1. Field of the Invention
The present invention relates to drop or distribution boxes for managing fiber optic cables in the deployment of fiber optic networks at subscriber premises.
2. Discussion of the Known Art
The deployment of fiber optic networks at multi-dwelling units (MDUs) and other subscriber premises, requires the use of so-called cable drop or distribution boxes that are designed for mounting on walls or other structures at the premises. Current industry practice calls for the boxes to have a cable entry port at the left side of the box for receiving a fiber optic cable originating from the network provider, and one or more ports at the right side of the box through which a number of fibers associated with individual subscribers at the premises are routed to connect with fibers in the provider cable. See, for example, Corning Cable Systems, Wall-Mountable Connector Housings, at <www.corningcablesystems.com>, and ADC Telecommunications, Indoor Fiber Distribution Terminals—Customer Premises Equipment (CPE), at <www.adc.com/productsandservices/>. See also, 2007 Multilink Catalog, vol. 24, at pages 87-94, disclosing a family of wall mountable fiber optic cable enclosures available from Multilink, Inc., of Elyria, Ohio, USA.
U.S. Pat. No. 4,976,510 (Dec. 11, 1990) discloses a wall communications outlet wherein cables may enter the outlet through panels inserted at sides of the outlet, or through an opening formed in a backplate of the outlet. Two sets of sidewalls are arranged concentric with the opening in the backplate so that spare lengths of optical fibers can be placed between the sidewalls, according to the patent. International Application No. PCT/IT92/00055 published Nov. 11, 1993, discloses a distribution device for termination of optical ribbon cables. The device has two circular grooves about which a ribbon, and fibers of the ribbon, are wound.
Installation of the known cable boxes by a single worker at a subscriber premises can be difficult and time consuming, however. Further, the known boxes are dimensioned to accommodate older types of fiber optic cables which can not tolerate bend diameters of less than three inches (76.2 mm) without impairing cable performance. Accordingly, the currently available boxes are relatively large, and are not well-suited for widespread deployment of fiber optic networks at multi-dwelling units or other kinds of premises without significant expenditures of time and labor.
According to the invention, a fiber optic cable distribution box includes an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a cable routed to the box. A drum region extends beneath the interface compartment and includes a cylindrical wall having an axis for supporting a length of a cable wound about the wall. The drum region is constructed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are arranged so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound about the wall of the drum region.
For a better understanding of the invention, reference is made to the following description taken in conjunction with the accompanying drawing and the appended claims.
In the drawing:
The box 10 also has a drum region 20 that extends axially upward from a central portion of the base 12. The drum region 20 includes an outer cylindrical wall 22 the outside periphery of which is partially visible in
The cable distribution box 10 also has an interface compartment 30 that is disposed atop the drum region 20, and which has a peripheral side wall 31. In the embodiment of
As mentioned, optical fibers routed into the interface compartment 30 may originate from the inside end portion of a cable wound over the drum region 20 and which passes through the drum wall 22 via the strain relief device 24. In such an application, the fibers are routed through an annular fiber routing region 46 that extends between the outer cylindrical wall 22, and an inner cylindrical wall 48 of the drum region which wall 48 is formed radially inward of the outer wall 22. The strain relief device 24 and the dimensions of the annular fiber routing region 46, are such that individual optical fibers will not be subject to a bend diameter less than that specified for the fibers before entering the interface compartment 30 and terminating in the connectors 44. For example, when using cables of Allwave® Flex™ fiber available from OFS Fitel, the inner wall 48 may have an outside diameter as small as 0.7874 inches (20 mm), and the mean diameter of the fiber routing region 46 may only be about 2.0 inches (50.8 mm).
The sidewall 31 of the interface compartment 30 also has a cable entry or pass through port 50 (
The diameter of the central passage 62 in the tube 60 is preferably sufficient to allow a long narrow tool such as a screwdriver shaft, bolt or other payoff mandrel, to be inserted through the passage from above or below the box 10 so that the tool will act as a spindle about which the box 10 can turn freely. This construction allows a single worker easily to pay out a cable wound on the drum region 20, as may be necessary for a network deployment at a MDU. For example, while holding the handle of an inserted screwdriver in one hand, the worker can use his or her other hand to pull and unwind a desired length of the cable from the drum region 20 while the box 10 is free to turn about the screwdriver shaft.
The box 200 has a single piece cover lid 232 with an integrated hinge 235 for a connector guard or cover 234. Further, a side wall 231 of an interface compartment 230 has a continuous circular disk flange 204 that extends radially outward beneath the compartment 230, parallel to a base 212 of the box. The flange 204 and the base 212 together serve to confine a length of fiber optic cable wound on the outer cylindrical wall 222, within the region between the flange 204 and the base 212. As with the box 10 of
Also, as seen in
Further, as shown in
The cable 260 and its individual fibers are guided over a substantially straight path between the device openings 226, 228, with the aid of a pair of parallel fingers or guides 211 that project upward from the base wall 224c of the device 224 as seen in
Accordingly, the inside end portion of the cable 260 and its individual fibers pass tangentially with respect to the outer cylindrical wall 222 through the cable entry port 225 in the wall, and into the annular fiber routing region 246 of the box 200. Because the yarn surrounding the fibers is anchored to the guides 211 of the strain relief device 224, any force applied externally to the cable 260 when the cable is being wound on or off the outer cylindrical wall 222 of the drum region, will be transferred to the wall 222 in which the device 224 is fixed rather than to the fibers themselves.
Typical MDU cable distribution box installations have single fiber breakouts that egress from the box, wherein each breakout is associated with a corresponding living unit of the premises where the box is installed. Single fiber cables from each living unit are often routed to a box without a terminating connector. The bare ends of these cables can be terminated at the box in various ways. For example, single ended fiber pigtails can be spliced within the box so that splice sleeves are housed in a common space. This requires a chamber or compartment to house the splice in order to prevent damage and to manage fiber slack. Alternatives may include mechanical splicing of the pigtails, which would require a similar chamber or housing. The individual single fiber cables may also be terminated directly with a field installable connector, thus obviating the need for a splice chamber.
The box 300 has an integrated splice chamber or compartment 308 attached or formed underneath the base 312, including a splice tray 309 mounted inside the base. The splice tray 309 may be fixed within the box 300, or affixed directly to a wall. In either case, the box 300 may be installed over the splice compartment 308. Pigtails or terminated ends can then enter or exit a lower section of the compartment through corresponding clearance notches 311 that are cut in a side wall of the base 312.
The connector parking area or block 313 allows terminated fiber ends to be stored while not in use. The block 313 is constructed and dimensioned to receive and secure a selected one of a number of different commercially available connector parking strips 307 (e.g., type SC) in the block 313. This feature enables the future use of alternate connector types without having to replace the box 300, but at the same time allows installers to forego parking
Several latch or security holes 315 may be formed through corresponding feet on the hinged cover lid 332. The latch holes 315 allow the end user to utilize a number of safety lockout methods. For example, one hole 315 can be used with a standard plunger type latching mechanism simply to keep the lid closed. Other holes 315 can be used to receive wire ties, lockout tags, or other security locks.
Each of the subscriber fibers 416 is connected with a corresponding fiber in a cable 418 associated with the box 10 in the ceiling of the subscriber's floor. The cable 418 may be wound initially about the drum region 20 of the box 10, to be partially or fully unwound later for routing to another box 10 that serves as an “aggregation” box which is located, e.g, between a basement 420 and a roof 422 of the MDU 400. The fibers of the cable 418 are terminated in the connectors 44 which, in turn, are connected to the adapters 42 on the internal side of the box connector panel 40.
At the aggregation box 10, each one of the cables 418 containing subscriber fibers from each floor of the MDU 400, enters the aggregation box through its rear pass through port 50 or a faceplate port. As mentioned earlier, the fibers of each cable 418 may be routed inside the box with little if any bending to connect via a multi-fiber connector 44 with a corresponding adapter 42 on the internal side of the box panel 40. A main fiber optic cable 424 serving all subscribers in the MDU 400, is routed between a cable entry box 426 in the basement 420, and the aggregation box 10 in which the main cable fibers connect to the adapters 42 on the external side of the box panel 40 via multifiber connectors 36. A network provider cable 430 is routed to the entry box 426 from outside the MDU 400, and fibers of the cable 430 are connected to corresponding subscriber fibers of the cable 424 inside the entry box 426.
The various embodiments disclosed herein incorporate the following important features in a fiber optic cable distribution box.
1. Reduced physical dimensions for use with newer types of fiber optic cable such as Allwave® Flex™ available from OFS Fitel and which have superior bending performance.
2. An axial drum region that provides for external cable storage and keeps internal fiber routing within safe bending limits.
3. A central through tube that facilitates pay-off of cable wound externally on the drum region, with the use of a common tool such as a screwdriver.
While the foregoing represents preferred embodiments of the invention, it will be understood by those skilled in the art that various modifications and changes may be made without departing from the spirit and scope of the invention, and that the invention includes all such modifications and changes as come within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/390,085, filed Dec. 23, 2016; and this application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '085 application is a continuation of U.S. patent application Ser. No. 14/492,970, filed Sep. 22, 2014, now U.S. Pat. No. RE462,255; and the '085 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '970 application is a continuation of U.S. patent application Ser. No. 13/091,851, filed Apr. 21, 2011, now U.S. Pat. No. RE45,153; and the '970 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '851 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '297 application is a continuation of U.S. patent application Ser. No. 11/728,785, filed Mar. 27, 2007, now U.S. Pat. No. 7,400,814, and entitled “Wall-Mountable Optical Fiber and Cable Management Apparatus”. The '785 application claims priority under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/880,169, filed Jan. 13, 2007, and entitled “Multidwelling Unit (MDU) Drop Box for Fiber Optic Cables”.
Number | Name | Date | Kind |
---|---|---|---|
1276825 | Swopo | Aug 1918 | A |
1442999 | Boardman et al. | Jan 1923 | A |
1446410 | McCormick et al. | Feb 1923 | A |
1474580 | Clark et al. | Nov 1923 | A |
RE20995 | Beasley | Feb 1939 | E |
2502496 | Wickman | Apr 1950 | A |
2521226 | Keller | Sep 1950 | A |
2727703 | Bonnett | Dec 1955 | A |
3131729 | Leysinger | May 1964 | A |
3657491 | Ryder et al. | Apr 1972 | A |
3667417 | Clinkenbeard | Jun 1972 | A |
3920308 | Murray | Nov 1975 | A |
3940086 | Stoquelet | Feb 1976 | A |
4053118 | Aikins | Oct 1977 | A |
4081258 | Goell et al. | Mar 1978 | A |
4384688 | Smith | May 1983 | A |
4587801 | Missout et al. | May 1986 | A |
4635875 | Apple | Jan 1987 | A |
4666237 | Mallinson | May 1987 | A |
4767073 | Malzacher | Aug 1988 | A |
4869437 | Berz et al. | Sep 1989 | A |
4883337 | Dahlgren | Nov 1989 | A |
4913369 | Lia et al. | Apr 1990 | A |
4939798 | Last | Jul 1990 | A |
4940859 | Peterson | Jul 1990 | A |
4976510 | Davila et al. | Dec 1990 | A |
5016554 | Harris et al. | May 1991 | A |
5022600 | Blanc et al. | Jun 1991 | A |
5066256 | Ward | Nov 1991 | A |
5069523 | Finzel et al. | Dec 1991 | A |
5074863 | Dines | Dec 1991 | A |
5185843 | Aberson et al. | Feb 1993 | A |
5185853 | Cheng et al. | Feb 1993 | A |
5265815 | Soyka et al. | Nov 1993 | A |
5280861 | Corriveau | Jan 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5326040 | Kramer | Jul 1994 | A |
5335874 | Shrum et al. | Aug 1994 | A |
5434944 | Kerry et al. | Jul 1995 | A |
5494234 | Kramer | Feb 1996 | A |
5494446 | De Lucia et al. | Feb 1996 | A |
5497444 | Wheeler | Mar 1996 | A |
5519275 | Scott et al. | May 1996 | A |
5522561 | Koyamatsu et al. | Jun 1996 | A |
5544836 | Pera | Aug 1996 | A |
5551545 | Gelfman | Sep 1996 | A |
5638481 | Arnett | Jun 1997 | A |
5657412 | Caudrelier | Aug 1997 | A |
5703990 | Robertson et al. | Dec 1997 | A |
5709347 | Hoffmann et al. | Jan 1998 | A |
5717810 | Wheeler | Feb 1998 | A |
5718397 | Stevens | Feb 1998 | A |
5749148 | White et al. | May 1998 | A |
5758004 | Alarcon et al. | May 1998 | A |
5787219 | Muellet et al. | Jul 1998 | A |
5915640 | Wagter et al. | Jun 1999 | A |
5987203 | Abel et al. | Nov 1999 | A |
5992787 | Burke | Nov 1999 | A |
6167183 | Swain | Dec 2000 | A |
6215938 | Reitmeier et al. | Apr 2001 | B1 |
6220413 | Walters et al. | Apr 2001 | B1 |
6243526 | Garibay et al. | Jun 2001 | B1 |
6315598 | Elliot et al. | Nov 2001 | B1 |
6347462 | Steinich | Feb 2002 | B1 |
6379166 | Hagarty et al. | Apr 2002 | B1 |
6494396 | Sugata | Dec 2002 | B2 |
6522826 | Gregory | Feb 2003 | B2 |
6551237 | Matsui | Apr 2003 | B2 |
6554221 | Hinds | Apr 2003 | B2 |
6591051 | Solheid et al. | Jul 2003 | B2 |
6616080 | Edwards | Sep 2003 | B1 |
6669129 | Shah | Dec 2003 | B1 |
6694084 | Nakamura | Feb 2004 | B1 |
6711339 | Puetz et al. | Mar 2004 | B2 |
6834517 | Sheehy, Jr. | Dec 2004 | B1 |
6856748 | Elkins, II et al. | Feb 2005 | B1 |
6915058 | Pons | Jul 2005 | B2 |
6927340 | Binder et al. | Aug 2005 | B1 |
6937725 | Liao | Aug 2005 | B2 |
6948680 | Ganster | Sep 2005 | B2 |
6997410 | Huang | Feb 2006 | B1 |
7000863 | Bethea et al. | Feb 2006 | B2 |
7011538 | Chang | Mar 2006 | B2 |
7016590 | Tanaka et al. | Mar 2006 | B2 |
7017721 | Bradford et al. | Mar 2006 | B1 |
7220144 | Elliot et al. | May 2007 | B1 |
7315681 | Kewitsch | Jan 2008 | B2 |
7346253 | Bloodworth et al. | Mar 2008 | B2 |
7364108 | Kim et al. | Apr 2008 | B2 |
7369739 | Kline et al. | May 2008 | B2 |
7397997 | Ferris et al. | Jul 2008 | B2 |
7400814 | Hendrickson | Jul 2008 | B1 |
7477829 | Kaplan | Jan 2009 | B2 |
7519258 | Wilken et al. | Apr 2009 | B2 |
7522806 | Hendrickson et al. | Apr 2009 | B2 |
7533472 | Birchinger et al. | May 2009 | B2 |
7533841 | Harrison et al. | May 2009 | B1 |
7546018 | Hendrickson et al. | Jun 2009 | B2 |
7676136 | Wakileh et al. | Mar 2010 | B2 |
7756379 | Kowalczyk et al. | Jul 2010 | B2 |
7809234 | Smith et al. | Oct 2010 | B2 |
7894701 | Kowalczyk et al. | Feb 2011 | B2 |
RE45153 | Hendrickson | Sep 2014 | E |
RE46255 | Hendrickson | Dec 2016 | E |
RE48063 | Hendrickson | Jun 2020 | E |
20020023814 | Poutiatine | Feb 2002 | A1 |
20020122652 | Gonzalez et al. | Sep 2002 | A1 |
20020126980 | Holman et al. | Sep 2002 | A1 |
20020131749 | Swenson et al. | Sep 2002 | A1 |
20020164121 | Brennan et al. | Nov 2002 | A1 |
20020171002 | Krestsch et al. | Nov 2002 | A1 |
20020172489 | Daoud et al. | Nov 2002 | A1 |
20030037480 | Davis | Feb 2003 | A1 |
20040218887 | Brown et al. | Nov 2004 | A1 |
20040244430 | Sheehy, Jr. | Dec 2004 | A1 |
20050135771 | Attanasio et al. | Jun 2005 | A1 |
20050163448 | Blackwell, Jr. et al. | Jul 2005 | A1 |
20050213920 | Tanaka et al. | Sep 2005 | A1 |
20050247136 | Cross et al. | Nov 2005 | A1 |
20050258411 | Zeitler | Nov 2005 | A1 |
20060008231 | Reagan et al. | Jan 2006 | A1 |
20060163403 | Dickson | Jul 2006 | A1 |
20060183362 | Mullaney et al. | Aug 2006 | A1 |
20060210230 | Kline et al. | Sep 2006 | A1 |
20070025675 | Kramer | Feb 2007 | A1 |
20070058919 | Desanti | Mar 2007 | A1 |
20070165995 | Reagan et al. | Jul 2007 | A1 |
20070189691 | Barth et al. | Aug 2007 | A1 |
20070274659 | Kaplan | Nov 2007 | A1 |
20080035778 | Belden et al. | Feb 2008 | A1 |
20080037945 | Gniadek et al. | Feb 2008 | A1 |
20080118207 | Yamamoto et al. | May 2008 | A1 |
20080218947 | Atkinson | Sep 2008 | A1 |
20080315030 | Hendrickson et al. | Dec 2008 | A1 |
20090190894 | Nhep et al. | Jul 2009 | A1 |
20100054680 | Lochkovic et al. | Mar 2010 | A1 |
20100166376 | Nair et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
3841607 | Jun 1990 | DE |
3841607 | Jun 1990 | DE |
42 26 368 | Feb 1994 | DE |
0343057 | Nov 1989 | EP |
0343057 | Nov 1989 | EP |
0725468 | Aug 1996 | EP |
1041417 | Oct 2000 | EP |
1041417 | Oct 2000 | EP |
1107031 | Jun 2001 | EP |
2566997 | Jan 1986 | FR |
2586822 | Mar 1987 | FR |
2586822 | Mar 1987 | FR |
2739460 | Apr 1997 | FR |
2739460 | Apr 1997 | FR |
61-093410 | Dec 1986 | JP |
6-27882 | Apr 1994 | JP |
9-236709 | Sep 1997 | JP |
11-349230 | Dec 1999 | JP |
2000258672 | Sep 2000 | JP |
2003114339 | Jan 2003 | JP |
2005-73365 | Mar 2005 | JP |
2005-249858 | Sep 2005 | JP |
2005234216 | Sep 2005 | JP |
2006173669 | Jun 2006 | JP |
WO PCTIT00055 | Nov 1993 | WO |
9723791 | Jul 1997 | WO |
PCTUS0305238 | Sep 2003 | WO |
WO PCTUS0305238 | Sep 2003 | WO |
PCTUS2006014764 | Oct 2006 | WO |
WO PCTUS2006014764 | Oct 2006 | WO |
Entry |
---|
7 Inch Modules, ADC Telecommunications, Inc, © 1998, “7 Inch Connector Module with IFC”, pp. 127. |
Description of Admitted Prior Art, 30 pages. |
F3DF Modules, ADC Telecommunications, Inc. © 1995, “Individual 12-Pack Assemblies”, pp. 90. |
Fiber Cable Management Products, Third Edition, ADC Telecommunications, Inc., © 1995, 1998. |
Fiber Distribution Frame, Pre-Terminated Rear Load Connector Module, Installation Instructions, ADC Telecommunications, Inc., © 2000. |
Fiber Main Distribution Frame (FMDF), Fiber Terminal Block, Installation Instructions, ADC Telecommunications, Inc., © 2001. |
Fiber Panel Products—Cable Management Tray Panels, ADC Telecommunications, Inc., © 1994, 1996 “72 Fiber Distribution Module (FDM) With Intrafacility Fiber Cable”, pp. 56. |
Fiber Panel Products, Second Edition, ADC Telecommunications, Inc., © 1994, 1996. |
FL2000 Products—Preconfigured Panels, ADC Telecommunications, Inc., © 2000 “Rack or Cabinet Mount Termination Panel with Multifiber Cable”, pp. 13. |
FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996. |
FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996, “Rack Mount Panel with Intrafacility Fiber Cable”, pp. 16. |
IFC Style Frame Modules, ADC Telecommunications, Inc., © 1995, “Connector Module Equipped with IFC”, pp. 27. |
Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000, “Fiber Termination Blocks (FTB) Preterminated”, pp. 8. |
Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000. |
Next Generation Frames—Fiber Termination Blocks, ADC Telecommunication, Inc., © 1998, “Fiber Termination Blocks (FTB) Preterminated” pp. 6. |
Value-Added Module System, ADC Telecommunications, Inc., © 1993, 1194, 1998, “12-Pack Module Assemblies”, pp. 30-31. |
Corning Cable Systems, Wall-Mountable Connector Housings (WCH), at www.corningcablesystymes.com (undated). |
Multilink, Inc., 2007 Multilink Catalog, vol. 24, at p. 87-94. |
Extended European Search Report issued in European Application No. 16171981.0, dated Oct. 13, 2016 (9 pgs). |
ADC Telecommunications, Inc., Indoor Fiber Distribution Terminals—CPE, at www.adc.com/productsand services/ (undated). |
Number | Date | Country | |
---|---|---|---|
60880169 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15390085 | Dec 2016 | US |
Child | 12156297 | US | |
Parent | 14492970 | Sep 2014 | US |
Child | 15390085 | US | |
Parent | 13091851 | Apr 2011 | US |
Child | 14492970 | US | |
Parent | 11728785 | Mar 2007 | US |
Child | 12156297 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12156297 | May 2008 | US |
Child | 16907621 | US | |
Parent | 12156297 | May 2008 | US |
Child | 13091851 | US |