The present invention relates to enclosures such as CATV nodes. More particularly, the present invention relates to cable management within an enclosure.
In enclosures such as CATV nodes 90, for example Scientific-Atlanta's Gainmaker® or 1 GHz node, cable management is typically difficult as enclosures get smaller and capability expands. In outdoor enclosures this is particularly difficult due to the minimal amount of free space and the fact that the upper 92 and lower 94 housing halves are closed up together and compress the cables inside. A major problem is that cables get trapped or pinched between the two housing halves 92, 94 when the units are opened and closed. The cables become damaged and then the housing does not seal properly. What is needed is a means to secure cable of varying length within the sealed enclosure, but then permit any of the cables to be easily utilized when needed.
The present invention will be described more fully hereinafter with reference to the accompanying drawings in which like numerals represent like elements throughout the several figures, and in which an exemplary embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The present invention is described more fully hereinbelow.
The present invention is a fiber optic cable enclosure assembly 10 for protecting and housing fiber optic cable 12 having fiber optic cable connector 14 for laser aperture 16. The connector 14 has pivoting door 18 on its distal end. The enclosure assembly 10 may be used in combination with modular optical devices such as transmitters and receivers, which may be connected to an optical interface board. In
The enclosure assembly 10 also includes a tray 28 that may be pulled or slid out of the housing 24. In
It is desirable at times to only allow the tray to be partially removed from the housing 24. The back portion 34 of the tray 28 may also include at least one biasing finger 60 to catch in a slot or opening 62 in the back 40 of the housing 24. The opening 62 is shown in
However, in some embodiments, the back portion 34 may include a second biasing finger 64 closer to a bottom edge 66 of the back portion 34 of tray 28 than the finger 60. In such case, once the finger 60 has been released from the opening 62 in the back 40 of the housing 24 and the tray 28 is starting to be removed from the housing 24, the finger 64 then becomes caught in opening 62 in the back 40 of the housing 24. By allowing the tray 28 to only be partially removed from the housing 24, the fiber optic connector 14 and laser aperture 16 is allowed to be accessed. If the finer optic cable 12 within the housing 24 needs to be accessed, the finger 64 can be pressed to release the finger 64 from the opening 62 so that the entire tray 28 may be removed from the housing 24 so that the entire spool of fiber optic cable 12 may be accessed. Fingers 62, 64 may be referred to as snap latches. Other combinations of fingers and openings or other suitable means for detachably retaining the tray 28 within the housing 24 and to limit the extent which the tray 28 may be removed may be used.
The tray 28 may also include one or more protruding portions which extend outward from the back portion 34 in order to control and retain spooled fiber optic cable 12. As shown in
In an alternative embodiment, either or both of the pluralities of protruding portions 72, 74 may instead be continuous, thereby define a single substantially circular protruding portion. In another embodiment, one or more protruding portions may include biasing protuberances 80 which extend substantially perpendicular from the distal end of the protruding portion. Preferably, the protuberances extend between the two diameters of protruding portions 72, 74, as best shown in
The connector 14 on one end of the fiber optic cable 12 may be retained in a position between the top potion 32 of the tray 28 and a finger portion 86 which defines a slot 88. When the laser aperture 16 is ready to be utilized in the enclosure, the tray 28 may be at least partially removed from the housing 24 so that the connector 14 can be removed from the slot 88 and at least a portion of the length of the fiber optic cable 12 can be removed from between the protruding portions 72, 74.
The foregoing has broadly outlined some of the more pertinent aspects and features of the present invention. These should be construed to be merely illustrative of some of the more prominent features and applications of the invention. Other beneficial results can be obtained by applying the disclosed information in a different manner or by modifying the disclosed embodiments. Accordingly, other aspects and a more comprehensive understanding of the invention may be obtained by referring to the detailed description of the exemplary embodiments taken in conjunction with the accompanying drawings, in addition to the scope of the invention defined by the claims.
This application claims priority to U.S. provisional application Ser. No. 60/595,173 filed Jun. 13, 2005, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4898448 | Cooper | Feb 1990 | A |
5966492 | Bechamps et al. | Oct 1999 | A |
6195493 | Bridges | Feb 2001 | B1 |
6832035 | Daoud et al. | Dec 2004 | B1 |
20050111809 | Giraud et al. | May 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20060198594 | Beck | Sep 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060280418 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60595173 | Jun 2005 | US |