This disclosure relates generally to an external shield connector used to connect fiber optic cables to an external ground. More particularly, this disclosure relates to connectors and grounding techniques which penetrate the outer non-conductive sheaths of fiber optic cables.
Fiber optic cables typically have an outer non-conductive sheath that protects the fiber optics contained within the cable from outside elements such as moisture. Typically, this outer non-conductive sheath is stripped using specific tools to create an opening to the interior of the cable for grounding an inner conductive shield to an outside ground.
Briefly stated, a fiber optic cable shield connector comprises a cable clamp and a grounding base. The cable clamp has a longitudinal quasi-convergent groove to receive a cable and two longitudinal tabs extending from opposite edges along the groove.
The grounding base has a first surface and a cradle extending from the first surface to a second surface. Two longitudinal slots extend through the grounding base to accommodate the tabs. A laterally spaced retaining clip at each end of each slot irreversibly mates with teeth on the tabs. Conductive prongs extend from the cradle in the direction of the second surface and engage a grounding assembly that penetrates the grounding base in the longitudinal direction between the first and second surfaces.
The cable clamp and grounding base are installed on fiber optic cables by traditional means (i.e. channel lock pliers). When compressed together around a fiber optic cable, the prongs penetrate the outer non-conductive sheath of the fiber optic cable and provide a grounding path from an inner conductive sheath to an outside ground. The cable shield connector requires no special tools for installation and has a small profile upon installation on a fiber optic cable.
With reference to the drawings wherein like numerals represent like parts throughout the several Figures, an external shield connector is generally designated by the numeral 10. The external shield connector 10 is employed to connect with a ground 12 (depicted in
In the example herein selected for illustrative purposes, a fiber optic cable 14 is illustrated in
Referring to
The grounding base 20 contains a cradle 40 that extends from a first surface 30 to a second surface 39. Arcuate groove 26 surrounds the cradle 40 in at least the longitudinal direction on the second surface 39. Prongs 46 are arranged in cradle 40 and project away from the first surface 30 in the direction of the second surface 39. Longitudinal slots 22 are arranged along the edges of the grounding base 20 from the first to second surface 30, 39. Integral retention clips 24 are disposed within opposite longitudinal ends of each slot 22. Referring to
In the embodiment depicted in
Referring to
The external shield connector 10 is installed on a fiber optic cable 14 by placing the grounding base 20 and the cable clamp 15 on opposite sides of the cable 14. Forcing tabs 16 into slots 22 (as depicted in
In the embodiment depicted in
In one embodiment, grooves 19, 26 accommodate fiber optic cables having a diameter of approximately 0.48 inches to 0.78 inches. When installed on fiber optic cable 14, the cooperation of the clamp 15 and the cable groove 19 urges the prongs 46 of the grounding base 20 to engage into the cable. In one embodiment, the cable groove 19 is not entirely complementary in shape to a typical fiber optic cable; cable groove 19 is quasi-convergent and adapted to provide a force on the received cable regardless of diameter. This allows cables having a variety of diameters to be compatible with a single cable clamp 15 and prevents bottoming out of the connection to avoid damaging the fiber optic cable 14.
While preferred embodiments of the foregoing have been set forth for purposes of illustration, the foregoing description should not be deemed a limitation of the invention herein. Accordingly, various modifications, adaptations and alternatives may occur to one skilled in the art without departing from the spirit and the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5597314 | Auclair | Jan 1997 | A |
6340250 | Auclair | Jan 2002 | B1 |
6591055 | Eslambolchi | Jul 2003 | B1 |
8317526 | Gardner | Nov 2012 | B2 |
20020176674 | Auclair | Nov 2002 | A1 |
20060283619 | Kowalczyk | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
2007201817 | Dec 2007 | AU |
1020110102013 | Sep 2011 | KR |
Entry |
---|
Search Report and Written Opinion, Jun. 3, 2016. |
Number | Date | Country | |
---|---|---|---|
20160252697 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62121590 | Feb 2015 | US |