Fiber optic adapter assemblies including a conversion housing and a release housing

Information

  • Patent Grant
  • 11880076
  • Patent Number
    11,880,076
  • Date Filed
    Tuesday, November 16, 2021
    2 years ago
  • Date Issued
    Tuesday, January 23, 2024
    3 months ago
Abstract
A fiber optic connector assembly includes a connector housing defining locking portion defined, an adapter assembly selectively coupled to the connector housing, the adapter assembly including a conversion housing extending around the connector housing and defining a conversion retention member that is positionable between an engaged position, in which the conversion retention member restricts movement of the connector housing with respect to the adapter assembly in an axial direction, and a disengaged position, in which the connector housing is movable with respect to the adapter assembly in the axial direction, and a release housing positioned between the conversion housing and the connector housing, the release housing defining a release front end positionable at least partially within the conversion housing, and a release face selectively engageable with the conversion retention member and configured to move the conversion retention member from the engaged position to the disengaged position.
Description
BACKGROUND

The present disclosure generally relates to fiber optic adapter assemblies for connecting optical fibers, and more particularly to fiber optic adapter assemblies including a conversion housing and a release housing


Optical fibers are used in an increasing number and variety of applications, such as a wide variety of telecommunications and data transmission applications. As a result, fiber optic networks include an ever increasing number of terminated optical fibers and fiber optic cables that can be conveniently and reliable mated with corresponding optical receptacles in the network. These terminated optical fibers and fiber optic cables are available in a variety of connectorized formats including, for example, hardened OptiTap® and OptiTip® connectors, field-installable UniCam® connectors, preconnectorized single or multi-fiber cable assemblies with SC, FC, or LC connectors, etc., all of which are available from Corning Incorporated, with similar products available from other manufacturers, as is well documented in the patent literature.


The optical receptacles with which the aforementioned terminated fibers and cables are coupled are commonly provided at optical network units (ONUs), network interface devices (NIDs), and other types of network devices or enclosures, and often require hardware that is sufficiently robust to be employed in a variety of environments under a variety of installation conditions. These conditions may be attributable to the environment in which the connectors are employed, or the habits of the technicians handling the hardware. Consequently, there is a continuing drive to enhance the robustness of these connectorized assemblies, while preserving quick, reliable, and trouble-free optical connection to the network.


SUMMARY

Fiber optic connectors, connectorized cable assemblies, closure assemblies, and methods for connecting fiber optic connectors to, and disconnecting fiber optic connectors from closure assemblies are disclosed herein.


In a first aspect A1, the present disclosure provides a fiber optic connector assembly comprising a connector housing defining a rotationally-discrete locking portion defined on an outer surface of the connector housing, an adapter assembly selectively coupled to the connector housing, the adapter assembly comprising a conversion housing extending around the connector housing and defining a conversion front end and a conversion retention member that is positionable between an engaged position, in which the conversion retention member restricts movement of the connector housing with respect to the adapter assembly in an axial direction, and a disengaged position, in which the connector housing is movable with respect to the adapter assembly in the axial direction, and a release housing positioned between the conversion housing and the connector housing, the release housing defining a release front end positionable at least partially within the conversion housing, and a release face selectively engageable with the conversion retention member and configured to move the conversion retention member from the engaged position to the disengaged position.


In a second aspect A2, the present disclosure provides the fiber optic connector assembly of aspect A1, further comprising a boot coupled to the release housing opposite the release front end.


In a third aspect A3, the present disclosure provides the fiber optic connector assembly of either of aspects A1 or A2, wherein the conversion retention member of the conversion housing defines forwardly-facing connector engagement face, and the rotationally-discrete locking portion of the connector housing defining a connector locking face.


In a fourth aspect A4, the present disclosure provides the fiber optic connector assembly of aspect A3, wherein the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face.


In a fifth aspect A5, the present disclosure provides the fiber optic connector assembly of aspect A4, wherein the release face faces inward in a radial direction that is transverse to the axial direction.


In a sixth aspect A6, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A5, wherein the release housing defines one or more release faces that are selectively engageable with the conversion housing.


In a seventh aspect A7, the present disclosure provides the fiber optic connector assembly of aspect A6, wherein the one or more release faces face outwardly in a radial direction that is transverse to the axial direction.


In an eighth aspect A8, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A7, wherein the conversion housing defines a conversion inner sidewall and a forward conversion ledge and a conversion inner space, and wherein the conversion retention member extends rearwardly from the forward conversion ledge into the conversion inner space.


In a ninth aspect A9, the present disclosure provides the fiber optic connector assembly of aspect A8, wherein the conversion retention member intersects the forward conversion ledge at a transition intersection, wherein at least a portion of the transition intersection is transverse to the forward conversion ledge and the conversion retention member.


In a tenth aspect A10, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A9, wherein the release housing defines a release outer surface extending the axial direction, and a release slot extending through the release outer surface, and wherein the conversion retention member is positioned at least partially within the release slot in the engaged position.


In an eleventh aspect A11, the present disclosure provides the fiber optic connector assembly of aspect A10, wherein the release housing defines a release retainer extending over at least a portion of the release slot.


In a twelfth aspect A12, the present disclosure provides the fiber optic connector assembly of either of aspects A10 or A11, wherein the release housing defines a release face positioned adjacent to the release slot, wherein the release face faces outward in a radial direction that is transverse to the axial direction.


In a thirteenth aspect A13, the present disclosure provides the fiber optic connector assembly of aspect A12, wherein the release face of the release housing is a first release face, and wherein the release housing further comprises a second release face, wherein the first release face and the second release face are positioned on opposite sides of the release slot.


In a fourteenth aspect A14, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A13, wherein the conversion front end defines a forward conversion keying feature structurally configured to engage an SC connector.


In a fifteenth aspect A15, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A14, wherein the release housing defines an inward release keying portion and wherein the connector housing defines a connector keying portion that is engaged with the inward release keying portion.


In a sixteenth aspect A16, the present disclosure provides the fiber optic connector assembly of any of aspects A1-A15, wherein the release housing defines an outward release keying portion and wherein the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.


In a seventeenth aspect A17, the present disclosure provides the fiber optic connector assembly of aspect A1, wherein the conversion retention member of the conversion housing defines forwardly-facing connector engagement face, the rotationally-discrete locking portion of the connector housing defining a connector locking face engaged with the forwardly-facing connector engagement face when the conversion retention member is in the engaged position, the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face, the release housing defines one or more release faces that are selectively engageable with the conversion housing, and the release face faces inward in a radial direction that is transverse to the axial direction.


In an eighteenth aspect A18, the present disclosure provides a fiber optic connector assembly comprising a connector housing defining a locking portion on an outer surface of the connector housing, and a connector keying portion on the outer surface of the connector housing, an adapter assembly selectively coupled to the connector housing, the adapter assembly comprising a conversion housing extending around the connector housing and defining a conversion front end and a conversion retention member selectively engaged with the locking portion of the connector housing, and a release housing positioned between the conversion housing and the connector housing, the release housing defining an inward release keying portion engaged with the connector keying portion, and a release face that is selectively engageable with the conversion retention member.


In a nineteenth aspect A19, the present disclosure provides the fiber optic connector assembly of aspect A18, wherein the conversion housing defines a forward conversion keying feature structurally configured to engage an SC connector.


In a twentieth aspect A20, the present disclosure provides the fiber optic connector assembly of aspect A19, wherein the conversion housing further defines a conversion guide extending outward from the conversion housing and aligned with the forward conversion keying feature.


In a twenty-first aspect A21, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A20, wherein the release housing defines an outward release keying portion on a release outer surface of the release housing.


In a twenty-second aspect A22, the present disclosure provides the fiber optic connector assembly of aspect A21, wherein the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.


In a twenty-third aspect A23, the present disclosure provides the fiber optic connector assembly of aspect A22, wherein the rearward conversion keying feature defines a slot engaged with the outward release keying portion of the release housing.


In a twenty-fourth aspect A24, the present disclosure provides the fiber optic connector assembly of any of aspects A21-A23, wherein the outward release keying portion is formed as a positive surface projection extending outward from the release outer surface and defines opposing outward release contact surfaces.


In a twenty-fifth aspect A25, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A24, wherein the connector keying portion is formed as a negative cut out and defines opposing connector contact surfaces.


In a twenty-sixth aspect A26, the present disclosure provides the fiber optic connector assembly of any of aspects A18-A23, wherein the inward release keying portion is formed as a positive surface projection extending inward from a release inner surface in a radial direction that is transverse to an axial direction.


In a twenty-seventh aspect A27, the present disclosure provides the fiber optic connector assembly of aspect A18, wherein the conversion housing defines a forward conversion keying feature structurally configured to engage an SC connector, the release housing defines an outward release keying portion on a release outer surface of the release housing, and the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.


In a twenty-eighth aspect A28, the present disclosure provides a method for disconnecting a fiber optic connector from a closure, the method comprising moving a release housing in an axial direction with respect to a conversion housing engaged with a connector housing, wherein the conversion housing comprises a conversion retention member engaged with a rotationally-discrete locking portion of the connector housing, engaging the conversion retention member of the conversion housing with a release face of the release housing, thereby moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing, and removing the connector housing from the conversion housing.


In a twenty-ninth aspect A29, the present disclosure provides the method of aspect A28, wherein moving the release housing in the axial direction with respect to the conversion housing comprises moving a boot coupled to the release housing in the axial direction with respect to the conversion housing.


In a thirtieth aspect A30, the present disclosure provides the method of either of aspects A28 or A29, wherein moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing comprises deflecting the conversion retention member in a radially-outward direction.


In a thirty-first aspect A31, the present disclosure provides the method of any of aspects A28-A30, wherein moving the conversion retention member out of engagement with the rotationally-discrete locking portion of the connector housing comprises moving a forwardly-facing connector engagement face out of the conversion retention member radially outward from a connector engagement face of rotationally-discrete locking portion of the connector housing.


Additional features of fiber optic connectors, connectorized cable assemblies, closure assemblies, and methods for connecting fiber optic connectors to, and disconnecting fiber optic connectors from closure assemblies will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts an isometric view of a closure and fiber optic connector assemblies inserted at least partially into the closure, according to one or more embodiments shown and described herein;



FIG. 2A schematically depicts an isometric view of a coupling and a fiber optic connector assembly including a connector housing and an adapter assembly including a conversion housing and a release housing, according to one or more embodiments shown and described herein;



FIG. 2B schematically depicts an exploded isometric view of the fiber optic connector assembly and the coupling of FIG. 2A, according to one or more embodiments shown and described herein;



FIG. 3A schematically depicts a front isometric view of the connector housing of FIG. 2A, according to one or more embodiments shown and described herein;



FIG. 3B schematically depicts an isometric view of the release housing of FIG. 2A, according to one or more embodiments shown and described herein;



FIG. 3C schematically depicts an isometric section view of the release housing of FIG. 3B, according to one or more embodiments shown and described herein;



FIG. 4 schematically depicts a side isometric view of the release housing of FIG. 2A, according to one or more embodiments shown and described herein;



FIG. 5 schematically depicts a section isometric view of the conversion housing of FIG. 2A, according to one or more embodiments shown and described herein;



FIG. 6 schematically depicts a rear section view of the conversion housing of FIG. 5, according to one or more embodiments shown and described herein;



FIG. 7A schematically depicts an isometric section view of the conversion housing of FIG. 5, according to one or more embodiments shown and described herein;



FIG. 7B schematically depicts a side section view of the conversion housing of FIG. 5, according to one or more embodiments shown and described herein;



FIG. 7C schematically depicts a side section view of another conversion housing, according to one or more embodiments shown and described herein;



FIG. 8 schematically depicts an exploded isometric view of the fiber optic connector assembly of FIG. 2A and a receptacle, according to one or more embodiments shown and described herein;



FIG. 9 schematically depicts a section view of the fiber optic connector assembly of FIG. 8 engaged with the receptacle of FIG. 8, according to one or more embodiments shown and described herein;



FIG. 10A schematically depicts a section view of the fiber optic connector assembly of FIG. 2A with the conversion housing in an engaged position, according to one or more embodiments shown and described herein;



FIG. 10B schematically depicts a section view of the fiber optic connector assembly of FIG. 2A with the conversion housing in a disengaged position, according to one or more embodiments shown and described herein;



FIG. 11 schematically depicts a side isometric view of another release housing, according to one or more embodiments shown and described herein; and



FIG. 12 schematically depicts a side view of a fiber optic connector assembly including the release housing of FIG. 11, according to one or more embodiments shown and described herein.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of optical adapter assemblies, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. Embodiments described herein are directed to fiber optic connector assemblies including a connector housing and an adapter assembly including a conversion housing and a release housing. The conversion housing may generally permit the connector housing to be engaged with a dissimilar coupling, for example of a closure. The connector housing may be selectively coupled to, and may be releasable from the conversion housing via the release housing, thereby allowing the connector housing to be selectively coupled to and released from the dissimilar coupling and/or closure.


As used herein, the term “longitudinal direction” refers to the forward-rearward direction of the components described herein (i.e., in the +/−z-direction as depicted). The term “lateral direction” refers to the cross-wise direction of the components (i.e., in the +/−x-direction as depicted), and is transverse to the longitudinal direction. The term “vertical direction” refers to the upward-downward direction of the components (i.e., in the +/−y-direction as depicted). The term “axial direction” generally refers to the longitudinal direction of fiber optic connector assemblies described herein. The term “radial direction” refers to the direction extending outward from the longitudinal direction of fiber optic connector assemblies described herein (i.e., in the R-direction as depicted). The term “circumferential direction refers to the direction extending around the longitudinal direction of fiber optic connector assemblies described herein (i.e., in the C-direction as depicted).


Referring initially to FIG. 1, a closure 200 is depicted with multiple fiber optic connector assemblies 100 inserted at least partially into the closure 200. In embodiments, the closure 200 may facilitate the connection of multiple fiber optic connector assemblies 100. In some embodiments, the closure 200 may be a boite de protection d'epissurages optiques (BPEO) closure, however, it should be understood that this is merely an example. As shown in FIG. 1, closures 200 may include multiple closure openings 202 that can each receive a fiber optic connector assembly 100. In embodiments, the closure openings 202 may be positioned adjacent to one another in the vertical direction and/or in the lateral direction (i.e., in the +/−y-direction and the +/-x-direction as depicted). In other words, the closure openings 202 may be positioned on top of one another in the vertical direction, and may be placed side-by-side to one another in the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted, respectively). By positioning the closure openings 202 adjacent to one another in the vertical direction and the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted), multiple fiber optic connector assemblies 100 may be inserted into the closure 200 even when the closure 200 has a comparatively small footprint evaluated in the vertical and lateral directions. In other words, by positioning the closure openings 202 adjacent to one another in the vertical direction and the lateral direction, the number of fiber optic connector assemblies 100 inserted into the closure 200 may be increased as compared to similarly-sized closures having closure openings that are not positioned adjacent to one another in the vertical direction and the lateral direction.


However, with fiber optic connector assemblies 100 positioned adjacent to one another in the vertical direction and the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted), it may be difficult for users to insert and remove the fiber optic connector assemblies 100 from the closure 200. In particular, space between adjacent fiber optic connector assemblies 100 in the vertical direction and the lateral direction (i.e., in the +/−y-direction and the +/−x-direction as depicted, respectively) may be minimal. Minimal distance between the fiber optic connector assemblies 100 may make it difficult for a user to manipulate any of the fiber optic connector assemblies 100 to remove or insert the fiber optic connector assemblies 100 to the closure 200.


Referring to FIGS. 2A and 2B, an isometric view and an exploded isometric view of a fiber optic connector assembly 100 of a fiber optic cable 10 are schematically depicted, respectively. In embodiments, the fiber optic connector assembly 100 includes a connector housing 110 and an adapter assembly 130 including a conversion housing 140 and a release housing 170. The conversion housing 140 is engageable with a coupling 20. In the embodiment depicted in FIGS. 2A and 2B, the coupling is embodied as an SC coupling, however, it should be understood that this is merely an example, and the conversion housing 140 may be engageable with any suitable coupling, for example and without limitation, an LC coupling or the like. In some embodiments, couplings 20 may be positioned at least partially within the closure openings 202 (FIG. 1), and the fiber optic connector assemblies 100 inserted into the closure 200 (FIG. 1) may each interface with a coupling 20.


In some embodiments, the fiber optic connector assembly 100 further includes a boot 102 coupled to the release housing 170. The boot 102 and the release housing 170 may be selectively movable with respect to the conversion housing 140 in the longitudinal direction (i.e., in the +/−z-direction as depicted), as described in greater detail herein.


In some embodiments, the fiber optic connector assembly 100 may include a grommet 132 and/or a washer 134. The connector housing 110 may be passed through the grommet 132 and/or the washer 134, and the grommet 132 and/or the washer 134 may restrict environmental elements (e.g., water, humidity, etc.) from reaching an interior of the fiber optic connector assembly 100. While in the embodiment depicted in FIG. 2B the grommet 132 is depicted as having a two-piece construction, it should be understood that this is merely an example. In some embodiments, the fiber optic connector assembly 100 may include one or more sealing elements 136 engaged with the release housing 170 and/or the conversion housing 140. The one or more sealing elements 136 may include o-rings or the like.


Referring to FIGS. 3A and 3B, a front isometric view of the connector housing 110 of the fiber optic cable 10 and an isometric view of the release housing 170 are schematically depicted, respectively. In embodiments, the connector housing 110 defines an outer surface 116 extending from a rear end 122 to a front end 120 in the longitudinal direction (i.e., in the +/- z-direction as depicted). In embodiments, a ferrule 108 may be positioned at the front end 120 of the connector housing 110. An optical fiber may extend through the ferrule 108 in the longitudinal direction (i.e., in the +/−z-direction as depicted). In embodiments in which the fiber optic cable 10 includes a single optical fiber, the optical fiber may be coaxial with the longitudinal direction (i.e., the +/−z-direction as depicted). For multifiber cables, this alignment will be offset for one, more than one, or all of the optical fibers of the fiber optic cable 10.


The connector housing 110 includes a connector keying portion 114 defined on the outer surface 116 of the connector housing 110. In embodiments, the connector keying portion 114 may be rotationally discrete on the outer surface 116 of the connector housing 110. As used herein, the term “rotationally” discrete represents a limited width-wise extent along the outer surface 116 of the connector housing 110, as the connector housing 110 is rotated in the circumferential direction C.


In embodiments, the connector keying portion 114 includes pair of opposing connector contact surfaces 115. The opposing connector contact surfaces 115 are structurally configured to inhibit rotation of the connector housing 110 in the circumferential direction C when engaged with a complementary keying portion of, for example, an optical connection port. However, some optical connection ports, such as those of the closure 200 (FIG. 1) and the coupling 20 (FIG. 2B) may not be sized and/or shaped to directly interface with the connector housing 110. In these configurations, the opposing connector contact surfaces 115 of the connector keying portion 114 may interface with a keying portion of the adapter assembly 130, and the adapter assembly 130 may interface with a keying portion of the closure 200 (FIG. 1) and/or the coupling 20 (FIG. 2B).


For example and referring to FIGS. 3B and 3C, a section view of the release housing 170 is schematically depicted. In embodiments, the release housing 170 defines a release outer surface 172 extending from a release rear end 171 to a release front end 173 in the longitudinal direction (i.e., in the +/−z-direction as depicted). In embodiments, the release housing 170 defines a release inner surface 186 opposite the release outer surface 172. In the embodiment depicted in FIG. 3C, the release housing 170 defines an inward release keying portion 182. For example, in the embodiment depicted in FIG. 3C, the inward release keying portion 182 defines a pair of opposing contact surfaces 183 extending inward from the release inner surface 186 in the radial direction R.


When assembled, the connector housing 110 may be at least partially inserted into the release housing 170. In embodiments, the connector keying portion 114 of the connector housing 110 is engageable with the inward release keying portion 182 of the release housing 170. For example, in the embodiment depicted in FIGS. 3A and 3C, the connector keying portion 114 is formed as a negative cutout extending into the connector housing 110, and the inward release keying portion 182 is formed as a positive surface projection extending from the release inner surface 186 in the radial direction R. In embodiments, the opposing connector contact surfaces 115 of the connector keying portion 114 of the connector housing 110 may engage the opposing contact surfaces 183 of the inward release keying portion 182 of the release housing 170, thereby restricting rotation of the connector housing 110 with respect to the release housing 170. Furthermore the inward release keying portion 182 of the release housing 170 may assist in ensuring rotational alignment between the connector housing 110 and the release housing 170. For example, in the embodiment depicted in FIGS. 3A and 3C, the inward release keying portion 182 may interfere with portions of outer surface 116 of the connector housing 110 other than the connector keying portion 114. Interference between the inward release keying portion 182 with the outer surface 116 of the connector housing 110 may restrict insertion of the connector housing 110 into the release housing 170 unless the connector keying portion 114 of the connector housing 110 is aligned with the inward release keying portion 182 of the release housing 170 in the circumferential direction C. In embodiments, the ferrule 108, and the optic fiber or fibers extending through the ferrule 108, may be positioned at a particular rotational orientation with respect to the connector housing 110. By allowing the connector housing 110 (and accordingly the ferrule 108) to be fully inserted into the release housing 170 in only one rotational orientation, the optical fiber or fibers extending through the ferrule 108 may be rotationally aligned with a corresponding optical fiber or fibers of a closure 200 (FIG. 1), as described in greater detail herein.


While in the embodiment depicted in FIGS. 3A and 3C, the connector keying portion 114 of the connector housing 110 is described and depicted as a negative cutout and the inward release keying portion 182 of the release housing 170 is described and depicted as being a positive surface projection, it should be understood that this is merely an example. In embodiments, the connector keying portion 114 of the connector housing 110 and the inward release keying portion 182 of the release housing 170 may include any suitable complementary shapes to restrict rotation between the release housing 170 and the connector housing 110 and to ensure rotational alignment between the release housing 170 and the connector housing 110. For example, in embodiments, the connector keying portion 114 may be a positive surface projection extending outward from the outer surface 116 of the connector housing 110, and the inward release keying portion 182 may be a negative cutout extending into the release inner surface 186 of the release housing 170.


Referring to FIG. 4 a side isometric view of the release housing 170 is schematically depicted. In embodiments, the release housing 170 defines a release slot 174 extending through the release outer surface 172. The release housing 170 may further define one or more release faces 178 that are selectively engageable with the conversion housing 140 (FIG. 2B), as described in greater detail herein. In the embodiment depicted in FIG. 4, the release housing 170 defines a pair of release faces 178 positioned opposite one another across the release slot 174, however, it should be understood that this is merely an example, and the release housing 170 may define a single release face or any suitable number of release faces. In embodiments, the release faces 178 face outwardly in the radial direction R and rearwardly in the longitudinal direction (i.e., in the −z-direction as depicted).


In embodiments, the release housing 170 defines an outward release keying portion 184 positioned on the release outer surface 172. The outward release keying portion 184 generally includes outward release contact surfaces 185 that are positioned opposite one another. For example, in the embodiment depicted in FIG. 4, the outward release keying portion 184 is formed as a positive surface projection extending outward form the release outer surface 172 in the radial direction R, and the outward release contact surfaces 185 face in opposite directions. The outward release contact surfaces 185 may engage a corresponding keying portion of the conversion housing 140 (FIG. 2B), as described in greater detail herein.


Referring to FIGS. 5 and 6, a side section view and a rear section view of the conversion housing 140 are schematically depicted, respectively. In embodiments, the conversion housing 140 extends between a conversion rear end 141 and a conversion front end 142 in the longitudinal direction (i.e., in the +/−z-direction as depicted). The conversion housing 140 generally defines a conversion outer surface 143 and a conversion inner sidewall 145 opposite the conversion outer surface 143. The conversion housing 140 further defines a conversion inner space 154 that may receive the release housing 170 (FIG. 4), as described in greater detail herein.


In embodiments, the conversion housing 140 includes a conversion retention member 150. The conversion retention member 150 generally defines a forwardly-facing connector engagement face 144 that is structurally configured to engage an engagement face of the connector housing 110 (FIG. 2B), as described in greater detail herein. In embodiments, the forwardly-facing connector engagement face 144 faces forward in the longitudinal direction (i.e., in the +z-direction as depicted). In some embodiments, the forwardly-facing connector engagement face 144 is orthogonal to the longitudinal direction (i.e., the +/−z-direction as depicted). In some embodiments, the forwardly-facing connector engagement face 144 may not be orthogonal to the longitudinal direction (i.e., the +/−z-direction as depicted), and may face at least partially outwardly or inwardly in the radial direction R. As described in greater detail herein, the orientation of the forwardly-facing connector engagement face 144 with respect to the longitudinal direction (i.e., the +/−z-direction as depicted) may restrict the withdrawal of the connector housing 110 (FIG. 2B) from the conversion housing 140.


In some embodiments, the conversion retention member 150 defines a rearwardly-facing ramp 151 opposite the forwardly-facing connector engagement face 144. The rearwardly-facing ramp 151 may face rearward in the longitudinal direction (i.e., in the −z-direction as depicted) and may face at least partially inward in the radial direction R. When the connector housing 110 (FIG. 3A) and/or the release housing 170 (FIG. 4) are inserted into the conversion housing 140, the connector housing 110 and/or the release housing 170 may engage the rearwardly-facing ramp 151 of the conversion retention member 150. Because the rearwardly-facing ramp 151 faces at least partially inward in the radial direction R, as the connector housing 110 (FIG. 3A) and/or the release housing 170 (FIG. 4) are inserted into the conversion housing 140 in the longitudinal direction (i.e., in the +z-direction as depicted), the conversion retention member 150 may deflect outwardly in the radial direction R.


In some embodiments, the conversion retention member 150 defines a forwardly-facing conversion release face 153. In the embodiment depicted in FIG. 5, the conversion retention member 150 defines a pair of forwardly-facing conversion release faces 153 that are positioned on opposite sides of the forwardly-facing connector engagement face 144. In embodiments, the forwardly-facing conversion release faces 153 may face forward in the longitudinal direction (i.e., in the +z-direction as depicted) and inward in the radial direction R. The forwardly-facing conversion release faces 153 may engage the release faces 178 (FIG. 4) of the release housing 170 (FIG. 4), as described in greater detail herein.


Referring to FIGS. 7A and 7B, an isometric section view and a side section view of the conversion housing 140 is schematically depicted. In embodiments, the conversion inner space 154 is defined at least in part by the conversion inner sidewall 145 and a forward conversion ledge 152. The forward conversion ledge 152 is positioned at the conversion front end 142 and may generally extend inwardly in the radial direction from the conversion inner sidewall 145 in the radial direction R. In some embodiments, the forward conversion ledge 152 may be oriented transverse to the longitudinal direction (i.e., the +/−z-direction as depicted) and may limit the insertion of the release housing 170 (FIG. 4) and/or the connector housing 110 (FIG. 2B) into the conversion inner space 154.


As shown in FIGS. 7A and 7B, in some embodiments, the conversion retention member 150 extends rearwardly from the forward conversion ledge 152 into the conversion inner space 154. For example, in the embodiment depicted in FIGS. 7A and 7B, the conversion retention member 150 is a cantilever extending rearwardly from the forward conversion ledge 152, however, it should be understood that this is merely an example.


In embodiments, the conversion retention member 150 intersects at the forward conversion ledge 152 at a transition intersection 156. Without being bound by theory, the shape and structure of the transition intersection 156 impacts the movement of the conversion retention member 150 in the radial direction R, for example, under the application of force. While in the embodiment depicted in FIG. 7B the forward conversion ledge 152 and the conversion retention member 150 form a generally perpendicular transition intersection 156, it should be understood that this is merely an example.


For example and referring to FIG. 7C, in some embodiments, at least a portion of the transition intersection 156 is transverse to the forward conversion ledge 152 and the conversion retention member 150. In particular, in the embodiment depicted in FIG. 7C, the transition intersection 156 defines a fillet between the forward conversion ledge 152 and the conversion retention member 150. By defining a fillet between the forward conversion ledge 152 and the conversion retention member 150, stress concentration at the transition intersection 156 may be reduced. Further, by defining a fillet between the forward conversion ledge 152 and the conversion retention member 150, the conversion retention member 150 may resist deflection in the radial direction R. As noted above, the conversion retention member 150 may deflect outwardly in the radial direction, for example, upon insertion of the connector housing 110 (FIG. 3) and/or release housing 170 (FIG. 4) into the conversion housing 140. However, the conversion retention member 150 may generally retain the connector housing 110 (FIG. 3A) within the conversion housing 140, and outward deflection of the conversion retention member 150 may inadvertently release the connector housing 110 from the conversion housing 140. Accordingly, the shape of the transition intersection 156 may be selected to permit deflection of the conversion retention member 150 in the radial direction R to allow insertion of the connector housing 110 (FIG. 3A) and the release housing 170 (FIG. 4) into the conversion housing 140. However, the shape of the transition intersection 156 may also be selected to resist deflection of the conversion retention member 150 in the radial direction R to restrict inadvertent release of the connector housing 110, as described in greater detail herein. In embodiments, a thickness of the conversion retention member 150 evaluated in the radial direction R may also be selected such that the conversion retention member 150 deflects in the radial direction R to allow insertion of the connector housing 110 (FIG. 3A) and the release housing 170 (FIG. 4) into the conversion housing 140. However, the thickness of the conversion retention member 150 may also be selected to resist deflection of the conversion retention member 150 in the radial direction R to restrict inadvertent release of the connector housing 110.


Referring to FIGS. 8 and 9, an exploded view of the fiber optic connector assembly 100 and a section view of the fiber optic connector assembly 100 are depicted, respectively. When assembled, the connector housing 110 is inserted at least partially into the release housing 170, as shown in FIG. 8. The release housing 170 and the connector housing 110 are inserted at least partially into the conversion housing 140.


As shown in FIG. 8, in embodiments, the conversion housing 140 may include a rearward conversion keying feature 160 that is configured to engage the outward release keying portion 184. For example, in the embodiment depicted in FIG. 8, the rearward conversion keying feature 160 defines opposing contact surfaces 162 that are configured to engage the contact surfaces 185 of the outward release keying portion 184 of the release housing 170. In the embodiment depicted in FIG. 8, the rearward conversion keying feature 160 is depicted as being a slot that receives the outward release keying portion 184, however, it should be understood that this is merely an example. In embodiments, the rearward conversion keying feature 160 may include any suitable keying feature for interfacing with the outward release keying portion 184 of the release housing 170.


Referring to FIG. 9, the connector housing 110 is generally inserted at least partially into the release housing 170, and the release housing 170 and the connector housing 110 are at least partially inserted into the conversion housing 140.


As noted above, the connector housing 110 may be rotationally aligned with respect to the release housing 170 via the connector keying portion 114 (FIG. 3A) of the connector housing 110 and the inward release keying portion 182 (FIG. 3B) of the release housing 170. The release housing 170 is rotationally aligned with the conversion housing 140 via the outward release keying portion 184 (FIG. 3B) of the release housing 170 and the rearward conversion keying feature 160 (FIG. 8) of the conversion housing 140 (FIG. 8). In this way, the connector housing 110 is rotationally aligned with the release housing 170, which is in turn rotationally aligned with the conversion housing 140, such that the connector housing 110 is rotationally aligned with the conversion housing 140.


In some embodiments, the conversion housing 140 defines a forward conversion keying feature 158. The forward conversion keying feature 158 may cooperate with a slot 22 (FIG. 8) of the coupling 20 as the conversion housing 140 is inserted into the coupling 20. For example, the conversion housing 140 may be restricted from being inserted into the coupling 20 unless the forward conversion keying feature 158 is rotationally aligned with the slot 22 (FIG. 8) of the coupling 20. By rotationally aligning the conversion housing 140 with the coupling 20, the connector housing 110 may be rotationally aligned with the coupling 20 (e.g., through the conversion housing 140 and the release housing 170). By rotationally aligning the connector housing 110 with the coupling 20, the ferrule 108 may be rotationally aligned with the coupling 20 such that the optical fiber or optical fibers extending through the ferrule 108 may be optically coupled to an optical fiber or optical fibers of an opposing ferrule positioned within the coupling 20. In some embodiments, the conversion housing 140 may define a conversion guide 159 extending outward from the conversion housing 140, where the conversion guide 159 is aligned with the forward conversion keying feature 158. The conversion guide 159 may assist in providing a visual indication of the rotational position of the forward conversion keying feature 158 such that a user, such as a technician, may orient the forward conversion keying feature 158 with the slot 22 (FIG. 8) of the coupling 20.


In embodiments, the connector housing 110 defines a rotationally-discrete locking portion 112 on the outer surface 116 of the connector housing 110. In some embodiments, the rotationally-discrete locking portion 112 defines a connector locking face 113 that, in the embodiment depicted in FIG. 8 faces rearwardly in the longitudinal direction (i.e., in the −z-direction as depicted). In embodiments, the conversion retention member 150 is positionable in an engaged position as shown in FIG. 9. In the engaged position, the conversion retention member 150 restricts movement of the connector housing 110 with respect to the adapter assembly 130, and more particularly the conversion housing 140, in the longitudinal direction (e.g., in the +/−z-direction as depicted). For example, in the engaged position, the conversion retention member 150 may restrict movement of the connector housing 110 with respect to the conversion housing 140 in the −z-direction as depicted, thereby restricting withdrawal of the connector housing 110 from the conversion housing 140. In particular and as shown in FIG. 9, the forwardly-facing connector engagement face 144 of the conversion retention member 150 may engage the connector locking face 113 of the connector housing 110, thereby restricting movement of the connector housing 110 in the −z-direction as depicted. In embodiments, the conversion retention member 150 may be positioned at least partially within the release slot 174 (FIG. 4) of the release housing such that the forwardly-facing connector engagement face 144 of the conversion retention member 150 may access the connector housing 110.


Referring to FIGS. 10A and 10B, a section view of the fiber optic connector assembly 100 is depicted with the conversion retention member 150 in the engaged position and in a disengaged position. As shown in FIG. 10B, in the disengaged position, the connector housing 110 is movable with respect to the adapter assembly 130, and more particularly the conversion housing 140, in the longitudinal direction (i.e., in the −z-direction as depicted).


More particularly and referring to FIGS. 4, 5, and 10B the conversion retention member 150 may be moved into the disengaged position by the release housing 170. For example, in embodiments, the release housing 170 may be moved rearward in the longitudinal direction (i.e., in the −z-direction as depicted). As the release housing 170 moves rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the release faces 178 of the release housing 170 may engage the forwardly-facing conversion release faces 153 of the conversion retention member 150. In embodiments, the release housing 170 may be moved rearward in the longitudinal direction (i.e., in the −z-direction as depicted) by a user, such as a technician. In some embodiments, the boot 102 is coupled to the release housing 170, and the release housing 170 can be moved rearward in the longitudinal direction (i.e., in the −z-direction as depicted) by moving the boot 102 rearward in the longitudinal direction.


As the release faces 178 of the release housing 170 engage the forwardly-facing conversion release faces 153 of the conversion retention member 150, the release faces 178 move the conversion retention member 150 outward in the radial direction R. For example and as noted above, in some embodiments, the conversion release faces 153 of the conversion retention member 150 may be face inward in the radial direction R. Accordingly, as the release housing 170 moves rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the rearward movement of the release housing 170 may resolve into an outwardly radial force acting on the conversion retention member 150. Similarly, in embodiments in which the release faces 178 face outwardly in the radial direction R, as the release housing 170 moves rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the rearward movement of the release housing 170 may resolve into an outwardly radial force acting on the conversion retention member 150.


As the conversion retention member 150 moves outward in the radial direction R the forwardly-facing connector engagement face 144 from the conversion retention member 150 disengages the rotationally-discrete locking portion 112 of the connector housing 110. With forwardly-facing connector engagement face 144 of the conversion retention member 150 disengaged from the rotationally-discrete locking portion 112 of the connector housing 110, the connector housing 110 can be removed from the conversion housing 140.


As such, the connector housing 110 can be disengaged from the conversion housing 140, and accordingly the coupling 20, through movement of the release housing 170 in the longitudinal direction (i.e., in the −z-direction as depicted). In this way, the connector housing 110 can be removed from the coupling 20 even when there is minimal distance between the connector housing 110 and other connector housings in the radial direction R. More particularly, while the conversion retention member 150 moves outward in the radial direction R to move from the engaged position to the disengaged position, this movement is generally within the conversion inner space 154. As such, the connector housing 110 can be disengaged from the conversion housing 140, and accordingly from the coupling 20, without requiring movement of components external to the conversion housing 140 in the radial direction R. Because the connector housing 110 can be disengaged from the conversion housing 140, and accordingly the coupling 20, without requiring movement of components external to the conversion housing 140 in the radial direction R, couplings 20 can be positioned adjacent to one another so as to minimize the distance between adjacent connector housings 110. In this way, closures 200 (FIG. 1) may include couplings 20 that are positioned adjacent to one another so as to minimize the distance between adjacent connector housings 110.


Referring to FIG. 11, an isometric view of another release housing 170 is schematically depicted. Like the embodiment described above and depicted in FIG. 4, the release housing 170 includes the release slot 174 and the one or more release faces 178. However, in the embodiment depicted in FIG. 11, the release housing 170 further includes a release retainer 180. As shown in FIG. 11, the release retainer 180 extends over at least a portion of the release slot 174.


Referring to FIG. 12, in embodiments, a side view of the release housing 170 and the conversion housing 140 is depicted. The conversion housing 140 includes a window 187 through which the release retainer 180 of the release housing 170 can be viewed, however, it should be understood that this merely an example, and conversion housings 140 according to the present disclosure may not have the window 187.


As shown in FIG. 12, in embodiments, the release retainer 180 may engage the conversion retention member 150 of the conversion housing 140 and may restrict movement of the conversion retention member 150 outward in the radial direction R when the release housing 170 is fully inserted into the conversion housing 140. However, when the conversion housing 140 is moved rearward in the longitudinal direction (i.e., in the −z-direction as depicted), the release retainer 180 may disengage the conversion retention member 150, thereby allowing the conversion retention member 150 to move to the disengaged position as shown in FIG. 10B. Accordingly, the release retainer 180, in embodiments, may restrict inadvertent movement of the conversion retention member 150 while the release housing 170 is fully inserted into the conversion housing 140, while allowing the conversion retention member 150 to move to the disengaged position as the conversion housing 140 is moved rearward in the longitudinal direction (i.e., in the −z-direction as depicted).


Accordingly, embodiments described herein are generally directed to fiber optic connector assemblies including a connector housing and an adapter assembly including a conversion housing and a release housing. The conversion housing may generally permit the connector housing to be engaged with a dissimilar coupling, for example of a closure. The connector housing may be selectively coupled to, and may be releasable from the conversion housing via the release housing, thereby allowing the connector housing to be selectively coupled to and released from the dissimilar coupling and/or closure.


It is noted that recitations herein of a component of the present disclosure being “structurally configured” in a particular way, to embody a particular property, or to function in a particular manner, are structural recitations, as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “structurally configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.


It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.

Claims
  • 1. A fiber optic connector assembly comprising: a connector housing defining a rotationally-discrete locking portion defined on an outer surface of the connector housing;an adapter assembly selectively coupled to the connector housing, the adapter assembly comprising: a conversion housing extending around the connector housing and defining a conversion front end and a conversion retention member that is positionable between an engaged position, in which the conversion retention member restricts movement of the connector housing with respect to the adapter assembly in an axial direction, and a disengaged position, in which the connector housing is movable with respect to the adapter assembly in the axial direction; anda release housing positioned between the conversion housing and the connector housing, the release housing defining a release front end positionable at least partially within the conversion housing, and a release face selectively engageable with the conversion retention member and configured to move the conversion retention member from the engaged position to the disengaged position,wherein the release housing defines a release outer surface extending the axial direction, and a release slot extending through the release outer surface, and wherein the conversion retention member is positioned at least partially within the release slot in the engaged position, and wherein the release housing defines a release retainer extending over at least a portion of the release slot.
  • 2. The fiber optic connector assembly of claim 1, further comprising a boot coupled to the release housing opposite the release front end.
  • 3. The fiber optic connector assembly of claim 1, wherein: the conversion retention member of the conversion housing defines forwardly-facing connector engagement face; andthe rotationally-discrete locking portion of the connector housing defining a connector locking face.
  • 4. The fiber optic connector assembly of claim 3, wherein the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face.
  • 5. The fiber optic connector assembly of claim 4, wherein the release face faces inward in a radial direction that is transverse to the axial direction.
  • 6. The fiber optic connector assembly of claim 1, wherein the release housing defines one or more release faces that are selectively engageable with the conversion housing.
  • 7. The fiber optic connector assembly of claim 6, wherein the one or more release faces face outwardly in a radial direction that is transverse to the axial direction.
  • 8. The fiber optic connector assembly of claim 1, wherein the conversion housing defines a conversion inner sidewall and a forward conversion ledge and a conversion inner space, and wherein the conversion retention member extends rearwardly from the forward conversion ledge into the conversion inner space.
  • 9. The fiber optic connector assembly of claim 8, wherein the conversion retention member intersects the forward conversion ledge at a transition intersection, wherein at least a portion of the transition intersection is transverse to the forward conversion ledge and the conversion retention member.
  • 10. The fiber optic connector assembly of claim 1, wherein the release housing defines a release face positioned adjacent to the release slot, wherein the release face faces outward in a radial direction that is transverse to the axial direction.
  • 11. The fiber optic connector assembly of claim 10, wherein the release face of the release housing is a first release face, and wherein the release housing further comprises a second release face, wherein the first release face and the second release face are positioned on opposite sides of the release slot.
  • 12. The fiber optic connector assembly of claim 1, wherein the conversion front end defines a forward conversion keying feature structurally configured to engage an SC connector.
  • 13. The fiber optic connector assembly of claim 1, wherein the release housing defines an inward release keying portion and wherein the connector housing defines a connector keying portion that is engaged with the inward release keying portion.
  • 14. The fiber optic connector assembly of claim 1, wherein the release housing defines an outward release keying portion and wherein the conversion housing defines a rearward conversion keying feature engaged with the outward release keying portion.
  • 15. The fiber optic connector assembly of claim 1, wherein: the conversion retention member of the conversion housing defines forwardly-facing connector engagement face;the rotationally-discrete locking portion of the connector housing defining a connector locking face engaged with the forwardly-facing connector engagement face when the conversion retention member is in the engaged position;the conversion retention member of the conversion housing defines a release face that is transverse to the forwardly-facing connector engagement face;the release housing defines one or more release faces that are selectively engageable with the conversion housing; andthe release face faces inward in a radial direction that is transverse to the axial direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application No. 63/119,622, filed Nov. 30, 2020, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (1084)
Number Name Date Kind
3074107 Kiyoshi et al. Jan 1963 A
3532783 Pusey et al. Oct 1970 A
3792284 Kaelin Feb 1974 A
3912362 Hudson Oct 1975 A
4003297 Mott Jan 1977 A
4077567 Ginn et al. Mar 1978 A
4148557 Garvey Apr 1979 A
4167303 Bowen et al. Sep 1979 A
4168109 Dumire Sep 1979 A
4188088 Andersen et al. Feb 1980 A
4336977 Monaghan et al. Jun 1982 A
4354731 Mouissie Oct 1982 A
4373777 Borsuk et al. Feb 1983 A
4413880 Forrest et al. Nov 1983 A
4423922 Porter Jan 1984 A
4440471 Knowles Apr 1984 A
4461537 Raymer et al. Jul 1984 A
4515434 Margolin et al. May 1985 A
4547937 Collins Oct 1985 A
4560232 O'Hara Dec 1985 A
4615581 Morimoto Oct 1986 A
4634214 Cannon et al. Jan 1987 A
4634858 Gerdt et al. Jan 1987 A
4684205 Margolin et al. Aug 1987 A
4688200 Poorman et al. Aug 1987 A
4690563 Barton et al. Sep 1987 A
4699458 Ohtsuki et al. Oct 1987 A
4705352 Margolin et al. Nov 1987 A
4711752 Deacon et al. Dec 1987 A
4715675 Kevern et al. Dec 1987 A
4723827 Shaw et al. Feb 1988 A
4741590 Caron May 1988 A
4763983 Keith Aug 1988 A
4783137 Kosman et al. Nov 1988 A
4842363 Margolin et al. Jun 1989 A
4844570 Tanabe Jul 1989 A
4854664 Mccartney Aug 1989 A
4856867 Gaylin Aug 1989 A
4877303 Caldwell et al. Oct 1989 A
4902238 Iacobucci Feb 1990 A
4913514 Then Apr 1990 A
4921413 Blew May 1990 A
4944568 Danbach et al. Jul 1990 A
4960318 Nilsson et al. Oct 1990 A
4961623 Midkiff et al. Oct 1990 A
4964688 Caldwell et al. Oct 1990 A
4979792 Weber et al. Dec 1990 A
4994134 Knecht et al. Feb 1991 A
4995836 Toramoto Feb 1991 A
5007860 Robinson et al. Apr 1991 A
5016968 Hammond et al. May 1991 A
5028114 Krausse et al. Jul 1991 A
5058984 Bulman et al. Oct 1991 A
5067783 Ampert Nov 1991 A
5073042 Mulholland et al. Dec 1991 A
5076656 Briggs et al. Dec 1991 A
5085492 Kelsoe et al. Feb 1992 A
5088804 Grinderslev Feb 1992 A
5091990 Eung et al. Feb 1992 A
5095176 Harbrecht et al. Mar 1992 A
5129023 Anderson et al. Jul 1992 A
5131735 Berkey et al. Jul 1992 A
5134677 Leung et al. Jul 1992 A
5136683 Aoki et al. Aug 1992 A
5142602 Cabato et al. Aug 1992 A
5146519 Miller et al. Sep 1992 A
5155900 Grois et al. Oct 1992 A
5162397 Descamps et al. Nov 1992 A
5180890 Pendergrass et al. Jan 1993 A
5189718 Barrett et al. Feb 1993 A
5210810 Darden et al. May 1993 A
5212752 Stephenson et al. May 1993 A
5214732 Beard et al. May 1993 A
5224187 Davisdon Jun 1993 A
5231685 Hanzawa et al. Jul 1993 A
5245683 Belenkiy et al. Sep 1993 A
5263105 Johnson et al. Nov 1993 A
5263239 Ziemek Nov 1993 A
5276750 Manning Jan 1994 A
5313540 Ueda et al. May 1994 A
5317663 Beard et al. May 1994 A
5321917 Franklin et al. Jun 1994 A
5367594 Essert et al. Nov 1994 A
5371823 Barrett et al. Dec 1994 A
5375183 Edwards et al. Dec 1994 A
5381494 O'Donnell et al. Jan 1995 A
5390269 Palecek et al. Feb 1995 A
5394494 Jennings et al. Feb 1995 A
5394497 Erdman et al. Feb 1995 A
5408570 Cook et al. Apr 1995 A
5416874 Giebel et al. May 1995 A
5425121 Cooke et al. Jun 1995 A
5452388 Rittle et al. Sep 1995 A
5519799 Murakami et al. May 1996 A
5553186 Allen Sep 1996 A
5557696 Stein Sep 1996 A
5569050 Loyd Oct 1996 A
5588077 Woodside Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5603631 Kawahara et al. Feb 1997 A
5608828 Coutts et al. Mar 1997 A
5631993 Cloud et al. May 1997 A
5647045 Robinson et al. Jul 1997 A
5673346 Wano et al. Sep 1997 A
5682451 Lee et al. Oct 1997 A
5694507 Walles Dec 1997 A
5748821 Schempp et al. May 1998 A
5761359 Chudoba et al. Jun 1998 A
5781686 Robinson et al. Jul 1998 A
5782892 Castle et al. Jul 1998 A
5789701 Wettengel et al. Aug 1998 A
5790740 Cloud et al. Aug 1998 A
5791918 Pierce Aug 1998 A
5796895 Jennings et al. Aug 1998 A
RE35935 Cabato et al. Oct 1998 E
5818993 Chudoba et al. Oct 1998 A
5857050 Jiang et al. Jan 1999 A
5862290 Burek et al. Jan 1999 A
5867621 Luther et al. Feb 1999 A
5883999 Cloud et al. Mar 1999 A
5884000 Cloud et al. Mar 1999 A
5884001 Cloud et al. Mar 1999 A
5884002 Cloud et al. Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887099 Csipkes et al. Mar 1999 A
5913001 Nakajima et al. Jun 1999 A
5920669 Knecht et al. Jul 1999 A
5923804 Rosson Jul 1999 A
5925191 Stein et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5960141 Sasaki et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
5993070 Tamekuni et al. Nov 1999 A
RE36592 Giebel et al. Feb 2000 E
6030129 Rosson Feb 2000 A
6035084 Haake et al. Mar 2000 A
6045270 Weiss et al. Apr 2000 A
6079881 Roth Jun 2000 A
6094517 Yuuki Jul 2000 A
6108482 Roth Aug 2000 A
6112006 Foss Aug 2000 A
6149313 Giebel et al. Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
RE37028 Cooke et al. Jan 2001 E
6173097 Throckmorton et al. Jan 2001 B1
6179482 Takizawa et al. Jan 2001 B1
6188822 McAlpine et al. Feb 2001 B1
6193421 Tamekuni et al. Feb 2001 B1
RE37079 Stephenson et al. Mar 2001 E
RE37080 Stephenson et al. Mar 2001 E
6200040 Edwards et al. Mar 2001 B1
6206579 Selfridge et al. Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6220762 Kanai et al. Apr 2001 B1
6224268 Manning et al. May 2001 B1
6224270 Nakajima et al. May 2001 B1
6229944 Yokokawa et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6249628 Rutterman et al. Jun 2001 B1
6256438 Gimblet Jul 2001 B1
6261006 Selfridge Jul 2001 B1
6264374 Selfridge et al. Jul 2001 B1
6287016 Weigel Sep 2001 B1
6293710 Lampert et al. Sep 2001 B1
6298190 Waldron et al. Oct 2001 B2
6305849 Roehrs et al. Oct 2001 B1
6321013 Hardwick et al. Nov 2001 B1
6356390 Hall, Jr. Mar 2002 B1
6356690 McAlpine et al. Mar 2002 B1
6357929 Roehrs et al. Mar 2002 B1
6371660 Roehrs et al. Apr 2002 B1
6375363 Harrison et al. Apr 2002 B1
6379054 Throckmorton et al. Apr 2002 B2
6386891 Howard et al. May 2002 B1
6402388 Mazu et al. Jun 2002 B1
6404962 Hardwick et al. Jun 2002 B1
6409391 Chang Jun 2002 B1
D460043 Fan Wong Jul 2002 S
6422764 Marrs et al. Jul 2002 B1
6427035 Mahony Jul 2002 B1
6428215 Nault Aug 2002 B1
6439780 Mudd et al. Aug 2002 B1
6466725 Battey et al. Oct 2002 B2
6496641 Mahony Dec 2002 B1
6501888 Gimblet et al. Dec 2002 B2
6522804 Mahony Feb 2003 B1
6529663 Parris et al. Mar 2003 B1
6533468 Nakajima et al. Mar 2003 B2
6536956 Uther et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6540410 Childers et al. Apr 2003 B2
6542652 Mahony Apr 2003 B1
6542674 Gimblet Apr 2003 B1
6546175 Wagman et al. Apr 2003 B1
6554489 Kent et al. Apr 2003 B2
6579014 Melton et al. Jun 2003 B2
6599026 Fahrnbauer et al. Jul 2003 B1
6599027 Miyake et al. Jul 2003 B2
6614980 Mahony Sep 2003 B1
6618526 Jackman et al. Sep 2003 B2
6619697 Griffioen et al. Sep 2003 B2
6621964 Quinn et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6629782 McPhee et al. Oct 2003 B2
6644862 Berto et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6672774 Theuerkorn et al. Jan 2004 B2
6678442 Gall et al. Jan 2004 B2
6678448 Moisel et al. Jan 2004 B2
6685361 Rubino et al. Feb 2004 B1
6695489 Nault Feb 2004 B2
6702475 Giobbio et al. Mar 2004 B1
6714708 McAlpine et al. Mar 2004 B2
6714710 Gimblet Mar 2004 B2
6729773 Finona et al. May 2004 B1
6738555 Cooke et al. May 2004 B1
6748146 Parris Jun 2004 B2
6748147 Quinn et al. Jun 2004 B2
6771861 Wagner et al. Aug 2004 B2
6785450 Wagman et al. Aug 2004 B2
6789950 Oder et al. Sep 2004 B1
6809265 Gladd et al. Oct 2004 B1
6841729 Sakabe et al. Jan 2005 B2
6848838 Doss et al. Feb 2005 B2
6856748 Elkins et al. Feb 2005 B1
6877906 Mizukami et al. Apr 2005 B2
6880219 Griffioen et al. Apr 2005 B2
6899467 McDonald et al. May 2005 B2
6908233 Nakajima et al. Jun 2005 B2
6909821 Ravasio et al. Jun 2005 B2
6916120 Zimmel et al. Jul 2005 B2
6918704 Marrs et al. Jul 2005 B2
6944387 Howell et al. Sep 2005 B2
6962445 Zimmel et al. Nov 2005 B2
6970629 Lail et al. Nov 2005 B2
6983095 Reagan et al. Jan 2006 B2
7011454 Caveney et al. Mar 2006 B2
7013074 Battey et al. Mar 2006 B2
7025507 De Marchi Apr 2006 B2
7033191 Cao Apr 2006 B1
7044650 Tran et al. May 2006 B1
7052185 Rubino et al. May 2006 B2
7079734 Seddon et al. Jul 2006 B2
7088899 Reagan et al. Aug 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7090409 Nakajima et al. Aug 2006 B2
7103255 Reagan et al. Sep 2006 B2
7103257 Donaldson et al. Sep 2006 B2
7104702 Barnes et al. Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7118283 Nakajima et al. Oct 2006 B2
7118284 Nakajima et al. Oct 2006 B2
7120347 Blackwell et al. Oct 2006 B2
7137742 Theuerkorn et al. Nov 2006 B2
7146089 Reagan et al. Dec 2006 B2
7146090 Vo et al. Dec 2006 B2
7150567 Luther et al. Dec 2006 B1
7165893 Schmitz Jan 2007 B2
7171102 Reagan et al. Jan 2007 B2
7178990 Caveney et al. Feb 2007 B2
7184634 Hurley et al. Feb 2007 B2
7195403 Oki et al. Mar 2007 B2
7200317 Reagan et al. Apr 2007 B2
7201518 Holmquist Apr 2007 B2
7204644 Barnes et al. Apr 2007 B2
7213975 Khemakhem et al. May 2007 B2
7213980 Oki et al. May 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7232260 Takahashi et al. Jun 2007 B2
7236670 Ail et al. Jun 2007 B2
7241056 Kuffel et al. Jul 2007 B1
7260301 Barth et al. Aug 2007 B2
7261472 Suzuki et al. Aug 2007 B2
7266265 Gall et al. Sep 2007 B2
7266274 Elkins et al. Sep 2007 B2
7270487 Billman et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7279643 Morrow et al. Oct 2007 B2
7292763 Smith et al. Nov 2007 B2
7302152 Luther et al. Nov 2007 B2
7318677 Dye Jan 2008 B2
7326091 Nania et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7333708 Blackwell et al. Feb 2008 B2
7336873 Lail et al. Feb 2008 B2
7341382 Dye Mar 2008 B2
7346256 Marrs et al. Mar 2008 B2
7349605 Noonan et al. Mar 2008 B2
7357582 Oki et al. Apr 2008 B2
7366416 Ramachandran et al. Apr 2008 B2
7394964 Tinucci et al. Jul 2008 B2
7397997 Ferris et al. Jul 2008 B2
7400815 Mertesdorf et al. Jul 2008 B2
D574775 Amidon Aug 2008 S
7407332 Oki et al. Aug 2008 B2
7428366 Mullaney et al. Sep 2008 B2
7444056 Allen et al. Oct 2008 B2
7454107 Miller et al. Nov 2008 B2
7463803 Cody et al. Dec 2008 B2
7467896 Melton et al. Dec 2008 B2
7469091 Mullaney et al. Dec 2008 B2
7477824 Reagan et al. Jan 2009 B2
7480437 Ferris et al. Jan 2009 B2
7484898 Katagiyama et al. Feb 2009 B2
7485804 Dinh et al. Feb 2009 B2
7489849 Reagan et al. Feb 2009 B2
7492996 Kowalczyk et al. Feb 2009 B2
7497896 Bromet et al. Mar 2009 B2
7512304 Gronvall et al. Mar 2009 B2
7520678 Khemakhem et al. Apr 2009 B2
7539387 Mertesdorf et al. May 2009 B2
7539388 Mertesdorf et al. May 2009 B2
7542645 Hua et al. Jun 2009 B1
7559702 Fujiwara et al. Jul 2009 B2
7565055 Lu et al. Jul 2009 B2
7568845 Caveney et al. Aug 2009 B2
7572065 Lu et al. Aug 2009 B2
7591595 Lu et al. Sep 2009 B2
7614797 Lu et al. Nov 2009 B2
7621675 Bradley Nov 2009 B1
7627222 Reagan et al. Dec 2009 B2
7628545 Cody et al. Dec 2009 B2
7628548 Benjamin et al. Dec 2009 B2
7646958 Reagan et al. Jan 2010 B1
7653282 Blackwell et al. Jan 2010 B2
7654747 Theuerkorn et al. Feb 2010 B2
7654748 Kuffel et al. Feb 2010 B2
7658549 Elkins et al. Feb 2010 B2
7661995 Nania et al. Feb 2010 B2
7677814 Lu et al. Mar 2010 B2
7680388 Reagan et al. Mar 2010 B2
7708476 Ziwei May 2010 B2
7709733 Plankell May 2010 B1
7712971 Lee et al. May 2010 B2
7713679 Ishiduka et al. May 2010 B2
7722262 Caveney et al. May 2010 B2
7726998 Siebens Jun 2010 B2
7738759 Parikh et al. Jun 2010 B2
7740409 Bolton et al. Jun 2010 B2
7742117 Lee et al. Jun 2010 B2
7742670 Benjamin et al. Jun 2010 B2
7744286 Lu et al. Jun 2010 B2
7744288 Lu et al. Jun 2010 B2
7747117 Greenwood et al. Jun 2010 B2
7751666 Parsons et al. Jul 2010 B2
7753596 Cox Jul 2010 B2
7762726 Lu et al. Jul 2010 B2
7785015 Melton et al. Aug 2010 B2
7785019 Ewallen et al. Aug 2010 B2
7802926 Eeman et al. Sep 2010 B2
7805044 Reagan et al. Sep 2010 B2
7806599 Margolin et al. Oct 2010 B2
7811006 Milette et al. Oct 2010 B2
7820090 Morrow et al. Oct 2010 B2
7844148 Jenkins et al. Nov 2010 B2
7844158 Gronvall et al. Nov 2010 B2
7844160 Reagan et al. Nov 2010 B2
7869681 Battey et al. Jan 2011 B2
RE42094 Barnes et al. Feb 2011 E
7881576 Melton et al. Feb 2011 B2
7889961 Cote et al. Feb 2011 B2
7891882 Kuffel et al. Feb 2011 B2
7903923 Gronvall et al. Mar 2011 B2
7903925 Cooke et al. Mar 2011 B2
7918609 Melton et al. Apr 2011 B2
7933517 Ye et al. Apr 2011 B2
7938670 Nania et al. May 2011 B2
7941027 Mertesdorf et al. May 2011 B2
7942590 Lu et al. May 2011 B2
7959361 Lu et al. Jun 2011 B2
8002476 Caveney et al. Aug 2011 B2
8005335 Reagan et al. Aug 2011 B2
8023793 Kowalczyk et al. Sep 2011 B2
8025445 Rambow et al. Sep 2011 B2
8041178 Lu et al. Oct 2011 B2
8052333 Kuffel et al. Nov 2011 B2
8055167 Park et al. Nov 2011 B2
8083418 Fujiwara et al. Dec 2011 B2
8111966 Holmberg et al. Feb 2012 B2
8137002 Lu et al. Mar 2012 B2
8147147 Khemakhem et al. Apr 2012 B2
8157454 Ito et al. Apr 2012 B2
8164050 Ford et al. Apr 2012 B2
8202008 Lu et al. Jun 2012 B2
8213761 Gronvall et al. Jul 2012 B2
8218935 Reagan et al. Jul 2012 B2
8224145 Reagan et al. Jul 2012 B2
8229263 Parris et al. Jul 2012 B2
8231282 Kuffel et al. Jul 2012 B2
8238706 Kachmar Aug 2012 B2
8238709 Solheid et al. Aug 2012 B2
8249450 Conner Aug 2012 B2
8256971 Caveney et al. Sep 2012 B2
8267596 Theuerkorn Sep 2012 B2
8272792 Coleman et al. Sep 2012 B2
RE43762 Smith et al. Oct 2012 E
8301003 De et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8317411 Fujiwara et al. Nov 2012 B2
8348519 Kuffel et al. Jan 2013 B2
8363999 Mertesdorf et al. Jan 2013 B2
8376629 Cline et al. Feb 2013 B2
8376632 Blackburn et al. Feb 2013 B2
8402587 Sugita et al. Mar 2013 B2
8408811 De et al. Apr 2013 B2
8414196 Lu et al. Apr 2013 B2
8439577 Jenkins May 2013 B2
8465235 Jenkins et al. Jun 2013 B2
8466262 Siadak et al. Jun 2013 B2
8472773 De Jong Jun 2013 B2
8480312 Smith et al. Jul 2013 B2
8494329 Nhep et al. Jul 2013 B2
8496384 Kuffel et al. Jul 2013 B2
8506173 Lewallen et al. Aug 2013 B2
8520996 Cowen et al. Aug 2013 B2
8534928 Cooke et al. Sep 2013 B2
8536516 Ford et al. Sep 2013 B2
8556522 Cunningham Oct 2013 B2
8573855 Nhep Nov 2013 B2
8591124 Griffiths et al. Nov 2013 B2
8622627 Elkins et al. Jan 2014 B2
8622634 Arnold et al. Jan 2014 B2
8635733 Bardzilowski Jan 2014 B2
8662760 Cline et al. Mar 2014 B2
8668512 Chang Mar 2014 B2
8678668 Cooke et al. Mar 2014 B2
8687930 McDowell et al. Apr 2014 B2
8702324 Caveney et al. Apr 2014 B2
8714835 Kuffel et al. May 2014 B2
8727638 Lee et al. May 2014 B2
8737837 Conner et al. May 2014 B2
8755654 Danley et al. Jun 2014 B1
8755663 Makrides-Saravanos et al. Jun 2014 B2
8758046 Pezzetti et al. Jun 2014 B2
8764316 Barnette et al. Jul 2014 B1
8770861 Smith et al. Jul 2014 B2
8770862 Lu et al. Jul 2014 B2
D711320 Yang et al. Aug 2014 S
8821036 Shigehara Sep 2014 B2
8837894 Holmberg et al. Sep 2014 B2
8864390 Chen et al. Oct 2014 B2
8870469 Kachmar Oct 2014 B2
8879883 Parikh et al. Nov 2014 B2
8882364 Busse et al. Nov 2014 B2
8917966 Thompson et al. Dec 2014 B2
8974124 Chang Mar 2015 B2
8992097 Koreeda et al. Mar 2015 B2
8998502 Benjamin et al. Apr 2015 B2
8998506 Pepin et al. Apr 2015 B2
9011858 Siadak et al. Apr 2015 B2
9039293 Hill et al. May 2015 B2
9075205 Pepe et al. Jul 2015 B2
9081154 Zimmel et al. Jul 2015 B2
9146364 Chen et al. Sep 2015 B2
D741803 Davidson, Jr. Oct 2015 S
9151906 Kobayashi et al. Oct 2015 B2
9151909 Chen et al. Oct 2015 B2
9158074 Anderson et al. Oct 2015 B2
9158075 Benjamin et al. Oct 2015 B2
9182567 Mullaney Nov 2015 B2
9188759 Conner Nov 2015 B2
9207410 Lee et al. Dec 2015 B2
9207421 Conner Dec 2015 B2
9213150 Matsui et al. Dec 2015 B2
9223106 Coan et al. Dec 2015 B2
9239441 Melton et al. Jan 2016 B2
9268102 Daems et al. Feb 2016 B2
9274286 Caveney et al. Mar 2016 B2
9279951 McGranahan et al. Mar 2016 B2
9285550 Nhep et al. Mar 2016 B2
9297974 Valderrabano et al. Mar 2016 B2
9297976 Hill et al. Mar 2016 B2
9310570 Busse et al. Apr 2016 B2
9316791 Durrant et al. Apr 2016 B2
9322998 Miller Apr 2016 B2
9360640 Ishigami et al. Jun 2016 B2
9383539 Power et al. Jul 2016 B2
9400364 Hill et al. Jul 2016 B2
9405068 Graham et al. Aug 2016 B2
9417403 Mullaney et al. Aug 2016 B2
9423584 Coan et al. Aug 2016 B2
9435969 Lambourn et al. Sep 2016 B2
9442257 Lu Sep 2016 B2
9450393 Thompson et al. Sep 2016 B2
9459412 Katoh Oct 2016 B2
9482819 Li et al. Nov 2016 B2
9482829 Lu et al. Nov 2016 B2
9513444 Barnette et al. Dec 2016 B2
9513451 Corbille et al. Dec 2016 B2
9535229 Ott et al. Jan 2017 B2
9541711 Raven et al. Jan 2017 B2
9551842 Theuerkorn Jan 2017 B2
9557504 Holmberg et al. Jan 2017 B2
9581775 Kondo et al. Feb 2017 B2
9588304 Durrant et al. Mar 2017 B2
D783618 Wu et al. Apr 2017 S
9612407 Kobayashi et al. Apr 2017 B2
9618704 Dean et al. Apr 2017 B2
9618718 Islam Apr 2017 B2
9624296 Siadak et al. Apr 2017 B2
9625660 Daems et al. Apr 2017 B2
9638871 Bund et al. May 2017 B2
9645331 Kim May 2017 B1
9645334 Ishii et al. May 2017 B2
9651741 Isenhour et al. May 2017 B2
9664862 Lu et al. May 2017 B2
9678285 Hill et al. Jun 2017 B2
9678293 Coan et al. Jun 2017 B2
9684136 Cline et al. Jun 2017 B2
9684138 Lu Jun 2017 B2
9696500 Barnette et al. Jul 2017 B2
9711868 Scheucher Jul 2017 B2
9720193 Nishimura Aug 2017 B2
9733436 Van et al. Aug 2017 B2
9739951 Busse et al. Aug 2017 B2
9762322 Amundson Sep 2017 B1
9766416 Kim Sep 2017 B1
9772457 Hill et al. Sep 2017 B2
9804343 Hill et al. Oct 2017 B2
9810855 Cox et al. Nov 2017 B2
9810856 Graham et al. Nov 2017 B2
9829658 Nishimura Nov 2017 B2
9829668 Claessens et al. Nov 2017 B2
9851522 Reagan et al. Dec 2017 B2
9857540 Ahmed et al. Jan 2018 B2
9864151 Lu Jan 2018 B2
9878038 Siadak et al. Jan 2018 B2
D810029 Robert et al. Feb 2018 S
9885841 Pepe et al. Feb 2018 B2
9891391 Watanabe Feb 2018 B2
9905933 Scheucher Feb 2018 B2
9910224 Liu et al. Mar 2018 B2
9910236 Cooke et al. Mar 2018 B2
9921375 Compton et al. Mar 2018 B2
9927580 Bretz et al. Mar 2018 B2
9933582 Lin Apr 2018 B1
9939591 Mullaney et al. Apr 2018 B2
9964713 Barnette et al. May 2018 B2
9964715 Lu May 2018 B2
9977194 Waldron et al. May 2018 B2
9977198 Bund et al. May 2018 B2
9983374 Li et al. May 2018 B2
10007068 Hill et al. Jun 2018 B2
10031302 Ji et al. Jul 2018 B2
10036859 Daems et al. Jul 2018 B2
10038946 Smolorz Jul 2018 B2
10042136 Reagan et al. Aug 2018 B2
10061090 Coenegracht Aug 2018 B2
10073224 Tong et al. Sep 2018 B2
10094986 Barnette et al. Oct 2018 B2
10101538 Lu et al. Oct 2018 B2
10107968 Tong et al. Oct 2018 B2
10109927 Scheucher Oct 2018 B2
10114176 Gimblet et al. Oct 2018 B2
10126508 Compton et al. Nov 2018 B2
10180541 Coenegracht et al. Jan 2019 B2
10209454 Isenhour et al. Feb 2019 B2
10215930 Mullaney et al. Feb 2019 B2
10235184 Walker Mar 2019 B2
10261268 Theuerkorn Apr 2019 B2
10268011 Courchaine et al. Apr 2019 B2
10288820 Coenegracht May 2019 B2
10288821 Isenhour May 2019 B2
10317628 Van et al. Jun 2019 B2
10324263 Bund et al. Jun 2019 B2
10338323 Lu et al. Jul 2019 B2
10353154 Ott et al. Jul 2019 B2
10353156 Hill et al. Jul 2019 B2
10359577 Dannoux et al. Jul 2019 B2
10371914 Coan et al. Aug 2019 B2
10379298 Dannoux et al. Aug 2019 B2
10386584 Rosson Aug 2019 B2
10401575 Daily et al. Sep 2019 B2
10401578 Coenegracht Sep 2019 B2
10401584 Coan et al. Sep 2019 B2
10409007 Kadar-Kallen et al. Sep 2019 B2
10422962 Coenegracht Sep 2019 B2
10422970 Holmberg et al. Sep 2019 B2
10429593 Baca et al. Oct 2019 B2
10429594 Dannoux et al. Oct 2019 B2
10434173 Siadak et al. Oct 2019 B2
10439295 Scheucher Oct 2019 B2
10444442 Takano et al. Oct 2019 B2
10451811 Coenegracht et al. Oct 2019 B2
10451817 Lu Oct 2019 B2
10451830 Szumacher et al. Oct 2019 B2
10488597 Parikh et al. Nov 2019 B2
10495822 Nhep Dec 2019 B2
10502916 Coan et al. Dec 2019 B2
10520683 Nhep Dec 2019 B2
10539745 Kamada et al. Jan 2020 B2
10578821 Ott et al. Mar 2020 B2
10585246 Bretz et al. Mar 2020 B2
10591678 Mullaney et al. Mar 2020 B2
10605998 Rosson Mar 2020 B2
10606006 Hill et al. Mar 2020 B2
D880423 Obata et al. Apr 2020 S
10613278 Kempeneers et al. Apr 2020 B2
10620388 Isenhour et al. Apr 2020 B2
10656347 Kato May 2020 B2
10677998 Ivan et al. Jun 2020 B2
10680343 Scheucher Jun 2020 B2
10712516 Courchaine et al. Jul 2020 B2
10739534 Murray et al. Aug 2020 B2
10746939 Lu et al. Aug 2020 B2
10761274 Pepe et al. Sep 2020 B2
10782487 Lu Sep 2020 B2
10802236 Kowalczyk et al. Oct 2020 B2
10830967 Pimentel et al. Nov 2020 B2
10830975 Vaughn et al. Nov 2020 B2
10852487 Ignatius Dec 2020 B1
10852498 Hill et al. Dec 2020 B2
10852499 Cooke et al. Dec 2020 B2
10859771 Nhep Dec 2020 B2
10859781 Hill et al. Dec 2020 B2
10962731 Coenegracht Mar 2021 B2
10976500 Ott et al. Apr 2021 B2
11061191 Van Baelen et al. Jul 2021 B2
20010002220 Throckmorton et al. May 2001 A1
20010012428 Nakajima et al. Aug 2001 A1
20010019654 Waldron et al. Sep 2001 A1
20010036342 Knecht et al. Nov 2001 A1
20010036345 Gimblet et al. Nov 2001 A1
20020012502 Farrar et al. Jan 2002 A1
20020062978 Sakabe et al. May 2002 A1
20020064364 Battey et al. May 2002 A1
20020076165 Childers et al. Jun 2002 A1
20020079697 Griffioen et al. Jun 2002 A1
20020081077 Nault Jun 2002 A1
20020122634 Miyake et al. Sep 2002 A1
20020122653 Donaldson et al. Sep 2002 A1
20020131721 Gaio et al. Sep 2002 A1
20020159745 Howell et al. Oct 2002 A1
20020172477 Quinn et al. Nov 2002 A1
20030031447 Nault Feb 2003 A1
20030059181 Jackman et al. Mar 2003 A1
20030063866 Melton et al. Apr 2003 A1
20030063867 McDonald et al. Apr 2003 A1
20030063868 Fentress Apr 2003 A1
20030063897 Heo Apr 2003 A1
20030080555 Griffioen et al. May 2003 A1
20030086664 Moisel et al. May 2003 A1
20030094298 Morrow et al. May 2003 A1
20030099448 Gimblet May 2003 A1
20030103733 Fleenor et al. Jun 2003 A1
20030123813 Ravasio et al. Jul 2003 A1
20030128936 Fahrnbauer et al. Jul 2003 A1
20030165311 Wagman et al. Sep 2003 A1
20030201117 Sakabe et al. Oct 2003 A1
20030206705 McAlpine et al. Nov 2003 A1
20030210875 Wagner et al. Nov 2003 A1
20040047566 McDonald et al. Mar 2004 A1
20040052474 Lampert et al. Mar 2004 A1
20040057676 Doss et al. Mar 2004 A1
20040057681 Quinn et al. Mar 2004 A1
20040072454 Nakajima et al. Apr 2004 A1
20040076377 Mizukami et al. Apr 2004 A1
20040076386 Nechitailo Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040096162 Kocher et al. May 2004 A1
20040120662 Lail et al. Jun 2004 A1
20040120663 Lail et al. Jun 2004 A1
20040157449 Hidaka et al. Aug 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040206542 Gladd et al. Oct 2004 A1
20040223699 Melton et al. Nov 2004 A1
20040223720 Melton et al. Nov 2004 A1
20040228589 Melton et al. Nov 2004 A1
20040240808 Rhoney et al. Dec 2004 A1
20040247251 Rubino et al. Dec 2004 A1
20040252954 Ginocchio et al. Dec 2004 A1
20040262023 Morrow et al. Dec 2004 A1
20050019031 Ye et al. Jan 2005 A1
20050036744 Caveney et al. Feb 2005 A1
20050036786 Ramachandran et al. Feb 2005 A1
20050053342 Melton et al. Mar 2005 A1
20050054237 Gladd et al. Mar 2005 A1
20050084215 Grzegorzewska et al. Apr 2005 A1
20050105873 Reagan et al. May 2005 A1
20050123422 Lilie Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050163448 Blackwell et al. Jul 2005 A1
20050175307 Battey et al. Aug 2005 A1
20050180697 De Marchi Aug 2005 A1
20050213890 Barnes et al. Sep 2005 A1
20050213892 Barnes et al. Sep 2005 A1
20050213897 Palmer et al. Sep 2005 A1
20050213899 Hurley et al. Sep 2005 A1
20050213902 Parsons Sep 2005 A1
20050213921 Mertesdorf et al. Sep 2005 A1
20050226568 Nakajima et al. Oct 2005 A1
20050232550 Nakajima et al. Oct 2005 A1
20050232552 Takahashi et al. Oct 2005 A1
20050232567 Reagan et al. Oct 2005 A1
20050244108 Billman et al. Nov 2005 A1
20050271344 Grubish et al. Dec 2005 A1
20050281510 Vo et al. Dec 2005 A1
20050281514 Oki et al. Dec 2005 A1
20050286837 Oki et al. Dec 2005 A1
20050286838 Oki et al. Dec 2005 A1
20060002668 Lail et al. Jan 2006 A1
20060008232 Reagan et al. Jan 2006 A1
20060008233 Reagan et al. Jan 2006 A1
20060008234 Reagan et al. Jan 2006 A1
20060045428 Theuerkorn et al. Mar 2006 A1
20060045430 Theuerkorn et al. Mar 2006 A1
20060056769 Khemakhem et al. Mar 2006 A1
20060056770 Schmitz Mar 2006 A1
20060088247 Tran et al. Apr 2006 A1
20060093278 Elkins et al. May 2006 A1
20060093303 Reagan et al. May 2006 A1
20060093304 Battey et al. May 2006 A1
20060098932 Battey et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060127016 Baird et al. Jun 2006 A1
20060133748 Seddon et al. Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153503 Suzuki et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060165352 Caveney et al. Jul 2006 A1
20060171638 Dye Aug 2006 A1
20060171640 Dye Aug 2006 A1
20060210750 Morrow et al. Sep 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060257092 Lu et al. Nov 2006 A1
20060269204 Barth et al. Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060280420 Blackwell et al. Dec 2006 A1
20060283619 Kowalczyk et al. Dec 2006 A1
20060291787 Seddon Dec 2006 A1
20070025665 Dean et al. Feb 2007 A1
20070031100 Garcia et al. Feb 2007 A1
20070031103 Tinucci et al. Feb 2007 A1
20070036483 Shin et al. Feb 2007 A1
20070041732 Oki et al. Feb 2007 A1
20070047897 Cooke et al. Mar 2007 A1
20070077010 Melton et al. Apr 2007 A1
20070098343 Miller et al. May 2007 A1
20070110374 Oki et al. May 2007 A1
20070116413 Cox May 2007 A1
20070127872 Caveney et al. Jun 2007 A1
20070140642 Mertesdorf et al. Jun 2007 A1
20070160327 Lewallen et al. Jul 2007 A1
20070189674 Scheibenreif et al. Aug 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070263961 Khemakhem et al. Nov 2007 A1
20070286554 Kuffel et al. Dec 2007 A1
20080019641 Elkins et al. Jan 2008 A1
20080020532 Monfray et al. Jan 2008 A1
20080044137 Luther et al. Feb 2008 A1
20080044145 Jenkins et al. Feb 2008 A1
20080069511 Blackwell et al. Mar 2008 A1
20080080817 Melton et al. Apr 2008 A1
20080112681 Battey et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080138016 Katagiyama et al. Jun 2008 A1
20080138025 Reagan et al. Jun 2008 A1
20080166906 Nania et al. Jul 2008 A1
20080175541 Lu et al. Jul 2008 A1
20080175542 Lu et al. Jul 2008 A1
20080175544 Fujiwara et al. Jul 2008 A1
20080175548 Knecht et al. Jul 2008 A1
20080226252 Mertesdorf et al. Sep 2008 A1
20080232743 Gronvall et al. Sep 2008 A1
20080240658 Eeman et al. Oct 2008 A1
20080260344 Smith et al. Oct 2008 A1
20080260345 Mertesdorf et al. Oct 2008 A1
20080264664 Dinh et al. Oct 2008 A1
20080273837 Margolin et al. Nov 2008 A1
20090003772 Lu et al. Jan 2009 A1
20090034923 Miller et al. Feb 2009 A1
20090041411 Melton et al. Feb 2009 A1
20090041412 Danley et al. Feb 2009 A1
20090060421 Parikh et al. Mar 2009 A1
20090060423 Melton et al. Mar 2009 A1
20090067791 Greenwood et al. Mar 2009 A1
20090067849 Oki et al. Mar 2009 A1
20090074363 Parsons et al. Mar 2009 A1
20090074369 Bolton et al. Mar 2009 A1
20090123115 Gronvall et al. May 2009 A1
20090129729 Caveney et al. May 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090148102 Lu et al. Jun 2009 A1
20090148103 Lu et al. Jun 2009 A1
20090148104 Lu et al. Jun 2009 A1
20090148118 Gronvall et al. Jun 2009 A1
20090148120 Reagan et al. Jun 2009 A1
20090156041 Radle Jun 2009 A1
20090162016 Lu et al. Jun 2009 A1
20090185835 Park et al. Jul 2009 A1
20090190895 Reagan et al. Jul 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245737 Fujiwara et al. Oct 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090263097 Solheid et al. Oct 2009 A1
20090297112 Mertesdorf et al. Dec 2009 A1
20090317039 Blazer et al. Dec 2009 A1
20090317045 Reagan et al. Dec 2009 A1
20100008909 Siadak et al. Jan 2010 A1
20100014813 Ito et al. Jan 2010 A1
20100014824 Lu et al. Jan 2010 A1
20100014867 Ramanitra et al. Jan 2010 A1
20100015834 Siebens Jan 2010 A1
20100021254 Jenkins et al. Jan 2010 A1
20100034502 Lu et al. Feb 2010 A1
20100040331 Khemakhem et al. Feb 2010 A1
20100040338 Sek Feb 2010 A1
20100054680 Lochkovic et al. Mar 2010 A1
20100061685 Kowalczyk et al. Mar 2010 A1
20100074578 Imaizumi et al. Mar 2010 A1
20100080516 Coleman et al. Apr 2010 A1
20100086260 Parikh et al. Apr 2010 A1
20100086267 Cooke et al. Apr 2010 A1
20100092129 Conner Apr 2010 A1
20100092133 Conner Apr 2010 A1
20100092136 Nhep Apr 2010 A1
20100092146 Conner et al. Apr 2010 A1
20100092169 Conner et al. Apr 2010 A1
20100092171 Conner Apr 2010 A1
20100129034 Kuffel et al. May 2010 A1
20100144183 Nania et al. Jun 2010 A1
20100172616 Lu et al. Jul 2010 A1
20100197222 Scheucher Aug 2010 A1
20100215321 Jenkins Aug 2010 A1
20100220962 Caveney et al. Sep 2010 A1
20100226615 Reagan et al. Sep 2010 A1
20100232753 Parris et al. Sep 2010 A1
20100247053 Cowen et al. Sep 2010 A1
20100266242 Lu et al. Oct 2010 A1
20100266244 Lu et al. Oct 2010 A1
20100266245 Sabo Oct 2010 A1
20100272399 Griffiths et al. Oct 2010 A1
20100284662 Reagan et al. Nov 2010 A1
20100290741 Lu et al. Nov 2010 A1
20100303416 Danley et al. Dec 2010 A1
20100303426 Davis Dec 2010 A1
20100303427 Rambow et al. Dec 2010 A1
20100310213 Lewallen et al. Dec 2010 A1
20100322563 Melton et al. Dec 2010 A1
20100329625 Reagan et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110047731 Sugita et al. Mar 2011 A1
20110067452 Gronvall et al. Mar 2011 A1
20110069932 Overton et al. Mar 2011 A1
20110108719 Ford et al. May 2011 A1
20110116749 Kuffel et al. May 2011 A1
20110123166 Reagan et al. May 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110164854 Desard et al. Jul 2011 A1
20110222826 Blackburn et al. Sep 2011 A1
20110262099 Castonguay et al. Oct 2011 A1
20110262100 Reagan et al. Oct 2011 A1
20110299814 Nakagawa Dec 2011 A1
20110305421 Caveney et al. Dec 2011 A1
20120002925 Nakagawa Jan 2012 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120045179 Theuerkorn Feb 2012 A1
20120057830 Taira et al. Mar 2012 A1
20120063724 Kuffel et al. Mar 2012 A1
20120063729 Fujiwara et al. Mar 2012 A1
20120106912 McGranahan et al. May 2012 A1
20120106913 Makrides-Saravanos et al. May 2012 A1
20120134629 Lu et al. May 2012 A1
20120183268 De et al. Jul 2012 A1
20120213478 Chen et al. Aug 2012 A1
20120251060 Hurley Oct 2012 A1
20120251063 Reagan et al. Oct 2012 A1
20120252244 Elkins et al. Oct 2012 A1
20120275749 Kuffel et al. Nov 2012 A1
20120321256 Caveney et al. Dec 2012 A1
20130004122 Kingsbury Jan 2013 A1
20130020480 Ford et al. Jan 2013 A1
20130034333 Holmberg et al. Feb 2013 A1
20130051734 Shen et al. Feb 2013 A1
20130064506 Eberle et al. Mar 2013 A1
20130094821 Logan Apr 2013 A1
20130109213 Chang May 2013 A1
20130114930 Smith et al. May 2013 A1
20130136402 Kuffel et al. May 2013 A1
20130170834 Cho et al. Jul 2013 A1
20130209099 Reagan et al. Aug 2013 A1
20130236139 Chen et al. Sep 2013 A1
20130266562 Siadak et al. Oct 2013 A1
20130315538 Kuffel et al. Nov 2013 A1
20140016902 Pepe et al. Jan 2014 A1
20140044397 Hikosaka et al. Feb 2014 A1
20140050446 Chang Feb 2014 A1
20140056561 Lu et al. Feb 2014 A1
20140079356 Pepin et al. Mar 2014 A1
20140133804 Lu et al. May 2014 A1
20140133806 Hill et al. May 2014 A1
20140133807 Katoh May 2014 A1
20140133808 Hill et al. May 2014 A1
20140153876 Dendas et al. Jun 2014 A1
20140153878 Mullaney Jun 2014 A1
20140161397 Gallegos et al. Jun 2014 A1
20140205257 Durrant et al. Jul 2014 A1
20140219609 Nielson et al. Aug 2014 A1
20140219622 Coan et al. Aug 2014 A1
20140233896 Ishigami et al. Aug 2014 A1
20140241670 Barnette et al. Aug 2014 A1
20140241671 Koreeda et al. Aug 2014 A1
20140241689 Bradley et al. Aug 2014 A1
20140254987 Caveney et al. Sep 2014 A1
20140294395 Waldron et al. Oct 2014 A1
20140314379 Lu et al. Oct 2014 A1
20140328559 Kobayashi et al. Nov 2014 A1
20140341511 Daems et al. Nov 2014 A1
20140348467 Cote et al. Nov 2014 A1
20140355936 Bund et al. Dec 2014 A1
20150003787 Chen et al. Jan 2015 A1
20150003788 Chen et al. Jan 2015 A1
20150036982 Nhep et al. Feb 2015 A1
20150110451 Blazer et al. Apr 2015 A1
20150144883 Sendelweck May 2015 A1
20150153532 Holmberg et al. Jun 2015 A1
20150168657 Islam Jun 2015 A1
20150183869 Siadak et al. Jul 2015 A1
20150185423 Matsui et al. Jul 2015 A1
20150253527 Hill et al. Sep 2015 A1
20150253528 Corbille et al. Sep 2015 A1
20150268423 Burkholder et al. Sep 2015 A1
20150268434 Barnette et al. Sep 2015 A1
20150286011 Nhep Oct 2015 A1
20150293310 Kanno Oct 2015 A1
20150309274 Hurley et al. Oct 2015 A1
20150316727 Kondo et al. Nov 2015 A1
20150346435 Kato Dec 2015 A1
20150346436 Pepe et al. Dec 2015 A1
20160015885 Pananen et al. Jan 2016 A1
20160041346 Barnette et al. Feb 2016 A1
20160062053 Mullaney Mar 2016 A1
20160085032 Lu et al. Mar 2016 A1
20160109671 Coan et al. Apr 2016 A1
20160116686 Durrant et al. Apr 2016 A1
20160126667 Droesbeke et al. May 2016 A1
20160131851 Theuerkorn May 2016 A1
20160131857 Pimentel et al. May 2016 A1
20160139346 Bund et al. May 2016 A1
20160154184 Bund et al. Jun 2016 A1
20160154186 Gimblet et al. Jun 2016 A1
20160161682 Nishimura Jun 2016 A1
20160161688 Nishimura Jun 2016 A1
20160161689 Nishimura Jun 2016 A1
20160187590 Lu Jun 2016 A1
20160202431 Hill et al. Jul 2016 A1
20160209599 Van et al. Jul 2016 A1
20160209602 Theuerkorn Jul 2016 A1
20160216468 Gimblet et al. Jul 2016 A1
20160238810 Hubbard et al. Aug 2016 A1
20160246019 Ishii et al. Aug 2016 A1
20160249019 Westwick et al. Aug 2016 A1
20160259133 Kobayashi et al. Sep 2016 A1
20160259134 Daems et al. Sep 2016 A1
20160306122 Tong et al. Oct 2016 A1
20160327754 Hill et al. Nov 2016 A1
20160349458 Murray et al. Dec 2016 A1
20160356963 Liu et al. Dec 2016 A1
20170023758 Reagan et al. Jan 2017 A1
20170038538 Isenhour et al. Feb 2017 A1
20170045699 Coan et al. Feb 2017 A1
20170052325 Mullaney et al. Feb 2017 A1
20170059784 Gniadek et al. Mar 2017 A1
20170123163 Lu et al. May 2017 A1
20170123165 Barnette et al. May 2017 A1
20170131509 Xiao et al. May 2017 A1
20170139158 Coenegracht May 2017 A1
20170160492 Lin et al. Jun 2017 A1
20170168248 Hayauchi et al. Jun 2017 A1
20170168256 Reagan et al. Jun 2017 A1
20170170596 Goossens et al. Jun 2017 A1
20170176252 Marple et al. Jun 2017 A1
20170176690 Bretz et al. Jun 2017 A1
20170182160 Siadak et al. Jun 2017 A1
20170219782 Nishimura Aug 2017 A1
20170235067 Holmberg et al. Aug 2017 A1
20170238822 Young et al. Aug 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170254962 Mueller-Schlomka et al. Sep 2017 A1
20170261696 Compton et al. Sep 2017 A1
20170261698 Compton et al. Sep 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170285275 Hill et al. Oct 2017 A1
20170285279 Daems et al. Oct 2017 A1
20170288315 Scheucher Oct 2017 A1
20170293091 Lu et al. Oct 2017 A1
20170336587 Coan et al. Nov 2017 A1
20170343741 Coenegracht et al. Nov 2017 A1
20170343745 Rosson Nov 2017 A1
20170351037 Watanabe et al. Dec 2017 A1
20180003902 Rosson et al. Jan 2018 A1
20180031774 Van et al. Feb 2018 A1
20180079569 Simpson Mar 2018 A1
20180081127 Coenegracht Mar 2018 A1
20180143386 Coan et al. May 2018 A1
20180151960 Scheucher May 2018 A1
20180180831 Blazer et al. Jun 2018 A1
20180224610 Pimentel et al. Aug 2018 A1
20180239094 Barnette et al. Aug 2018 A1
20180246283 Pepe et al. Aug 2018 A1
20180259721 Bund et al. Sep 2018 A1
20180267265 Zhang et al. Sep 2018 A1
20180321448 Wu et al. Nov 2018 A1
20180329149 Mullaney et al. Nov 2018 A1
20180348447 Nhep et al. Dec 2018 A1
20180372962 Isenhour et al. Dec 2018 A1
20190004251 Dannoux et al. Jan 2019 A1
20190004252 Rosson Jan 2019 A1
20190004255 Dannoux et al. Jan 2019 A1
20190004256 Rosson Jan 2019 A1
20190004258 Dannoux et al. Jan 2019 A1
20190011641 Isenhour et al. Jan 2019 A1
20190014987 Sasaki et al. Jan 2019 A1
20190018210 Coan et al. Jan 2019 A1
20190033531 Taira et al. Jan 2019 A1
20190033532 Gimblet et al. Jan 2019 A1
20190038743 Siadak et al. Feb 2019 A1
20190041584 Coenegracht et al. Feb 2019 A1
20190041585 Bretz et al. Feb 2019 A1
20190041595 Reagan et al. Feb 2019 A1
20190058259 Scheucher Feb 2019 A1
20190107677 Coenegracht et al. Apr 2019 A1
20190147202 Harney May 2019 A1
20190162910 Gurreri May 2019 A1
20190162914 Baca et al. May 2019 A1
20190170961 Coenegracht et al. Jun 2019 A1
20190187396 Finnegan et al. Jun 2019 A1
20190235177 Lu et al. Aug 2019 A1
20190250338 Mullaney et al. Aug 2019 A1
20190258010 Anderson et al. Aug 2019 A1
20190271817 Coenegracht Sep 2019 A1
20190324217 Lu et al. Oct 2019 A1
20190339460 Dannoux et al. Nov 2019 A1
20190339461 Dannoux et al. Nov 2019 A1
20190361177 Aoshima et al. Nov 2019 A1
20190369336 Van et al. Dec 2019 A1
20190369345 Reagan et al. Dec 2019 A1
20190374637 Siadak et al. Dec 2019 A1
20200012051 Coenegracht et al. Jan 2020 A1
20200036101 Scheucher Jan 2020 A1
20200049922 Rosson Feb 2020 A1
20200057205 Dannoux et al. Feb 2020 A1
20200057222 Dannoux et al. Feb 2020 A1
20200057223 Dannoux et al. Feb 2020 A1
20200057224 Dannoux et al. Feb 2020 A1
20200057723 Chirca et al. Feb 2020 A1
20200096705 Rosson Mar 2020 A1
20200096709 Rosson Mar 2020 A1
20200096710 Rosson Mar 2020 A1
20200103599 Rosson Apr 2020 A1
20200103608 Hill et al. Apr 2020 A1
20200110229 Dannoux et al. Apr 2020 A1
20200110234 Holmberg et al. Apr 2020 A1
20200116949 Rosson Apr 2020 A1
20200116952 Rosson Apr 2020 A1
20200116953 Rosson Apr 2020 A1
20200116954 Rosson Apr 2020 A1
20200116958 Dannoux et al. Apr 2020 A1
20200116962 Dannoux et al. Apr 2020 A1
20200124805 Rosson et al. Apr 2020 A1
20200124812 Dannoux et al. Apr 2020 A1
20200132939 Coenegracht et al. Apr 2020 A1
20200132941 Otsuka et al. Apr 2020 A1
20200150356 Lu May 2020 A1
20200174201 Cote et al. Jun 2020 A1
20200183097 Chang et al. Jun 2020 A1
20200192042 Coan et al. Jun 2020 A1
20200209492 Rosson Jul 2020 A1
20200218017 Coenegracht Jul 2020 A1
20200225422 Van et al. Jul 2020 A1
20200225424 Coenegracht Jul 2020 A1
20200241211 Shonkwiler et al. Jul 2020 A1
20200348476 Hill et al. Nov 2020 A1
20200371306 Mosier et al. Nov 2020 A1
20200393629 Hill et al. Dec 2020 A1
20220171138 Barthes Jun 2022 A1
20220171140 Barthes Jun 2022 A1
Foreign Referenced Citations (259)
Number Date Country
2006232206 Oct 2006 AU
1060911 May 1992 CN
1071012 Apr 1993 CN
1213783 Apr 1999 CN
1231430 Oct 1999 CN
1114839 Jul 2003 CN
1646962 Jul 2005 CN
1833188 Sep 2006 CN
1922523 Feb 2007 CN
1985205 Jun 2007 CN
101084461 Dec 2007 CN
101111790 Jan 2008 CN
101195453 Jun 2008 CN
201404194 Feb 2010 CN
201408274 Feb 2010 CN
201522561 Jul 2010 CN
101806939 Aug 2010 CN
101846773 Sep 2010 CN
101866034 Oct 2010 CN
101939680 Jan 2011 CN
201704194 Jan 2011 CN
102141655 Aug 2011 CN
102346281 Feb 2012 CN
202282523 Jun 2012 CN
203224645 Oct 2013 CN
203396982 Jan 2014 CN
103713362 Apr 2014 CN
103782209 May 2014 CN
104007514 Aug 2014 CN
104064903 Sep 2014 CN
104280830 Jan 2015 CN
104603656 May 2015 CN
104704411 Jun 2015 CN
105467529 Apr 2016 CN
105683795 Jun 2016 CN
110608208 Dec 2019 CN
110954996 Apr 2020 CN
3537684 Apr 1987 DE
3737842 Sep 1988 DE
19805554 Aug 1998 DE
0012566 Jun 1980 EP
0026553 Apr 1981 EP
0122566 Oct 1984 EP
0130513 Jan 1985 EP
0244791 Nov 1987 EP
0462362 Dec 1991 EP
0468671 Jan 1992 EP
0469671 Feb 1992 EP
0547778 Jun 1993 EP
0547788 Jun 1993 EP
0762171 Mar 1997 EP
0782025 Jul 1997 EP
0855610 Jul 1998 EP
0856751 Aug 1998 EP
0856761 Aug 1998 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
0957381 Nov 1999 EP
0997757 May 2000 EP
1065542 Jan 2001 EP
1122566 Aug 2001 EP
1243957 Sep 2002 EP
1258758 Nov 2002 EP
1391762 Feb 2004 EP
1431786 Jun 2004 EP
1438622 Jul 2004 EP
1678537 Jul 2006 EP
1759231 Mar 2007 EP
1810062 Jul 2007 EP
2069845 Jun 2009 EP
2149063 Feb 2010 EP
2150847 Feb 2010 EP
2193395 Jun 2010 EP
2255233 Dec 2010 EP
2333597 Jun 2011 EP
2362253 Aug 2011 EP
2401641 Jan 2012 EP
2609458 Jul 2013 EP
2622395 Aug 2013 EP
2734879 May 2014 EP
2815259 Dec 2014 EP
2817667 Dec 2014 EP
2992372 Mar 2016 EP
3022596 May 2016 EP
3064973 Sep 2016 EP
3101740 Dec 2016 EP
3207223 Aug 2017 EP
3234672 Oct 2017 EP
3245545 Nov 2017 EP
3265859 Jan 2018 EP
3336992 Jun 2018 EP
3362830 Aug 2018 EP
3427096 Jan 2019 EP
3443395 Feb 2019 EP
3535614 Sep 2019 EP
3537197 Sep 2019 EP
3646074 May 2020 EP
3646079 May 2020 EP
1184287 May 2017 ES
2485754 Dec 1981 FR
2022284 Dec 1979 GB
2154333 Sep 1985 GB
2169094 Jul 1986 GB
52-030447 Mar 1977 JP
58-142308 Aug 1983 JP
61-145509 Jul 1986 JP
62-054204 Mar 1987 JP
63-020111 Jan 1988 JP
63-078908 Apr 1988 JP
63-089421 Apr 1988 JP
03-063615 Mar 1991 JP
03-207223 Sep 1991 JP
05-106765 Apr 1993 JP
05-142439 Jun 1993 JP
05-297246 Nov 1993 JP
06-320111 Nov 1994 JP
07-318758 Dec 1995 JP
08-050211 Feb 1996 JP
08-054522 Feb 1996 JP
08-062432 Mar 1996 JP
08-292331 Nov 1996 JP
09-049942 Feb 1997 JP
09-135526 May 1997 JP
09-159867 Jun 1997 JP
09-203831 Aug 1997 JP
09-325223 Dec 1997 JP
09-325249 Dec 1997 JP
10-170781 Jun 1998 JP
10-332953 Dec 1998 JP
10-339826 Dec 1998 JP
11-064682 Mar 1999 JP
11-119064 Apr 1999 JP
11-248979 Sep 1999 JP
11-271582 Oct 1999 JP
11-281861 Oct 1999 JP
11-326693 Nov 1999 JP
11-337768 Dec 1999 JP
11-352368 Dec 1999 JP
2000-002828 Jan 2000 JP
2001-116968 Apr 2001 JP
2001-290051 Oct 2001 JP
2002-520987 Jul 2002 JP
3296698 Jul 2002 JP
2002-250987 Sep 2002 JP
2003-009331 Jan 2003 JP
2003-070143 Mar 2003 JP
2003-121699 Apr 2003 JP
2003-177279 Jun 2003 JP
2003-302561 Oct 2003 JP
2004-361521 Dec 2004 JP
2005-024789 Jan 2005 JP
2005-031544 Feb 2005 JP
2005-077591 Mar 2005 JP
2005-114860 Apr 2005 JP
2005-520987 Jul 2005 JP
2006-023502 Jan 2006 JP
2006-146084 Jun 2006 JP
2006-259631 Sep 2006 JP
2006-337637 Dec 2006 JP
2007-078740 Mar 2007 JP
2007-121859 May 2007 JP
2008-191422 Aug 2008 JP
2008-250360 Oct 2008 JP
2009-265208 Nov 2009 JP
2010-152084 Jul 2010 JP
2010-191420 Sep 2010 JP
2011-018003 Jan 2011 JP
2011-033698 Feb 2011 JP
2013-041089 Feb 2013 JP
2013-156580 Aug 2013 JP
2014-085474 May 2014 JP
2014-095834 May 2014 JP
2014-134746 Jul 2014 JP
5537852 Jul 2014 JP
5538328 Jul 2014 JP
2014-157214 Aug 2014 JP
2014-219441 Nov 2014 JP
2015-125217 Jul 2015 JP
2016-109816 Jun 2016 JP
2016-109817 Jun 2016 JP
2016-109819 Jun 2016 JP
2016-156916 Sep 2016 JP
3207223 Nov 2016 JP
3207233 Nov 2016 JP
10-2013-0081087 Jul 2013 KR
222688 Apr 1994 TW
9425885 Nov 1994 WO
9836304 Aug 1998 WO
0127660 Apr 2001 WO
0192927 Dec 2001 WO
0192937 Dec 2001 WO
0225340 Mar 2002 WO
0336358 May 2003 WO
2004061509 Jul 2004 WO
2005045494 May 2005 WO
2006009597 Jan 2006 WO
2006052420 May 2006 WO
2006113726 Oct 2006 WO
2006123777 Nov 2006 WO
2008027201 Mar 2008 WO
2008150408 Dec 2008 WO
2008150423 Dec 2008 WO
2009042066 Apr 2009 WO
2009113819 Sep 2009 WO
2009117060 Sep 2009 WO
2009154990 Dec 2009 WO
2010092009 Aug 2010 WO
2010099141 Sep 2010 WO
2011044090 Apr 2011 WO
2011047111 Apr 2011 WO
2012027313 Mar 2012 WO
2012037727 Mar 2012 WO
2012044741 Apr 2012 WO
2012163052 Dec 2012 WO
2013016042 Jan 2013 WO
2013122752 Aug 2013 WO
2013126488 Aug 2013 WO
2013177016 Nov 2013 WO
2014151259 Sep 2014 WO
2014167447 Oct 2014 WO
2014179411 Nov 2014 WO
2014197894 Dec 2014 WO
2015047508 Apr 2015 WO
2015144883 Oct 2015 WO
2015197588 Dec 2015 WO
2016059320 Apr 2016 WO
2016073862 May 2016 WO
2016095213 Jun 2016 WO
2016100078 Jun 2016 WO
2016115288 Jul 2016 WO
2016156610 Oct 2016 WO
2016168389 Oct 2016 WO
2017063107 Apr 2017 WO
2017146722 Aug 2017 WO
2017155754 Sep 2017 WO
2017178920 Oct 2017 WO
2018083561 May 2018 WO
2018175123 Sep 2018 WO
2018204864 Nov 2018 WO
2019005190 Jan 2019 WO
2019005191 Jan 2019 WO
2019005192 Jan 2019 WO
2019005193 Jan 2019 WO
2019005194 Jan 2019 WO
2019005195 Jan 2019 WO
2019005196 Jan 2019 WO
2019005197 Jan 2019 WO
2019005198 Jan 2019 WO
2019005199 Jan 2019 WO
2019005200 Jan 2019 WO
2019005201 Jan 2019 WO
2019005202 Jan 2019 WO
2019005203 Jan 2019 WO
2019005204 Jan 2019 WO
2019006176 Jan 2019 WO
2019036339 Feb 2019 WO
2019126333 Jun 2019 WO
2019195652 Oct 2019 WO
2020101850 May 2020 WO
Non-Patent Literature Citations (21)
Entry
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding.
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs.
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs.
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs.
Corning Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002).
Corning Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002).
Digital Optical Audio Cable Toslink Cable. Date: Jun. 27, 2019 [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B07TJMP4TP/ (Year: 2019).
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol. 0733-8724 7(11), 17411751 (1989).
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs.
Gold Plated Toslink. Date: Feb. 5, 2015. [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B00T8HWV62/ (Year: 2015).
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019.
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980.
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007.
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6.
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 Sec. 10.3, 12.2, 165 Pgs.
Stratos: Lightwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs.
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs.
UPC Optic Fiber Quick Connector. Date: May 13, 2016 [online], [Site visited Mar. 2, 2021], Available from Internet URL: https://www.amazon.com/dp/B01FLUV5DE/ (Year: 2016).
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004).
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), F14451446 (2004).
Xiao et al. “1 xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015.
Related Publications (1)
Number Date Country
20220171139 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
63119622 Nov 2020 US