104702 | Barnes et al. | Sep 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7118283 | Nakajima et al. | Oct 2006 | B2 |
7118284 | Nakajima et al. | Oct 2006 | B2 |
7120347 | Blackwell et al. | Oct 2006 | B2 |
7137742 | Theuerkorn et al. | Nov 2006 | B2 |
7146089 | Reagan et al. | Dec 2006 | B2 |
7146090 | Vo et al. | Dec 2006 | B2 |
7150567 | Luther et al. | Dec 2006 | B1 |
7165893 | Schmitz | Jan 2007 | B2 |
7171102 | Reagan et al. | Jan 2007 | B2 |
7178990 | Caveney et al. | Feb 2007 | B2 |
7184634 | Hurley et al. | Feb 2007 | B2 |
7195403 | Oki et al. | Mar 2007 | B2 |
7200317 | Reagan et al. | Apr 2007 | B2 |
7201518 | Holmquist | Apr 2007 | B2 |
7204644 | Barnes et al. | Apr 2007 | B2 |
7213975 | Khemakhem et al. | May 2007 | B2 |
7213980 | Oki et al. | May 2007 | B2 |
7228047 | Szilagyi et al. | Jun 2007 | B1 |
7232260 | Takahashi et al. | Jun 2007 | B2 |
7236670 | Ail et al. | Jun 2007 | B2 |
7241056 | Kuffel et al. | Jul 2007 | B1 |
7260301 | Barth et al. | Aug 2007 | B2 |
7261472 | Suzuki et al. | Aug 2007 | B2 |
7266265 | Gall et al. | Sep 2007 | B2 |
7266274 | Elkins et al. | Sep 2007 | B2 |
7270487 | Billman et al. | Sep 2007 | B2 |
7277614 | Cody et al. | Oct 2007 | B2 |
7279643 | Morrow et al. | Oct 2007 | B2 |
7292763 | Smith et al. | Nov 2007 | B2 |
7302152 | Luther et al. | Nov 2007 | B2 |
7318677 | Dye | Jan 2008 | B2 |
7326091 | Nania et al. | Feb 2008 | B2 |
7330629 | Cooke et al. | Feb 2008 | B2 |
7333708 | Blackwell et al. | Feb 2008 | B2 |
7336873 | Lail et al. | Feb 2008 | B2 |
7341382 | Dye | Mar 2008 | B2 |
7346256 | Marrs et al. | Mar 2008 | B2 |
7349605 | Noonan et al. | Mar 2008 | B2 |
7357582 | Oki et al. | Apr 2008 | B2 |
7366416 | Ramachandran et al. | Apr 2008 | B2 |
7394964 | Tinucci et al. | Jul 2008 | B2 |
7397997 | Ferris et al. | Jul 2008 | B2 |
7400815 | Mertesdorf et al. | Jul 2008 | B2 |
D574775 | Amidon | Aug 2008 | S |
7407332 | Oki et al. | Aug 2008 | B2 |
7428366 | Mullaney et al. | Sep 2008 | B2 |
7444056 | Allen et al. | Oct 2008 | B2 |
7454107 | Miller et al. | Nov 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7467896 | Melton et al. | Dec 2008 | B2 |
7469091 | Mullaney et al. | Dec 2008 | B2 |
7477824 | Reagan et al. | Jan 2009 | B2 |
7480437 | Ferris et al. | Jan 2009 | B2 |
7484898 | Katagiyama et al. | Feb 2009 | B2 |
7485804 | Dinh et al. | Feb 2009 | B2 |
7489849 | Reagan et al. | Feb 2009 | B2 |
7492996 | Kowalczyk et al. | Feb 2009 | B2 |
7497896 | Bromet et al. | Mar 2009 | B2 |
7512304 | Gronvall et al. | Mar 2009 | B2 |
7520678 | Khemakhem et al. | Apr 2009 | B2 |
7539387 | Mertesdorf et al. | May 2009 | B2 |
7539388 | Mertesdorf et al. | May 2009 | B2 |
7542645 | Hua et al. | Jun 2009 | B1 |
7559702 | Fujiwara et al. | Jul 2009 | B2 |
7565055 | Lu et al. | Jul 2009 | B2 |
7568845 | Caveney et al. | Aug 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7621675 | Bradley | Nov 2009 | B1 |
7627222 | Reagan et al. | Dec 2009 | B2 |
7628545 | Cody et al. | Dec 2009 | B2 |
7628548 | Benjamin et al. | Dec 2009 | B2 |
7646958 | Reagan et al. | Jan 2010 | B1 |
7653282 | Blackwell et al. | Jan 2010 | B2 |
7654747 | Theuerkorn et al. | Feb 2010 | B2 |
7654748 | Kuffel et al. | Feb 2010 | B2 |
7658549 | Elkins et al. | Feb 2010 | B2 |
7661995 | Nania et al. | Feb 2010 | B2 |
7677814 | Lu et al. | Mar 2010 | B2 |
7680388 | Reagan et al. | Mar 2010 | B2 |
7708476 | Ziwei | May 2010 | B2 |
7709733 | Plankell | May 2010 | B1 |
7712971 | Lee et al. | May 2010 | B2 |
7713679 | Ishiduka et al. | May 2010 | B2 |
7722262 | Caveney et al. | May 2010 | B2 |
7726998 | Siebens | Jun 2010 | B2 |
7738759 | Parikh et al. | Jun 2010 | B2 |
7740409 | Bolton et al. | Jun 2010 | B2 |
7742117 | Lee et al. | Jun 2010 | B2 |
7742670 | Benjamin et al. | Jun 2010 | B2 |
7744286 | Lu et al. | Jun 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7747117 | Greenwood et al. | Jun 2010 | B2 |
7751666 | Parsons et al. | Jul 2010 | B2 |
7753596 | Cox | Jul 2010 | B2 |
7762726 | Lu et al. | Jul 2010 | B2 |
7785015 | Melton et al. | Aug 2010 | B2 |
7785019 | Ewallen et al. | Aug 2010 | B2 |
7802926 | Eeman et al. | Sep 2010 | B2 |
7805044 | Reagan et al. | Sep 2010 | B2 |
7806599 | Margolin et al. | Oct 2010 | B2 |
7811006 | Milette et al. | Oct 2010 | B2 |
7820090 | Morrow et al. | Oct 2010 | B2 |
7844148 | Jenkins et al. | Nov 2010 | B2 |
7844158 | Gronvall et al. | Nov 2010 | B2 |
7844160 | Reagan et al. | Nov 2010 | B2 |
7869681 | Battey et al. | Jan 2011 | B2 |
RE42094 | Barnes et al. | Feb 2011 | E |
7881576 | Melton et al. | Feb 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7891882 | Kuffel et al. | Feb 2011 | B2 |
7903923 | Gronvall et al. | Mar 2011 | B2 |
7903925 | Cooke et al. | Mar 2011 | B2 |
7918609 | Melton et al. | Apr 2011 | B2 |
7933517 | Ye et al. | Apr 2011 | B2 |
7938670 | Nania et al. | May 2011 | B2 |
7941027 | Mertesdorf et al. | May 2011 | B2 |
7942590 | Lu et al. | May 2011 | B2 |
7959361 | Lu et al. | Jun 2011 | B2 |
8002476 | Caveney et al. | Aug 2011 | B2 |
8005335 | Reagan et al. | Aug 2011 | B2 |
8023793 | Kowalczyk et al. | Sep 2011 | B2 |
8025445 | Rambow et al. | Sep 2011 | B2 |
8041178 | Lu et al. | Oct 2011 | B2 |
8052333 | Kuffel et al. | Nov 2011 | B2 |
8055167 | Park et al. | Nov 2011 | B2 |
8083418 | Fujiwara et al. | Dec 2011 | B2 |
8111966 | Holmberg et al. | Feb 2012 | B2 |
8137002 | Lu et al. | Mar 2012 | B2 |
8147147 | Khemakhem et al. | Apr 2012 | B2 |
8157454 | Ito et al. | Apr 2012 | B2 |
8164050 | Ford et al. | Apr 2012 | B2 |
8202008 | Lu et al. | Jun 2012 | B2 |
8213761 | Gronvall et al. | Jul 2012 | B2 |
8218935 | Reagan et al. | Jul 2012 | B2 |
8224145 | Reagan et al. | Jul 2012 | B2 |
8229263 | Parris et al. | Jul 2012 | B2 |
8231282 | Kuffel et al. | Jul 2012 | B2 |
8238706 | Kachmar | Aug 2012 | B2 |
8238709 | Solheid et al. | Aug 2012 | B2 |
8249450 | Conner | Aug 2012 | B2 |
8256971 | Caveney et al. | Sep 2012 | B2 |
8267596 | Theuerkorn | Sep 2012 | B2 |
8272792 | Coleman et al. | Sep 2012 | B2 |
RE43762 | Smith et al. | Oct 2012 | E |
8301003 | De et al. | Oct 2012 | B2 |
8301004 | Cooke et al. | Oct 2012 | B2 |
8317411 | Fujiwara et al. | Nov 2012 | B2 |
8348519 | Kuffel et al. | Jan 2013 | B2 |
8363999 | Mertesdorf et al. | Jan 2013 | B2 |
8376629 | Cline et al. | Feb 2013 | B2 |
8376632 | Blackburn et al. | Feb 2013 | B2 |
8402587 | Sugita et al. | Mar 2013 | B2 |
8408811 | De et al. | Apr 2013 | B2 |
8414196 | Lu et al. | Apr 2013 | B2 |
8439577 | Jenkins | May 2013 | B2 |
8465235 | Jenkins et al. | Jun 2013 | B2 |
8466262 | Siadak et al. | Jun 2013 | B2 |
8472773 | De Jong | Jun 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
8494329 | Nhep et al. | Jul 2013 | B2 |
8496384 | Kuffel et al. | Jul 2013 | B2 |
8506173 | Lewallen et al. | Aug 2013 | B2 |
8520996 | Cowen et al. | Aug 2013 | B2 |
8534928 | Cooke et al. | Sep 2013 | B2 |
8536516 | Ford et al. | Sep 2013 | B2 |
8556522 | Cunningham | Oct 2013 | B2 |
8573855 | Nhep | Nov 2013 | B2 |
8591124 | Griffiths et al. | Nov 2013 | B2 |
8622627 | Elkins et al. | Jan 2014 | B2 |
8622634 | Arnold et al. | Jan 2014 | B2 |
8635733 | Bardzilowski | Jan 2014 | B2 |
8662760 | Cline et al. | Mar 2014 | B2 |
8668512 | Chang | Mar 2014 | B2 |
8678668 | Cooke et al. | Mar 2014 | B2 |
8687930 | McDowell et al. | Apr 2014 | B2 |
8702324 | Caveney et al. | Apr 2014 | B2 |
8714835 | Kuffel et al. | May 2014 | B2 |
8727638 | Lee et al. | May 2014 | B2 |
8737837 | Conner et al. | May 2014 | B2 |
8755654 | Danley et al. | Jun 2014 | B1 |
8755663 | Makrides-Saravanos et al. | Jun 2014 | B2 |
8758046 | Pezzetti et al. | Jun 2014 | B2 |
8764316 | Barnette et al. | Jul 2014 | B1 |
8770861 | Smith et al. | Jul 2014 | B2 |
8770862 | Lu et al. | Jul 2014 | B2 |
D711320 | Yang et al. | Aug 2014 | S |
8821036 | Shigehara | Sep 2014 | B2 |
8837894 | Holmberg et al. | Sep 2014 | B2 |
8864390 | Chen et al. | Oct 2014 | B2 |
8870469 | Kachmar | Oct 2014 | B2 |
8879883 | Parikh et al. | Nov 2014 | B2 |
8882364 | Busse et al. | Nov 2014 | B2 |
8917966 | Thompson et al. | Dec 2014 | B2 |
8974124 | Chang | Mar 2015 | B2 |
8992097 | Koreeda et al. | Mar 2015 | B2 |
8998502 | Benjamin et al. | Apr 2015 | B2 |
8998506 | Pepin et al. | Apr 2015 | B2 |
9011858 | Siadak et al. | Apr 2015 | B2 |
9039293 | Hill et al. | May 2015 | B2 |
9075205 | Pepe et al. | Jul 2015 | B2 |
9081154 | Zimmel et al. | Jul 2015 | B2 |
9146364 | Chen et al. | Sep 2015 | B2 |
D741803 | Davidson, Jr. | Oct 2015 | S |
9151906 | Kobayashi et al. | Oct 2015 | B2 |
9151909 | Chen et al. | Oct 2015 | B2 |
9158074 | Anderson et al. | Oct 2015 | B2 |
9158075 | Benjamin et al. | Oct 2015 | B2 |
9182567 | Mullaney | Nov 2015 | B2 |
9188759 | Conner | Nov 2015 | B2 |
9207410 | Lee et al. | Dec 2015 | B2 |
9207421 | Conner | Dec 2015 | B2 |
9213150 | Matsui et al. | Dec 2015 | B2 |
9223106 | Coan et al. | Dec 2015 | B2 |
9239441 | Melton et al. | Jan 2016 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9274286 | Caveney et al. | Mar 2016 | B2 |
9279951 | McGranahan et al. | Mar 2016 | B2 |
9285550 | Nhep et al. | Mar 2016 | B2 |
9297974 | Valderrabano et al. | Mar 2016 | B2 |
9297976 | Hill et al. | Mar 2016 | B2 |
9310570 | Busse et al. | Apr 2016 | B2 |
9316791 | Durrant et al. | Apr 2016 | B2 |
9322998 | Miller | Apr 2016 | B2 |
9360640 | Ishigami et al. | Jun 2016 | B2 |
9383539 | Power et al. | Jul 2016 | B2 |
9400364 | Hill et al. | Jul 2016 | B2 |
9405068 | Graham et al. | Aug 2016 | B2 |
9417403 | Mullaney et al. | Aug 2016 | B2 |
9423584 | Coan et al. | Aug 2016 | B2 |
9435969 | Lambourn et al. | Sep 2016 | B2 |
9442257 | Lu | Sep 2016 | B2 |
9450393 | Thompson et al. | Sep 2016 | B2 |
9459412 | Katoh | Oct 2016 | B2 |
9482819 | Li et al. | Nov 2016 | B2 |
9482829 | Lu et al. | Nov 2016 | B2 |
9513444 | Barnette et al. | Dec 2016 | B2 |
9513451 | Corbille et al. | Dec 2016 | B2 |
9535229 | Ott et al. | Jan 2017 | B2 |
9541711 | Raven et al. | Jan 2017 | B2 |
9551842 | Theuerkorn | Jan 2017 | B2 |
9557504 | Holmberg et al. | Jan 2017 | B2 |
9581775 | Kondo et al. | Feb 2017 | B2 |
9588304 | Durrant et al. | Mar 2017 | B2 |
D783618 | Wu et al. | Apr 2017 | S |
9612407 | Kobayashi et al. | Apr 2017 | B2 |
9618704 | Dean et al. | Apr 2017 | B2 |
9618718 | Islam | Apr 2017 | B2 |
9624296 | Siadak et al. | Apr 2017 | B2 |
9625660 | Daems et al. | Apr 2017 | B2 |
9638871 | Bund et al. | May 2017 | B2 |
9645331 | Kim | May 2017 | B1 |
9645334 | Ishii et al. | May 2017 | B2 |
9651741 | Isenhour et al. | May 2017 | B2 |
9664862 | Lu et al. | May 2017 | B2 |
9678285 | Hill et al. | Jun 2017 | B2 |
9678293 | Coan et al. | Jun 2017 | B2 |
9684136 | Cline et al. | Jun 2017 | B2 |
9684138 | Lu | Jun 2017 | B2 |
9696500 | Barnette et al. | Jul 2017 | B2 |
9711868 | Scheucher | Jul 2017 | B2 |
9720193 | Nishimura | Aug 2017 | B2 |
9733436 | Van et al. | Aug 2017 | B2 |
9739951 | Busse et al. | Aug 2017 | B2 |
9762322 | Amundson | Sep 2017 | B1 |
9766416 | Kim | Sep 2017 | B1 |
9772457 | Hill et al. | Sep 2017 | B2 |
9804343 | Hill et al. | Oct 2017 | B2 |
9810855 | Cox et al. | Nov 2017 | B2 |
9810856 | Graham et al. | Nov 2017 | B2 |
9829658 | Nishimura | Nov 2017 | B2 |
9829668 | Claessens et al. | Nov 2017 | B2 |
9851522 | Reagan et al. | Dec 2017 | B2 |
9857540 | Ahmed et al. | Jan 2018 | B2 |
9864151 | Lu | Jan 2018 | B2 |
9878038 | Siadak et al. | Jan 2018 | B2 |
D810029 | Robert et al. | Feb 2018 | S |
9885841 | Pepe et al. | Feb 2018 | B2 |
9891391 | Watanabe | Feb 2018 | B2 |
9905933 | Scheucher | Feb 2018 | B2 |
9910224 | Liu et al. | Mar 2018 | B2 |
9910236 | Cooke et al. | Mar 2018 | B2 |
9921375 | Compton et al. | Mar 2018 | B2 |
9927580 | Bretz et al. | Mar 2018 | B2 |
9933582 | Lin | Apr 2018 | B1 |
9939591 | Mullaney et al. | Apr 2018 | B2 |
9964713 | Barnette et al. | May 2018 | B2 |
9964715 | Lu | May 2018 | B2 |
9977194 | Waldron et al. | May 2018 | B2 |
9977198 | Bund et al. | May 2018 | B2 |
9983374 | Li et al. | May 2018 | B2 |
10007068 | Hill et al. | Jun 2018 | B2 |
10031302 | Ji et al. | Jul 2018 | B2 |
10036859 | Daems et al. | Jul 2018 | B2 |
10038946 | Smolorz | Jul 2018 | B2 |
10042136 | Reagan et al. | Aug 2018 | B2 |
10061090 | Coenegracht | Aug 2018 | B2 |
10073224 | Tong et al. | Sep 2018 | B2 |
10094986 | Barnette et al. | Oct 2018 | B2 |
10101538 | Lu et al. | Oct 2018 | B2 |
10107968 | Tong et al. | Oct 2018 | B2 |
10109927 | Scheucher | Oct 2018 | B2 |
10114176 | Gimblet et al. | Oct 2018 | B2 |
10126508 | Compton et al. | Nov 2018 | B2 |
10180541 | Coenegracht et al. | Jan 2019 | B2 |
10209454 | Isenhour et al. | Feb 2019 | B2 |
10215930 | Mullaney et al. | Feb 2019 | B2 |
10235184 | Walker | Mar 2019 | B2 |
10261268 | Theuerkorn | Apr 2019 | B2 |
10268011 | Courchaine et al. | Apr 2019 | B2 |
10288820 | Coenegracht | May 2019 | B2 |
10288821 | Isenhour | May 2019 | B2 |
10317628 | Van et al. | Jun 2019 | B2 |
10324263 | Bund et al. | Jun 2019 | B2 |
10338323 | Lu et al. | Jul 2019 | B2 |
10353154 | Ott et al. | Jul 2019 | B2 |
10353156 | Hill et al. | Jul 2019 | B2 |
10359577 | Dannoux et al. | Jul 2019 | B2 |
10371914 | Coan et al. | Aug 2019 | B2 |
10379298 | Dannoux et al. | Aug 2019 | B2 |
10386584 | Rosson | Aug 2019 | B2 |
10401575 | Daily et al. | Sep 2019 | B2 |
10401578 | Coenegracht | Sep 2019 | B2 |
10401584 | Coan et al. | Sep 2019 | B2 |
10409007 | Kadar-Kallen et al. | Sep 2019 | B2 |
10422962 | Coenegracht | Sep 2019 | B2 |
10422970 | Holmberg et al. | Sep 2019 | B2 |
10429593 | Baca et al. | Oct 2019 | B2 |
10429594 | Dannoux et al. | Oct 2019 | B2 |
10434173 | Siadak et al. | Oct 2019 | B2 |
10439295 | Scheucher | Oct 2019 | B2 |
10444442 | Takano et al. | Oct 2019 | B2 |
10451811 | Coenegracht et al. | Oct 2019 | B2 |
10451817 | Lu | Oct 2019 | B2 |
10451830 | Szumacher et al. | Oct 2019 | B2 |
10488597 | Parikh et al. | Nov 2019 | B2 |
10495822 | Nhep | Dec 2019 | B2 |
10502916 | Coan et al. | Dec 2019 | B2 |
10520683 | Nhep | Dec 2019 | B2 |
10539745 | Kamada et al. | Jan 2020 | B2 |
10578821 | Ott et al. | Mar 2020 | B2 |
10585246 | Bretz et al. | Mar 2020 | B2 |
10591678 | Mullaney et al. | Mar 2020 | B2 |
10605998 | Rosson | Mar 2020 | B2 |
10606006 | Hill et al. | Mar 2020 | B2 |
D880423 | Obata et al. | Apr 2020 | S |
10613278 | Kempeneers et al. | Apr 2020 | B2 |
10620388 | Isenhour et al. | Apr 2020 | B2 |
10656347 | Kato | May 2020 | B2 |
10677998 | Ivan et al. | Jun 2020 | B2 |
10680343 | Scheucher | Jun 2020 | B2 |
10712516 | Courchaine et al. | Jul 2020 | B2 |
10739534 | Murray et al. | Aug 2020 | B2 |
10746939 | Lu et al. | Aug 2020 | B2 |
10761274 | Pepe et al. | Sep 2020 | B2 |
10782487 | Lu | Sep 2020 | B2 |
10802236 | Kowalczyk et al. | Oct 2020 | B2 |
10830967 | Pimentel et al. | Nov 2020 | B2 |
10830975 | Vaughn et al. | Nov 2020 | B2 |
10852487 | Ignatius | Dec 2020 | B1 |
10852498 | Hill et al. | Dec 2020 | B2 |
10852499 | Cooke et al. | Dec 2020 | B2 |
10859771 | Nhep | Dec 2020 | B2 |
10859781 | Hill et al. | Dec 2020 | B2 |
10962731 | Coenegracht | Mar 2021 | B2 |
10976500 | Ott et al. | Apr 2021 | B2 |
11061191 | Van Baelen et al. | Jul 2021 | B2 |
20010002220 | Throckmorton et al. | May 2001 | A1 |
20010012428 | Nakajima et al. | Aug 2001 | A1 |
20010019654 | Waldron et al. | Sep 2001 | A1 |
20010036342 | Knecht et al. | Nov 2001 | A1 |
20010036345 | Gimblet et al. | Nov 2001 | A1 |
20020012502 | Farrar et al. | Jan 2002 | A1 |
20020062978 | Sakabe et al. | May 2002 | A1 |
20020064364 | Battey et al. | May 2002 | A1 |
20020076165 | Childers et al. | Jun 2002 | A1 |
20020079697 | Griffioen et al. | Jun 2002 | A1 |
20020081077 | Nault | Jun 2002 | A1 |
20020122634 | Miyake et al. | Sep 2002 | A1 |
20020122653 | Donaldson et al. | Sep 2002 | A1 |
20020131721 | Gaio et al. | Sep 2002 | A1 |
20020159745 | Howell et al. | Oct 2002 | A1 |
20020172477 | Quinn et al. | Nov 2002 | A1 |
20030031447 | Nault | Feb 2003 | A1 |
20030059181 | Jackman et al. | Mar 2003 | A1 |
20030063866 | Melton et al. | Apr 2003 | A1 |
20030063867 | McDonald et al. | Apr 2003 | A1 |
20030063868 | Fentress | Apr 2003 | A1 |
20030063897 | Heo | Apr 2003 | A1 |
20030080555 | Griffioen et al. | May 2003 | A1 |
20030086664 | Moisel et al. | May 2003 | A1 |
20030094298 | Morrow et al. | May 2003 | A1 |
20030099448 | Gimblet | May 2003 | A1 |
20030103733 | Fleenor et al. | Jun 2003 | A1 |
20030123813 | Ravasio et al. | Jul 2003 | A1 |
20030128936 | Fahrnbauer et al. | Jul 2003 | A1 |
20030165311 | Wagman et al. | Sep 2003 | A1 |
20030201117 | Sakabe et al. | Oct 2003 | A1 |
20030206705 | McAlpine et al. | Nov 2003 | A1 |
20030210875 | Wagner et al. | Nov 2003 | A1 |
20040047566 | McDonald et al. | Mar 2004 | A1 |
20040052474 | Lampert et al. | Mar 2004 | A1 |
20040057676 | Doss et al. | Mar 2004 | A1 |
20040057681 | Quinn et al. | Mar 2004 | A1 |
20040072454 | Nakajima et al. | Apr 2004 | A1 |
20040076377 | Mizukami et al. | Apr 2004 | A1 |
20040076386 | Nechitailo | Apr 2004 | A1 |
20040086238 | Finona et al. | May 2004 | A1 |
20040096162 | Kocher et al. | May 2004 | A1 |
20040120662 | Lail et al. | Jun 2004 | A1 |
20040120663 | Lail et al. | Jun 2004 | A1 |
20040157449 | Hidaka et al. | Aug 2004 | A1 |
20040157499 | Nania et al. | Aug 2004 | A1 |
20040206542 | Gladd et al. | Oct 2004 | A1 |
20040223699 | Melton et al. | Nov 2004 | A1 |
20040223720 | Melton et al. | Nov 2004 | A1 |
20040228589 | Melton et al. | Nov 2004 | A1 |
20040240808 | Rhoney et al. | Dec 2004 | A1 |
20040247251 | Rubino et al. | Dec 2004 | A1 |
20040252954 | Ginocchio et al. | Dec 2004 | A1 |
20040262023 | Morrow et al. | Dec 2004 | A1 |
20050019031 | Ye et al. | Jan 2005 | A1 |
20050036744 | Caveney et al. | Feb 2005 | A1 |
20050036786 | Ramachandran et al. | Feb 2005 | A1 |
20050053342 | Melton et al. | Mar 2005 | A1 |
20050054237 | Gladd et al. | Mar 2005 | A1 |
20050084215 | Grzegorzewska et al. | Apr 2005 | A1 |
20050105873 | Reagan et al. | May 2005 | A1 |
20050123422 | Lilie | Jun 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050163448 | Blackwell et al. | Jul 2005 | A1 |
20050175307 | Battey et al. | Aug 2005 | A1 |
20050180697 | De Marchi | Aug 2005 | A1 |
20050213890 | Barnes et al. | Sep 2005 | A1 |
20050213892 | Barnes et al. | Sep 2005 | A1 |
20050213897 | Palmer et al. | Sep 2005 | A1 |
20050213899 | Hurley et al. | Sep 2005 | A1 |
20050213902 | Parsons | Sep 2005 | A1 |
20050213921 | Mertesdorf et al. | Sep 2005 | A1 |
20050226568 | Nakajima et al. | Oct 2005 | A1 |
20050232550 | Nakajima et al. | Oct 2005 | A1 |
20050232552 | Takahashi et al. | Oct 2005 | A1 |
20050232567 | Reagan et al. | Oct 2005 | A1 |
20050244108 | Billman et al. | Nov 2005 | A1 |
20050271344 | Grubish et al. | Dec 2005 | A1 |
20050281510 | Vo et al. | Dec 2005 | A1 |
20050281514 | Oki et al. | Dec 2005 | A1 |
20050286837 | Oki et al. | Dec 2005 | A1 |
20050286838 | Oki et al. | Dec 2005 | A1 |
20060002668 | Lail et al. | Jan 2006 | A1 |
20060008232 | Reagan et al. | Jan 2006 | A1 |
20060008233 | Reagan et al. | Jan 2006 | A1 |
20060008234 | Reagan et al. | Jan 2006 | A1 |
20060045428 | Theuerkorn et al. | Mar 2006 | A1 |
20060045430 | Theuerkorn et al. | Mar 2006 | A1 |
20060056769 | Khemakhem et al. | Mar 2006 | A1 |
20060056770 | Schmitz | Mar 2006 | A1 |
20060088247 | Tran et al. | Apr 2006 | A1 |
20060093278 | Elkins et al. | May 2006 | A1 |
20060093303 | Reagan et al. | May 2006 | A1 |
20060093304 | Battey et al. | May 2006 | A1 |
20060098932 | Battey et al. | May 2006 | A1 |
20060120672 | Cody et al. | Jun 2006 | A1 |
20060127016 | Baird et al. | Jun 2006 | A1 |
20060133748 | Seddon et al. | Jun 2006 | A1 |
20060133758 | Mullaney et al. | Jun 2006 | A1 |
20060133759 | Mullaney et al. | Jun 2006 | A1 |
20060147172 | Luther et al. | Jul 2006 | A1 |
20060153503 | Suzuki et al. | Jul 2006 | A1 |
20060153517 | Reagan et al. | Jul 2006 | A1 |
20060165352 | Caveney et al. | Jul 2006 | A1 |
20060171638 | Dye | Aug 2006 | A1 |
20060171640 | Dye | Aug 2006 | A1 |
20060210750 | Morrow et al. | Sep 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060257092 | Lu et al. | Nov 2006 | A1 |
20060269204 | Barth et al. | Nov 2006 | A1 |
20060269208 | Allen et al. | Nov 2006 | A1 |
20060280420 | Blackwell et al. | Dec 2006 | A1 |
20060283619 | Kowalczyk et al. | Dec 2006 | A1 |
20060291787 | Seddon | Dec 2006 | A1 |
20070025665 | Dean et al. | Feb 2007 | A1 |
20070031100 | Garcia et al. | Feb 2007 | A1 |
20070031103 | Tinucci et al. | Feb 2007 | A1 |
20070036483 | Shin et al. | Feb 2007 | A1 |
20070041732 | Oki et al. | Feb 2007 | A1 |
20070047897 | Cooke et al. | Mar 2007 | A1 |
20070077010 | Melton et al. | Apr 2007 | A1 |
20070098343 | Miller et al. | May 2007 | A1 |
20070110374 | Oki et al. | May 2007 | A1 |
20070116413 | Cox | May 2007 | A1 |
20070127872 | Caveney et al. | Jun 2007 | A1 |
20070140642 | Mertesdorf et al. | Jun 2007 | A1 |
20070160327 | Lewallen et al. | Jul 2007 | A1 |
20070189674 | Scheibenreif et al. | Aug 2007 | A1 |
20070237484 | Reagan et al. | Oct 2007 | A1 |
20070263961 | Khemakhem et al. | Nov 2007 | A1 |
20070286554 | Kuffel et al. | Dec 2007 | A1 |
20080019641 | Elkins et al. | Jan 2008 | A1 |
20080020532 | Monfray et al. | Jan 2008 | A1 |
20080044137 | Luther et al. | Feb 2008 | A1 |
20080044145 | Jenkins et al. | Feb 2008 | A1 |
20080069511 | Blackwell et al. | Mar 2008 | A1 |
20080080817 | Melton et al. | Apr 2008 | A1 |
20080112681 | Battey et al. | May 2008 | A1 |
20080131068 | Mertesdorf et al. | Jun 2008 | A1 |
20080138016 | Katagiyama et al. | Jun 2008 | A1 |
20080138025 | Reagan et al. | Jun 2008 | A1 |
20080166906 | Nania et al. | Jul 2008 | A1 |
20080175541 | Lu et al. | Jul 2008 | A1 |
20080175542 | Lu et al. | Jul 2008 | A1 |
20080175544 | Fujiwara et al. | Jul 2008 | A1 |
20080175548 | Knecht et al. | Jul 2008 | A1 |
20080226252 | Mertesdorf et al. | Sep 2008 | A1 |
20080232743 | Gronvall et al. | Sep 2008 | A1 |
20080240658 | Eeman et al. | Oct 2008 | A1 |
20080260344 | Smith et al. | Oct 2008 | A1 |
20080260345 | Mertesdorf et al. | Oct 2008 | A1 |
20080264664 | Dinh et al. | Oct 2008 | A1 |
20080273837 | Margolin et al. | Nov 2008 | A1 |
20090003772 | Lu et al. | Jan 2009 | A1 |
20090034923 | Miller et al. | Feb 2009 | A1 |
20090041411 | Melton et al. | Feb 2009 | A1 |
20090041412 | Danley et al. | Feb 2009 | A1 |
20090060421 | Parikh et al. | Mar 2009 | A1 |
20090060423 | Melton et al. | Mar 2009 | A1 |
20090067791 | Greenwood et al. | Mar 2009 | A1 |
20090067849 | Oki et al. | Mar 2009 | A1 |
20090074363 | Parsons et al. | Mar 2009 | A1 |
20090074369 | Bolton et al. | Mar 2009 | A1 |
20090123115 | Gronvall et al. | May 2009 | A1 |
20090129729 | Caveney et al. | May 2009 | A1 |
20090148101 | Lu et al. | Jun 2009 | A1 |
20090148102 | Lu et al. | Jun 2009 | A1 |
20090148103 | Lu et al. | Jun 2009 | A1 |
20090148104 | Lu et al. | Jun 2009 | A1 |
20090148118 | Gronvall et al. | Jun 2009 | A1 |
20090148120 | Reagan et al. | Jun 2009 | A1 |
20090156041 | Radle | Jun 2009 | A1 |
20090162016 | Lu et al. | Jun 2009 | A1 |
20090185835 | Park et al. | Jul 2009 | A1 |
20090190895 | Reagan et al. | Jul 2009 | A1 |
20090238531 | Holmberg et al. | Sep 2009 | A1 |
20090245737 | Fujiwara et al. | Oct 2009 | A1 |
20090245743 | Cote et al. | Oct 2009 | A1 |
20090263097 | Solheid et al. | Oct 2009 | A1 |
20090297112 | Mertesdorf et al. | Dec 2009 | A1 |
20090317039 | Blazer et al. | Dec 2009 | A1 |
20090317045 | Reagan et al. | Dec 2009 | A1 |
20100008909 | Siadak et al. | Jan 2010 | A1 |
20100014813 | Ito et al. | Jan 2010 | A1 |
20100014824 | Lu et al. | Jan 2010 | A1 |
20100014867 | Ramanitra et al. | Jan 2010 | A1 |
20100015834 | Siebens | Jan 2010 | A1 |
20100021254 | Jenkins et al. | Jan 2010 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100040331 | Khemakhem et al. | Feb 2010 | A1 |
20100040338 | Sek | Feb 2010 | A1 |
20100054680 | Lochkovic et al. | Mar 2010 | A1 |
20100061685 | Kowalczyk et al. | Mar 2010 | A1 |
20100074578 | Imaizumi et al. | Mar 2010 | A1 |
20100080516 | Coleman et al. | Apr 2010 | A1 |
20100086260 | Parikh et al. | Apr 2010 | A1 |
20100086267 | Cooke et al. | Apr 2010 | A1 |
20100092129 | Conner | Apr 2010 | A1 |
20100092133 | Conner | Apr 2010 | A1 |
20100092136 | Nhep | Apr 2010 | A1 |
20100092146 | Conner et al. | Apr 2010 | A1 |
20100092169 | Conner et al. | Apr 2010 | A1 |
20100092171 | Conner | Apr 2010 | A1 |
20100129034 | Kuffel et al. | May 2010 | A1 |
20100144183 | Nania et al. | Jun 2010 | A1 |
20100172616 | Lu et al. | Jul 2010 | A1 |
20100197222 | Scheucher | Aug 2010 | A1 |
20100215321 | Jenkins | Aug 2010 | A1 |
20100220962 | Caveney et al. | Sep 2010 | A1 |
20100226615 | Reagan et al. | Sep 2010 | A1 |
20100232753 | Parris et al. | Sep 2010 | A1 |
20100247053 | Cowen et al. | Sep 2010 | A1 |
20100266242 | Lu et al. | Oct 2010 | A1 |
20100266244 | Lu et al. | Oct 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100272399 | Griffiths et al. | Oct 2010 | A1 |
20100284662 | Reagan et al. | Nov 2010 | A1 |
20100290741 | Lu et al. | Nov 2010 | A1 |
20100303416 | Danley et al. | Dec 2010 | A1 |
20100303426 | Davis | Dec 2010 | A1 |
20100303427 | Rambow et al. | Dec 2010 | A1 |
20100310213 | Lewallen et al. | Dec 2010 | A1 |
20100322563 | Melton et al. | Dec 2010 | A1 |
20100329625 | Reagan et al. | Dec 2010 | A1 |
20110019964 | Nhep et al. | Jan 2011 | A1 |
20110047731 | Sugita et al. | Mar 2011 | A1 |
20110067452 | Gronvall et al. | Mar 2011 | A1 |
20110069932 | Overton et al. | Mar 2011 | A1 |
20110108719 | Ford et al. | May 2011 | A1 |
20110116749 | Kuffel et al. | May 2011 | A1 |
20110123166 | Reagan et al. | May 2011 | A1 |
20110129186 | Lewallen et al. | Jun 2011 | A1 |
20110164854 | Desard et al. | Jul 2011 | A1 |
20110222826 | Blackburn et al. | Sep 2011 | A1 |
20110262099 | Castonguay et al. | Oct 2011 | A1 |
20110262100 | Reagan et al. | Oct 2011 | A1 |
20110299814 | Nakagawa | Dec 2011 | A1 |
20110305421 | Caveney et al. | Dec 2011 | A1 |
20120002925 | Nakagawa | Jan 2012 | A1 |
20120008909 | Mertesdorf et al. | Jan 2012 | A1 |
20120045179 | Theuerkorn | Feb 2012 | A1 |
20120057830 | Taira et al. | Mar 2012 | A1 |
20120063724 | Kuffel et al. | Mar 2012 | A1 |
20120063729 | Fujiwara et al. | Mar 2012 | A1 |
20120106912 | McGranahan et al. | May 2012 | A1 |
20120106913 | Makrides-Saravanos et al. | May 2012 | A1 |
20120134629 | Lu et al. | May 2012 | A1 |
20120183268 | De et al. | Jul 2012 | A1 |
20120213478 | Chen et al. | Aug 2012 | A1 |
20120251060 | Hurley | Oct 2012 | A1 |
20120251063 | Reagan et al. | Oct 2012 | A1 |
20120252244 | Elkins et al. | Oct 2012 | A1 |
20120275749 | Kuffel et al. | Nov 2012 | A1 |
20120321256 | Caveney et al. | Dec 2012 | A1 |
20130004122 | Kingsbury | Jan 2013 | A1 |
20130020480 | Ford et al. | Jan 2013 | A1 |
20130034333 | Holmberg et al. | Feb 2013 | A1 |
20130051734 | Shen et al. | Feb 2013 | A1 |
20130064506 | Eberle et al. | Mar 2013 | A1 |
20130094821 | Logan | Apr 2013 | A1 |
20130109213 | Chang | May 2013 | A1 |
20130114930 | Smith et al. | May 2013 | A1 |
20130136402 | Kuffel et al. | May 2013 | A1 |
20130170834 | Cho et al. | Jul 2013 | A1 |
20130209099 | Reagan et al. | Aug 2013 | A1 |
20130236139 | Chen et al. | Sep 2013 | A1 |
20130266562 | Siadak et al. | Oct 2013 | A1 |
20130315538 | Kuffel et al. | Nov 2013 | A1 |
20140016902 | Pepe et al. | Jan 2014 | A1 |
20140044397 | Hikosaka et al. | Feb 2014 | A1 |
20140050446 | Chang | Feb 2014 | A1 |
20140056561 | Lu et al. | Feb 2014 | A1 |
20140079356 | Pepin et al. | Mar 2014 | A1 |
20140133804 | Lu et al. | May 2014 | A1 |
20140133806 | Hill et al. | May 2014 | A1 |
20140133807 | Katoh | May 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140153876 | Dendas et al. | Jun 2014 | A1 |
20140153878 | Mullaney | Jun 2014 | A1 |
20140161397 | Gallegos et al. | Jun 2014 | A1 |
20140205257 | Durrant et al. | Jul 2014 | A1 |
20140219609 | Nielson et al. | Aug 2014 | A1 |
20140219622 | Coan et al. | Aug 2014 | A1 |
20140233896 | Ishigami et al. | Aug 2014 | A1 |
20140241670 | Barnette et al. | Aug 2014 | A1 |
20140241671 | Koreeda et al. | Aug 2014 | A1 |
20140241689 | Bradley et al. | Aug 2014 | A1 |
20140254987 | Caveney et al. | Sep 2014 | A1 |
20140294395 | Waldron et al. | Oct 2014 | A1 |
20140314379 | Lu et al. | Oct 2014 | A1 |
20140328559 | Kobayashi et al. | Nov 2014 | A1 |
20140341511 | Daems et al. | Nov 2014 | A1 |
20140348467 | Cote et al. | Nov 2014 | A1 |
20140355936 | Bund et al. | Dec 2014 | A1 |
20150003787 | Chen et al. | Jan 2015 | A1 |
20150003788 | Chen et al. | Jan 2015 | A1 |
20150036982 | Nhep et al. | Feb 2015 | A1 |
20150110451 | Blazer et al. | Apr 2015 | A1 |
20150144883 | Sendelweck | May 2015 | A1 |
20150153532 | Holmberg et al. | Jun 2015 | A1 |
20150168657 | Islam | Jun 2015 | A1 |
20150183869 | Siadak et al. | Jul 2015 | A1 |
20150185423 | Matsui et al. | Jul 2015 | A1 |
20150253527 | Hill et al. | Sep 2015 | A1 |
20150253528 | Corbille et al. | Sep 2015 | A1 |
20150268423 | Burkholder et al. | Sep 2015 | A1 |
20150268434 | Barnette et al. | Sep 2015 | A1 |
20150286011 | Nhep | Oct 2015 | A1 |
20150293310 | Kanno | Oct 2015 | A1 |
20150309274 | Hurley et al. | Oct 2015 | A1 |
20150316727 | Kondo et al. | Nov 2015 | A1 |
20150346435 | Kato | Dec 2015 | A1 |
20150346436 | Pepe et al. | Dec 2015 | A1 |
20160015885 | Pananen et al. | Jan 2016 | A1 |
20160041346 | Barnette et al. | Feb 2016 | A1 |
20160062053 | Mullaney | Mar 2016 | A1 |
20160085032 | Lu et al. | Mar 2016 | A1 |
20160109671 | Coan et al. | Apr 2016 | A1 |
20160116686 | Durrant et al. | Apr 2016 | A1 |
20160126667 | Droesbeke et al. | May 2016 | A1 |
20160131851 | Theuerkorn | May 2016 | A1 |
20160131857 | Pimentel et al. | May 2016 | A1 |
20160139346 | Bund et al. | May 2016 | A1 |
20160154184 | Bund et al. | Jun 2016 | A1 |
20160154186 | Gimblet et al. | Jun 2016 | A1 |
20160161682 | Nishimura | Jun 2016 | A1 |
20160161688 | Nishimura | Jun 2016 | A1 |
20160161689 | Nishimura | Jun 2016 | A1 |
20160187590 | Lu | Jun 2016 | A1 |
20160202431 | Hill et al. | Jul 2016 | A1 |
20160209599 | Van et al. | Jul 2016 | A1 |
20160209602 | Theuerkorn | Jul 2016 | A1 |
20160216468 | Gimblet et al. | Jul 2016 | A1 |
20160238810 | Hubbard et al. | Aug 2016 | A1 |
20160246019 | Ishii et al. | Aug 2016 | A1 |
20160249019 | Westwick et al. | Aug 2016 | A1 |
20160259133 | Kobayashi et al. | Sep 2016 | A1 |
20160259134 | Daems et al. | Sep 2016 | A1 |
20160306122 | Tong et al. | Oct 2016 | A1 |
20160327754 | Hill et al. | Nov 2016 | A1 |
20160349458 | Murray et al. | Dec 2016 | A1 |
20160356963 | Liu et al. | Dec 2016 | A1 |
20170023758 | Reagan et al. | Jan 2017 | A1 |
20170038538 | Isenhour et al. | Feb 2017 | A1 |
20170045699 | Coan et al. | Feb 2017 | A1 |
20170052325 | Mullaney et al. | Feb 2017 | A1 |
20170059784 | Gniadek et al. | Mar 2017 | A1 |
20170123163 | Lu et al. | May 2017 | A1 |
20170123165 | Barnette et al. | May 2017 | A1 |
20170131509 | Xiao et al. | May 2017 | A1 |
20170139158 | Coenegracht | May 2017 | A1 |
20170160492 | Lin et al. | Jun 2017 | A1 |
20170168248 | Hayauchi et al. | Jun 2017 | A1 |
20170168256 | Reagan et al. | Jun 2017 | A1 |
20170170596 | Goossens et al. | Jun 2017 | A1 |
20170176252 | Marple et al. | Jun 2017 | A1 |
20170176690 | Bretz et al. | Jun 2017 | A1 |
20170182160 | Siadak et al. | Jun 2017 | A1 |
20170219782 | Nishimura | Aug 2017 | A1 |
20170235067 | Holmberg et al. | Aug 2017 | A1 |
20170238822 | Young et al. | Aug 2017 | A1 |
20170254961 | Kamada et al. | Sep 2017 | A1 |
20170254962 | Mueller-Schlomka et al. | Sep 2017 | A1 |
20170261696 | Compton et al. | Sep 2017 | A1 |
20170261698 | Compton et al. | Sep 2017 | A1 |
20170261699 | Compton et al. | Sep 2017 | A1 |
20170285275 | Hill et al. | Oct 2017 | A1 |
20170285279 | Daems et al. | Oct 2017 | A1 |
20170288315 | Scheucher | Oct 2017 | A1 |
20170293091 | Lu et al. | Oct 2017 | A1 |
20170336587 | Coan et al. | Nov 2017 | A1 |
20170343741 | Coenegracht et al. | Nov 2017 | A1 |
20170343745 | Rosson | Nov 2017 | A1 |
20170351037 | Watanabe et al. | Dec 2017 | A1 |
20180003902 | Rosson et al. | Jan 2018 | A1 |
20180031774 | Van et al. | Feb 2018 | A1 |
20180079569 | Simpson | Mar 2018 | A1 |
20180081127 | Coenegracht | Mar 2018 | A1 |
20180143386 | Coan et al. | May 2018 | A1 |
20180151960 | Scheucher | May 2018 | A1 |
20180180831 | Blazer et al. | Jun 2018 | A1 |
20180224610 | Pimentel et al. | Aug 2018 | A1 |
20180239094 | Barnette et al. | Aug 2018 | A1 |
20180246283 | Pepe et al. | Aug 2018 | A1 |
20180259721 | Bund et al. | Sep 2018 | A1 |
20180267265 | Zhang et al. | Sep 2018 | A1 |
20180321448 | Wu et al. | Nov 2018 | A1 |
20180329149 | Mullaney et al. | Nov 2018 | A1 |
20180348447 | Nhep et al. | Dec 2018 | A1 |
20180372962 | Isenhour et al. | Dec 2018 | A1 |
20190004251 | Dannoux et al. | Jan 2019 | A1 |
20190004252 | Rosson | Jan 2019 | A1 |
20190004255 | Dannoux et al. | Jan 2019 | A1 |
20190004256 | Rosson | Jan 2019 | A1 |
20190004258 | Dannoux et al. | Jan 2019 | A1 |
20190011641 | Isenhour et al. | Jan 2019 | A1 |
20190014987 | Sasaki et al. | Jan 2019 | A1 |
20190018210 | Coan et al. | Jan 2019 | A1 |
20190033531 | Taira et al. | Jan 2019 | A1 |
20190033532 | Gimblet et al. | Jan 2019 | A1 |
20190038743 | Siadak et al. | Feb 2019 | A1 |
20190041584 | Coenegracht et al. | Feb 2019 | A1 |
20190041585 | Bretz et al. | Feb 2019 | A1 |
20190041595 | Reagan et al. | Feb 2019 | A1 |
20190058259 | Scheucher | Feb 2019 | A1 |
20190107677 | Coenegracht et al. | Apr 2019 | A1 |
20190147202 | Harney | May 2019 | A1 |
20190162910 | Gurreri | May 2019 | A1 |
20190162914 | Baca et al. | May 2019 | A1 |
20190170961 | Coenegracht et al. | Jun 2019 | A1 |
20190187396 | Finnegan et al. | Jun 2019 | A1 |
20190235177 | Lu et al. | Aug 2019 | A1 |
20190250338 | Mullaney et al. | Aug 2019 | A1 |
20190258010 | Anderson et al. | Aug 2019 | A1 |
20190271817 | Coenegracht | Sep 2019 | A1 |
20190324217 | Lu et al. | Oct 2019 | A1 |
20190339460 | Dannoux et al. | Nov 2019 | A1 |
20190339461 | Dannoux et al. | Nov 2019 | A1 |
20190361177 | Aoshima et al. | Nov 2019 | A1 |
20190369336 | Van et al. | Dec 2019 | A1 |
20190369345 | Reagan et al. | Dec 2019 | A1 |
20190374637 | Siadak et al. | Dec 2019 | A1 |
20200012051 | Coenegracht et al. | Jan 2020 | A1 |
20200036101 | Scheucher | Jan 2020 | A1 |
20200049922 | Rosson | Feb 2020 | A1 |
20200057205 | Dannoux et al. | Feb 2020 | A1 |
20200057222 | Dannoux et al. | Feb 2020 | A1 |
20200057223 | Dannoux et al. | Feb 2020 | A1 |
20200057224 | Dannoux et al. | Feb 2020 | A1 |
20200057723 | Chirca et al. | Feb 2020 | A1 |
20200096705 | Rosson | Mar 2020 | A1 |
20200096709 | Rosson | Mar 2020 | A1 |
20200096710 | Rosson | Mar 2020 | A1 |
20200103599 | Rosson | Apr 2020 | A1 |
20200103608 | Hill et al. | Apr 2020 | A1 |
20200110229 | Dannoux et al. | Apr 2020 | A1 |
20200110234 | Holmberg et al. | Apr 2020 | A1 |
20200116949 | Rosson | Apr 2020 | A1 |
20200116952 | Rosson | Apr 2020 | A1 |
20200116953 | Rosson | Apr 2020 | A1 |
20200116954 | Rosson | Apr 2020 | A1 |
20200116958 | Dannoux et al. | Apr 2020 | A1 |
20200116962 | Dannoux et al. | Apr 2020 | A1 |
20200124805 | Rosson et al. | Apr 2020 | A1 |
20200124812 | Dannoux et al. | Apr 2020 | A1 |
20200132939 | Coenegracht et al. | Apr 2020 | A1 |
20200132941 | Otsuka et al. | Apr 2020 | A1 |
20200150356 | Lu | May 2020 | A1 |
20200174201 | Cote et al. | Jun 2020 | A1 |
20200183097 | Chang et al. | Jun 2020 | A1 |
20200192042 | Coan et al. | Jun 2020 | A1 |
20200209492 | Rosson | Jul 2020 | A1 |
20200218017 | Coenegracht | Jul 2020 | A1 |
20200225422 | Van et al. | Jul 2020 | A1 |
20200225424 | Coenegracht | Jul 2020 | A1 |
20200241211 | Shonkwiler et al. | Jul 2020 | A1 |
20200348476 | Hill et al. | Nov 2020 | A1 |
20200371306 | Mosier et al. | Nov 2020 | A1 |
20200393629 | Hill et al. | Dec 2020 | A1 |
20220171138 | Barthes | Jun 2022 | A1 |
20220171140 | Barthes | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2006232206 | Oct 2006 | AU |
1060911 | May 1992 | CN |
1071012 | Apr 1993 | CN |
1213783 | Apr 1999 | CN |
1231430 | Oct 1999 | CN |
1114839 | Jul 2003 | CN |
1646962 | Jul 2005 | CN |
1833188 | Sep 2006 | CN |
1922523 | Feb 2007 | CN |
1985205 | Jun 2007 | CN |
101084461 | Dec 2007 | CN |
101111790 | Jan 2008 | CN |
101195453 | Jun 2008 | CN |
201404194 | Feb 2010 | CN |
201408274 | Feb 2010 | CN |
201522561 | Jul 2010 | CN |
101806939 | Aug 2010 | CN |
101846773 | Sep 2010 | CN |
101866034 | Oct 2010 | CN |
101939680 | Jan 2011 | CN |
201704194 | Jan 2011 | CN |
102141655 | Aug 2011 | CN |
102346281 | Feb 2012 | CN |
202282523 | Jun 2012 | CN |
203224645 | Oct 2013 | CN |
203396982 | Jan 2014 | CN |
103713362 | Apr 2014 | CN |
103782209 | May 2014 | CN |
104007514 | Aug 2014 | CN |
104064903 | Sep 2014 | CN |
104280830 | Jan 2015 | CN |
104603656 | May 2015 | CN |
104704411 | Jun 2015 | CN |
105467529 | Apr 2016 | CN |
105683795 | Jun 2016 | CN |
110608208 | Dec 2019 | CN |
110954996 | Apr 2020 | CN |
3537684 | Apr 1987 | DE |
3737842 | Sep 1988 | DE |
19805554 | Aug 1998 | DE |
0012566 | Jun 1980 | EP |
0026553 | Apr 1981 | EP |
0122566 | Oct 1984 | EP |
0130513 | Jan 1985 | EP |
0244791 | Nov 1987 | EP |
0462362 | Dec 1991 | EP |
0468671 | Jan 1992 | EP |
0469671 | Feb 1992 | EP |
0547778 | Jun 1993 | EP |
0547788 | Jun 1993 | EP |
0762171 | Mar 1997 | EP |
0782025 | Jul 1997 | EP |
0855610 | Jul 1998 | EP |
0856751 | Aug 1998 | EP |
0856761 | Aug 1998 | EP |
0940700 | Sep 1999 | EP |
0949522 | Oct 1999 | EP |
0957381 | Nov 1999 | EP |
0997757 | May 2000 | EP |
1065542 | Jan 2001 | EP |
1122566 | Aug 2001 | EP |
1243957 | Sep 2002 | EP |
1258758 | Nov 2002 | EP |
1391762 | Feb 2004 | EP |
1431786 | Jun 2004 | EP |
1438622 | Jul 2004 | EP |
1678537 | Jul 2006 | EP |
1759231 | Mar 2007 | EP |
1810062 | Jul 2007 | EP |
2069845 | Jun 2009 | EP |
2149063 | Feb 2010 | EP |
2150847 | Feb 2010 | EP |
2193395 | Jun 2010 | EP |
2255233 | Dec 2010 | EP |
2333597 | Jun 2011 | EP |
2362253 | Aug 2011 | EP |
2401641 | Jan 2012 | EP |
2609458 | Jul 2013 | EP |
2622395 | Aug 2013 | EP |
2734879 | May 2014 | EP |
2815259 | Dec 2014 | EP |
2817667 | Dec 2014 | EP |
2992372 | Mar 2016 | EP |
3022596 | May 2016 | EP |
3064973 | Sep 2016 | EP |
3101740 | Dec 2016 | EP |
3207223 | Aug 2017 | EP |
3234672 | Oct 2017 | EP |
3245545 | Nov 2017 | EP |
3265859 | Jan 2018 | EP |
3336992 | Jun 2018 | EP |
3362830 | Aug 2018 | EP |
3427096 | Jan 2019 | EP |
3443395 | Feb 2019 | EP |
3535614 | Sep 2019 | EP |
3537197 | Sep 2019 | EP |
3646074 | May 2020 | EP |
3646079 | May 2020 | EP |
1184287 | May 2017 | ES |
2485754 | Dec 1981 | FR |
2022284 | Dec 1979 | GB |
2154333 | Sep 1985 | GB |
2169094 | Jul 1986 | GB |
52-030447 | Mar 1977 | JP |
58-142308 | Aug 1983 | JP |
61-145509 | Jul 1986 | JP |
62-054204 | Mar 1987 | JP |
63-020111 | Jan 1988 | JP |
63-078908 | Apr 1988 | JP |
63-089421 | Apr 1988 | JP |
03-063615 | Mar 1991 | JP |
03-207223 | Sep 1991 | JP |
05-106765 | Apr 1993 | JP |
05-142439 | Jun 1993 | JP |
05-297246 | Nov 1993 | JP |
06-320111 | Nov 1994 | JP |
07-318758 | Dec 1995 | JP |
08-050211 | Feb 1996 | JP |
08-054522 | Feb 1996 | JP |
08-062432 | Mar 1996 | JP |
08-292331 | Nov 1996 | JP |
09-049942 | Feb 1997 | JP |
09-135526 | May 1997 | JP |
09-159867 | Jun 1997 | JP |
09-203831 | Aug 1997 | JP |
09-325223 | Dec 1997 | JP |
09-325249 | Dec 1997 | JP |
10-170781 | Jun 1998 | JP |
10-332953 | Dec 1998 | JP |
10-339826 | Dec 1998 | JP |
11-064682 | Mar 1999 | JP |
11-119064 | Apr 1999 | JP |
11-248979 | Sep 1999 | JP |
11-271582 | Oct 1999 | JP |
11-281861 | Oct 1999 | JP |
11-326693 | Nov 1999 | JP |
11-337768 | Dec 1999 | JP |
11-352368 | Dec 1999 | JP |
2000-002828 | Jan 2000 | JP |
2001-116968 | Apr 2001 | JP |
2001-290051 | Oct 2001 | JP |
2002-520987 | Jul 2002 | JP |
3296698 | Jul 2002 | JP |
2002-250987 | Sep 2002 | JP |
2003-009331 | Jan 2003 | JP |
2003-070143 | Mar 2003 | JP |
2003-121699 | Apr 2003 | JP |
2003-177279 | Jun 2003 | JP |
2003-302561 | Oct 2003 | JP |
2004-361521 | Dec 2004 | JP |
2005-024789 | Jan 2005 | JP |
2005-031544 | Feb 2005 | JP |
2005-077591 | Mar 2005 | JP |
2005-114860 | Apr 2005 | JP |
2005-520987 | Jul 2005 | JP |
2006-023502 | Jan 2006 | JP |
2006-146084 | Jun 2006 | JP |
2006-259631 | Sep 2006 | JP |
2006-337637 | Dec 2006 | JP |
2007-078740 | Mar 2007 | JP |
2007-121859 | May 2007 | JP |
2008-191422 | Aug 2008 | JP |
2008-250360 | Oct 2008 | JP |
2009-265208 | Nov 2009 | JP |
2010-152084 | Jul 2010 | JP |
2010-191420 | Sep 2010 | JP |
2011-018003 | Jan 2011 | JP |
2011-033698 | Feb 2011 | JP |
2013-041089 | Feb 2013 | JP |
2013-156580 | Aug 2013 | JP |
2014-085474 | May 2014 | JP |
2014-095834 | May 2014 | JP |
2014-134746 | Jul 2014 | JP |
5537852 | Jul 2014 | JP |
5538328 | Jul 2014 | JP |
2014-157214 | Aug 2014 | JP |
2014-219441 | Nov 2014 | JP |
2015-125217 | Jul 2015 | JP |
2016-109816 | Jun 2016 | JP |
2016-109817 | Jun 2016 | JP |
2016-109819 | Jun 2016 | JP |
2016-156916 | Sep 2016 | JP |
3207223 | Nov 2016 | JP |
3207233 | Nov 2016 | JP |
10-2013-0081087 | Jul 2013 | KR |
222688 | Apr 1994 | TW |
9425885 | Nov 1994 | WO |
9836304 | Aug 1998 | WO |
0127660 | Apr 2001 | WO |
0192927 | Dec 2001 | WO |
0192937 | Dec 2001 | WO |
0225340 | Mar 2002 | WO |
0336358 | May 2003 | WO |
2004061509 | Jul 2004 | WO |
2005045494 | May 2005 | WO |
2006009597 | Jan 2006 | WO |
2006052420 | May 2006 | WO |
2006113726 | Oct 2006 | WO |
2006123777 | Nov 2006 | WO |
2008027201 | Mar 2008 | WO |
2008150408 | Dec 2008 | WO |
2008150423 | Dec 2008 | WO |
2009042066 | Apr 2009 | WO |
2009113819 | Sep 2009 | WO |
2009117060 | Sep 2009 | WO |
2009154990 | Dec 2009 | WO |
2010092009 | Aug 2010 | WO |
2010099141 | Sep 2010 | WO |
2011044090 | Apr 2011 | WO |
2011047111 | Apr 2011 | WO |
2012027313 | Mar 2012 | WO |
2012037727 | Mar 2012 | WO |
2012044741 | Apr 2012 | WO |
2012163052 | Dec 2012 | WO |
2013016042 | Jan 2013 | WO |
2013122752 | Aug 2013 | WO |
2013126488 | Aug 2013 | WO |
2013177016 | Nov 2013 | WO |
2014151259 | Sep 2014 | WO |
2014167447 | Oct 2014 | WO |
2014179411 | Nov 2014 | WO |
2014197894 | Dec 2014 | WO |
2015047508 | Apr 2015 | WO |
2015144883 | Oct 2015 | WO |
2015197588 | Dec 2015 | WO |
2016059320 | Apr 2016 | WO |
2016073862 | May 2016 | WO |
2016095213 | Jun 2016 | WO |
2016100078 | Jun 2016 | WO |
2016115288 | Jul 2016 | WO |
2016156610 | Oct 2016 | WO |
2016168389 | Oct 2016 | WO |
2017063107 | Apr 2017 | WO |
2017146722 | Aug 2017 | WO |
2017155754 | Sep 2017 | WO |
2017178920 | Oct 2017 | WO |
2018083561 | May 2018 | WO |
2018175123 | Sep 2018 | WO |
2018204864 | Nov 2018 | WO |
2019005190 | Jan 2019 | WO |
2019005191 | Jan 2019 | WO |
2019005192 | Jan 2019 | WO |
2019005193 | Jan 2019 | WO |
2019005194 | Jan 2019 | WO |
2019005195 | Jan 2019 | WO |
2019005196 | Jan 2019 | WO |
2019005197 | Jan 2019 | WO |
2019005198 | Jan 2019 | WO |
2019005199 | Jan 2019 | WO |
2019005200 | Jan 2019 | WO |
2019005201 | Jan 2019 | WO |
2019005202 | Jan 2019 | WO |
2019005203 | Jan 2019 | WO |
2019005204 | Jan 2019 | WO |
2019006176 | Jan 2019 | WO |
2019036339 | Feb 2019 | WO |
2019126333 | Jun 2019 | WO |
2019195652 | Oct 2019 | WO |
2020101850 | May 2020 | WO |
Entry |
---|
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding. |
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs. |
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs. |
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs. |
Corning Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002). |
Corning Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002). |
Digital Optical Audio Cable Toslink Cable. Date: Jun. 27, 2019 [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B07TJMP4TP/ (Year: 2019). |
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol. 0733-8724 7(11), 17411751 (1989). |
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs. |
Gold Plated Toslink. Date: Feb. 5, 2015. [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B00T8HWV62/ (Year: 2015). |
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019. |
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980. |
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007. |
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6. |
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 Sec. 10.3, 12.2, 165 Pgs. |
Stratos: Lightwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs. |
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs. |
UPC Optic Fiber Quick Connector. Date: May 13, 2016 [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B01FLUV5DE/ (Year: 2016). |
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004). |
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), F14451446 (2004). |
Xiao et al. “1 xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015. |
Number | Date | Country | |
---|---|---|---|
20220171139 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63119622 | Nov 2020 | US |