The present disclosure relates generally to fiber optic cable systems.
Fiber optic communication systems are becoming prevalent in part because service providers want to deliver high bandwidth communication capabilities (e.g., data and voice) to customers. Fiber optic communication systems employ a network of fiber optic cables to transmit large volumes of data and voice signals over relatively long distances. Fiber management is an important part of operating and maintaining an effective fiber optic communication system.
Optical fibers are often connected to one another via splices. For example, a trunk or main cable may be routed to an area to which service is to be provided and small fiber count “drop cables” may be spliced to the main cable at predetermined spaced apart locations. Splices are often supported within splice enclosures to protect the spliced connections from the environment. The fiber optic cable is typically secured to the enclosure, for instance by removing the cable outer jacket in order to expose some length of the strength members of the cable. The cable strength elements are typically attached to the enclosure so as to provide strain relief.
In accordance with aspects of the present disclosure a fiber optic cable retention module includes a housing having a base. A first section extends from the base and defines a pocket for receiving strength members of a fiber optic cable. A second section extends from the base and defines first and second generally L shaped opposing slots. A retention member or blade is received in the slots. Examples of the retention member have a generally U shaped frame with first and second arms extending therefrom. The arms are each generally L shaped to correspond to the shape of the slots, and a cable receiving slot is defined between the arms.
In accordance with further aspects of the disclosure, the fiber optic cable retention module may provide strain relief for a fiber optic cable. For example, strength members of the cable may be received in the pocket and a cable jacket of the cable may be received in the cable receiving slot. In some embodiments, a fastener opening is defined in the base that receives a fastener extending from a surface, such as an interior or exterior surface of a cable enclosure. The fastener includes a locking tab that is received by a locking opening defined by the first section of the housing to secure the cable to the surface and provide strain relief.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as top, bottom, front, back, etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense.
Flat drop style fiber optic cables are broadly used in fiber optic cable networks. In addition to the optical fibers, a typical fiber optic cable may include cable jacketing material, cable strength members and fiber containment tubes, for example. It may be desirable in many situations to provide strain relief and limit or even prevent the cable jacketing and the cable strength members from axial displacement relative to one another, and/or relative to a cable enclosure or other device attached to the cable. A typical situation in which the securing is desired is where an opening has been made in the fiber optic cable for accessing the internal optical fibers, and where a splice enclosure may be installed.
When flat drop style cables enter a fiber optic enclosure such as a splice enclosure and undergo strain relief, strain relief for all individual flat drop cables will commonly occur on a shared single, fixed location component. In accordance with certain aspects of the present disclosure, a fiber optic cable retention module is provided that allows flat drop style cables the flexibility to be strain relieved independently and individually placed. Examples of the disclosed module attach to an end of an individual fiber optic cable, such as a flat drop style cable. Although there is variation in the dimensional size of flat drop cables, embodiments of the disclosed strain relief module can be achieved strain relief for a significant portion of those.
Generally, the examples of the disclosed strain relief module include a housing such as an injection molded plastic body with a press fitted, U-shaped metal retention blade received therein. The body is structured so as to be mounted onto various locations of a receiving structure such as a splice enclosure.
In this disclosure, the terms longitudinal and lengthwise are used interchangeably to refer to a direction along the cable axis L, which is parallel to a longitudinal axis L of the module 100 when the cable is retained in the module 100. Further, portions of the cable 50, in practice, will generally be cut so as to provide an access opening to the optical fibers 52. In some of the drawings figures discussed herein, all components of the cable 50 appear cut. However, it will be understood that this is for illustrative purposes as the optical fibers 52 and/or buffer tube including optical fibers may be cut for splicing in the enclosure or may be uncut through fibers. Furthermore, while in some illustrations the entire jacket 56 is shown as removed to provide the opening, in some implementations, portions of the jacket 56 remain while sufficient amounts of the jacket 56 are removed to allow access to the fiber(s) 52 and strength member(s) 54. One or more splices may be formed between the fiber(s) 52 and other fibers or the like.
The retention module 100 includes a housing 102 having a base 101. In some examples, the housing 102 is an injection molded plastic body. The housing 102 further includes a first, or forward, section 104 and a second, or rear, section 106 extending from the base, with a side wall 108 extending from the base 102 between the first section 104 and the second section 106 to connect the first and second sections 104, 106. In the illustrated examples, the sidewall 108 extends on one side of the module 100. On the opposite side of the module, an opening 109 is defined between the first and second sections 104, 106. The first section 104 forms a pocket 110 for receiving the strength members 54 of the cable 50 as will be discussed further below. The second section 106 forms opposing slots 112 for receiving a retention member or blade 120. In the illustrated example, the retention member 120 is slidably received in the slots 112. A retention ledge 114 extends from the second section 106 for receiving the cable 50 such that the jacket 56 rests thereon. The ledge 114 is generally T-shaped, having a central portion 116 extending from the second section 106 with a cross member 118 extending transversely therefrom. The portions of the cross member 118 extending from the central portion 116 and the end surface of the second section 114 of the housing 102 define cable-securing channels 122 for receiving a cable-securing member such as a tie wrap 124 (see
In the illustrated embodiment, the slots 112 formed in the second section 106 are each generally L-shaped. As best shown in the top view of
A gap between the arms 132 defines a cable receiving slot 134. As noted above, in the illustrated embodiment the arms 132 are angled at an angle α, so that when the retention member 120 is received in the slots 112, the arms 132 are angled toward the first section 104 of the housing 102. As such, with the cable 50 inserted therein, the arms 132 are especially resistant to pulling of the cable longitudinally out of the housing 102. In other words, when installed in an enclosure, if an operator were to inadvertently try to pull the cable 50 out of the enclosure, the arms 132 would flex to increase the gripping force applied to the cable 50 and prevent lateral movement thereof.
In the illustrated embodiment, the frame 130 of the retention member 120 includes a curved segment 136 in a central portion of the frame 130. As shown in the top view of
The second section 106 includes a longitudinally extending channel 140 configured to receive a segment of the cable 50 where the cable jacket 56 is still intact. In the illustrated examples, the cable 50 is a flat drop cable. As such, the channel 140 includes substantially flat sidewalls displaced from each other transversely a distance allowing insertion of the cable 50 therebetween. In some embodiments, a transverse width of the channel may be slightly less than that of the cable 50 to allow an interference fit that may serve to hold the cable 50 in place until it is secured in place by, for example, the tie wrap 124 or other connector. In other embodiments, the channel width may be slightly more that of the cable 50, using other features to retain the cable without use of an interference fit.
The pocket 110 formed in the first section 104 of the housing 102 is configured to receive the strength members 54 of the cable 50. As shown in
To provide strain relief in an enclosure such as a splice enclosure, the base 101 of the housing 102 defines a fastener opening 150 in a bottom surface opposite the first section 104 of the housing 102 as shown in
In the example shown in
In other embodiments, several fasteners 210 may be provided. For example, the fasteners 210 may be arranged in predetermined locations within the splice enclosure 200, on one or more surfaces 202 thereof. The fingers 212 may be fabricated from a flexible material such as plastic, and may be integrally molded with components of the splice enclosure 200. The spring fingers 212 include respective locking tabs 214 extending therefrom. When the module 100 is pushed onto the fastening tab 210, the spring fingers 212 are received in the fastener opening 150 and flex inwardly as they are inserted into the fastener opening 150. When the locking tabs 214 reach the locking openings 152, the fingers 212 return to their original positions such that the locking tabs 214 snap into the locking openings 152, locking the module 100 in place on the surface 202 of the splice enclosure 200.
Various modifications and alterations of this disclosure may become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative examples set forth herein.
This application claims the benefit of U.S. Provisional Patent Application No. 62/017,518, filed Jun. 26, 2014, which application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5048920 | Newell | Sep 1991 | A |
6695491 | Leeman | Feb 2004 | B1 |
7603018 | Mullaney et al. | Oct 2009 | B2 |
8903216 | Thompson | Dec 2014 | B2 |
20040232287 | Rosemann | Nov 2004 | A1 |
20080170832 | Mullaney | Jul 2008 | A1 |
20080285933 | Vogel | Nov 2008 | A1 |
20090038824 | Nakamura | Feb 2009 | A1 |
20110091169 | Van Der Meulen | Apr 2011 | A1 |
20120230646 | Thompson | Sep 2012 | A1 |
20140037250 | Treadwell | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 2015199970 | Dec 2015 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2015/034870 mailed Aug. 27, 2015, 14 pp. |
Number | Date | Country | |
---|---|---|---|
20150378106 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62017518 | Jun 2014 | US |