Fiber optic cable slack management module

Information

  • Patent Grant
  • 10830959
  • Patent Number
    10,830,959
  • Date Filed
    Wednesday, March 13, 2019
    5 years ago
  • Date Issued
    Tuesday, November 10, 2020
    4 years ago
Abstract
A fiber optic cable slack management module includes a base defining a first cable management spool, an outer face of which is configured to contact cables when cables are pulled away from the base and a second cable management spool, within which the first cable management spool is located. An inner face of the second cable management spool is configured to contact cables when cables are in a relaxed, non-pulled state. The fiber optic cable slack management module defines a cable exit adjacent the first cable management spool and defined at least partially by the inner face of the second cable management spool, the cable exit defined by a channel positioned between the first and second cable management spools.
Description
FIELD

The present invention relates to apparatus and methods for termination and storage of optical fiber cables, such as distribution cables.


BACKGROUND

With respect to termination and storage of optical fibers including distribution fibers, various concerns exist. One concern is providing high density to minimize needed space. In the case of outside plant enclosures, a reduced size for the enclosures and the internal structures is preferred.


A further concern related to termination and storage of optical fiber cables is the ease of access to the cables and the terminations. Such ease of use is desired during assembly, during installation in the field, and later when changes or modifications to the system are desired requiring adding or removing terminations, or when cleaning and checking the terminations.


A further concern in the area of termination and storage of optical fiber cables includes protecting the optical fiber from damage from excess bending below the minimum bend radius of the cable. Such protection of the fibers is desired during assembly and installation, and later when individual terminations and cables are accessed for cleaning or modification.


Further improvements in these areas are desired.


SUMMARY

The present disclosure relates to a fiber optic cable slack storage/management module for managing slack associated with fiber terminations in a distribution chassis or frame. The cable slack module includes a base defining a first cable management spool, an outer face of which is configured to contact cables when cables are pulled away from the base, and a second cable management spool, within which the first cable management spool is located. An inner face of the second cable management spool is configured to contact cables when cables are in a relaxed, non-pulled state. The fiber optic cable slack management module defines a cable exit adjacent the first cable management spool and defined at least partially by the inner face of the second cable management spool, the cable exit defined by a channel positioned between the first and second cable management spools.


A further aspect of the present disclosure relates to a fiber optic telecommunications system comprising a telecommunications chassis including at least one movable adapter module mounted to the chassis and at least one cable slack management module mounted to the chassis adjacent the at least one adapter module, the cable slack management module configured to manage cables extending from fiber optic connectors coupled to adapters of the adapter module. The at least one cable slack management module includes a base defining a first cable management spool, an outer face of which is configured to contact cables when cables are pulled away from the base, and a second cable management spool, within which the first cable management spool is located. An inner face of the second cable management spool is configured to contact cables when cables are in a relaxed, non-pulled state. The fiber optic cable slack management module defines a cable exit adjacent the first cable management spool and defined at least partially by the inner face of the second cable management spool, the cable exit defined by a channel positioned between the first and second cable management spools.


A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of a telecommunications chassis including a plurality of cable slack management modules having inventive aspects in accordance with the present disclosure mounted thereon;



FIG. 2 is a rear perspective view of the chassis of FIG. 1;



FIG. 3 illustrates the chassis of FIG. 1 with one of the cable slack management modules and a sliding adapter module of the chassis exploded off the chassis;



FIG. 4 is a side view of the chassis of FIGS. 1-3 illustrating the cable slack management modules mounted in a stacked configuration;



FIG. 5 is a front perspective view of one of the cable slack management modules shown in isolation;



FIG. 6 is a rear perspective view of the cable slack management module of FIG. 5;



FIG. 7 is a top view of the cable slack management module of FIG. 5;



FIG. 8 is a bottom view of the cable slack management module of FIG. 5;



FIG. 9 is a side view of the cable slack management module of FIG. 5;



FIG. 10 illustrates the cable slack management module of FIG. 5 with the upper cover removed to show the internal features;



FIG. 11 illustrates the cable slack management module of FIG. 10 from a top view;



FIG. 12 illustrates the cable slack management module of FIG. 5 in an exploded configuration;



FIG. 13 illustrates the cable slack management module being used as a direct pass-through distribution module without the storage of extra cable slack;



FIG. 14 illustrates the cable slack management module with only one of the trays of the module being used to store extra cable slack;



FIG. 15 illustrates the cable slack management module with both of the trays of the module being used to store extra cable slack;



FIG. 16 illustrates the cable slack management module of FIG. 15 in a fully assembled configuration with the upper cover mounted thereon, wherein the output fibers are shown as being directed to sliding adapter modules; and



FIG. 17 illustrates the cable slack management module of FIG. 16 from a top view.





DETAILED DESCRIPTION

Referring now to FIGS. 1-17, a fiber optic cable slack management/storage module 10 having inventive aspects in accordance with the present disclosure is illustrated. In FIGS. 1-4, a plurality of the cable slack management modules 10 is illustrated as mounted on a telecommunications fixture 12 (i.e., frame, chassis) in a stacked arrangement. The cable slack management modules 10 are mounted adjacent sliding adapter modules 14. The cable slack management modules 10 are configured to manage the cabling 16 (or cable slack) extending from connectors 18 coupled to the adapter modules 14.


As will be described in further detail, the cabled fibers 16 terminated by the connectors 18 coupled to the sliding adapter modules 14 are input into the cable slack management module 10 via an optical device 20 (e.g., a fan-out in the depicted embodiment). The configuration of the cable slack management module 10 allows extra cable slack 16 to be stored therewithin such that the extra cable slack 16 can be used when the sliding adapter modules 14 are moved outwardly from the telecommunications fixture 12, without violating minimum bending requirements.


Referring now to FIGS. 5-17, where one of the cable slack management modules 10 is illustrated in isolation, each cable slack management module 10 includes a base 22 with a bottom wall 24 and vertically extending peripheral walls 26. The base 22 defines a fan-out pocket 25 for receiving the fan-out 20 with a snap-fit interlock. The fan-out pocket 25 is defined partially by the bottom wall 24. The fan-out pocket 25 and the fan-out 20 define the fiber input portion 28 of the cable slack management module 10.


As shown in FIGS. 7, 8, 11, and 17, portions of the front and rear peripheral walls 26 of the base 22 define flexible cantilever arms 30 for providing a snap-fit interlock with the telecommunications fixture 12.


The base 22 defines a first spool 32 extending upwardly from the bottom wall 24 of the base 22. As will be described in further detail hereafter, the first spool 32 is one of the structures that provide the minimum bend radius protection for the cables 16 within the cable slack management module 10.


As shown in FIGS. 5-17, each cable slack management module 10 also defines a pair of cable storage trays 34. The trays 34 are mounted in a stacked arrangement onto the base 22 and define a lower tray 34a and an upper tray 34b. Cables 16 enter the individual trays 34 via a ramp 36 defined by each tray 34. After the fibers 16 are input into the cable slack management module 10 via the fan-out 20, half of the separated and cabled fibers 16 enter the lower tray 34a via the ramp 36 of the lower tray 34a and half of the separated and cabled fibers 16 enter the upper tray 34b via the ramp 36 of the upper tray 34b.


In the given embodiment of the cable slack management module 10, the upper tray 34b (the floor 38 thereof) forms the cover 40 of the lower tray 34a. The upper tray 34b defines a separate removable cover 42. The trays 34 are mounted via a snap-fit interlock to the base 22. As shown in FIGS. 5, 6, 10, 12, and 13-16, a flexible portion 44 of both the front peripheral wall 26 and the rear peripheral wall 26 of the base 22 defines notches 46 for receiving tabs 48 extending outwardly from the trays 34 for keeping the trays 34 mounted within the base 22.


The removable cover 42 of the upper tray 34b is also held in place by an inwardly extending tab 50 of the flexible portion 44 of the rear peripheral wall 26 and flexible cantilever arms 52 defined by the first spool 32. In certain embodiments, the cover 42 used with the upper tray 34b may be provided with a handle 54 to facilitate mounting and removal (see FIGS. 5-7).


Each of the upper and lower trays 34 defines an opening 56 through which the first spool 32 extends. Thus, the first spool 32 extends all the way from the bottom wall 24 to the cover 42 of the upper tray 34b.


Each tray 34 also includes a curved peripheral wall 58, the inner face 60 of which defines a second spool 62. The second spool 62 defined by each tray 34 cooperates with the first spool 32 in keeping the cable slack 16 stored and managed without violating minimum bend radius requirements.


The second spool 62 (i.e., the inner face 60 of the curved peripheral wall 58 of each tray 34) is configured to contact the cables 16 within the tray 34 when the cables 16 are in a relaxed state (when the sliding adapter modules 14 are in a non-extended position). An outer face 64 of the first spool 32 is configured to contact the cables 16 within the tray 34 when the cables 16 are pulled (when the sliding adapter modules 14 are moved to an extended position).


The combination of the first spool 32 and the second spool 62 provides the cables 16 with bend radius protection both in a relaxed state and in a pulled, tensioned state.


Each tray 34 also defines a plurality of cable retention fingers 66 extending inwardly from the peripheral wall 58. The cable retention fingers 66 facilitate initial assembly of the cable slack management module 10 as the cables 16 are being lead from the fan-out 20, up the ramps 36 and into the trays 34. In order to provide unobstructed movement of the cables 16 within the trays 34, however, the cable retention fingers 66 fit within notches 68 defined by the cover 42 for the upper tray 34b and notches 70 defined by the floor 38 of the upper tray 34b for the lower tray 34a. In this manner, a smooth, flush ceiling is created for each of the trays 34 and the cables 16 can move without any obstruction.


The cable exit portion 72 of the cable slack management module 10 is defined adjacent the first spool 32 and at least partially by the inner face 60 of the peripheral wall 58 of each tray 34 (i.e., the second spool 62), where the cable exit 72 is generally defined by a channel 74 positioned between the first and second spools 32, 62 as can be seen in FIGS. 10, 11, and 14-16. The cable exit portion 72 is generally aligned with the fiber input portion 28 of the cable slack management module 10 when viewing the module 10 in a front to back direction.


Thus, the optical fibers 16 enter the cable slack management module 10 via the fan-out 20 at a first common plane 76. The separated and cabled fibers 16 are then directed to multiple levels defined by the trays 34 via the ramps 36. The cables 16 are looped once around the trays 34 and exit the cable slack management module 10 via the cable exit channel 74. It should be noted that in the depicted embodiment, half of the cabled fibers 16 coming from the fan-out 20 are directed into the lower tray 34a and half are directed into the upper tray 34b.


The cables 16 exiting the cable slack management module 10 are terminated with fiber optic connectors 18 that are coupled to the adapters 17 of the sliding adapter modules 14.


Although shown with LC format connectors 18, in other embodiments, the cables 16 output from the cable slack management module 10 may be terminated with other types or footprints of connectors 18 such as SC or LX.5, such connectors 18 leading to adapter modules 14 having adapters 17 with matching footprints.


Examples of sliding adapter modules 14 that are usable with the cable slack management module 10 of the present disclosure are shown and described in further detail in U.S. Patent Application Ser. No. 62/040,314, filed Aug. 21, 2014, now PCT Application No. PCT/US2015/046392, filed Aug. 21, 2015, both titled “High Density Adapter Carrier Pack;” and U.S. Pat. Nos. 6,591,051 and 9,075,203, each of which is incorporated herein by reference in its entirety.


Now referring to FIGS. 13-17, even though the cable slack management module 10 has been described as being used as a cable slack storage/management device, the cable management module 10 can be set up to be used as a simple distribution or a fan-out module where fibers 16 entering the module 10 are output in a pass-through configuration, wherein one or more of the trays 34 are not used for carrying coiled cables 16.


For example, FIG. 13 illustrates the cable management module 10 set up to output the cabled fibers 16 directly from the module 10 without storing any extra slack 16. Fibers 16 are input via the fan-out 20 and are output via an opening 78 at a front side of the base 22 that is at the same plane 76 as the fan-out 20.



FIG. 14 illustrates a set-up where only one of the trays 34 (e.g., the lower tray 34a) is used for storing cable slack 16. As shown in the depicted example, one of the sliding adapter modules 14 receives connectorized cables 16 that account for slack and the other of the sliding adapter modules 14 receives connectorized cables 16 directly from the module 10 without any cable slack.



FIG. 15 illustrates the version of the cable slack management module 10 discussed previously, where both of the trays 34 are being used for storing/managing cable slack 16, where one of the sliding adapter modules 14 receives connectorized cables 16 output from the lower tray 34a at a first level and the other sliding adapter module 14 receives connectorized cables 16 output from the upper tray 34b at a second level, wherein both of the levels are above the input plane 76 defined by the fan-out 20.



FIGS. 16-17 illustrate the module set-up of FIG. 15 with the upper cover 42 applied.


In the depicted embodiment, the cable slack management module 10 is designed to manage twenty-four 900 μm fibers that are input into the module 10 through a twenty-four fiber fan-out 20. As illustrated, the twenty-four fibers may be split into two groups of twelve fibers before exiting the module 10, wherein each group of twelve fibers may be lead to oppositely moving sliding adapter modules 14 (as shown in FIGS. 13-17) or adjacent stacked adapter modules 14 that move in the same direction. The cable slack management module 10 provides multiple set-up options.


The chassis 12 depicted in FIGS. 1-4 is a 288-fiber chassis, with twenty-four sliding adapter modules 14 (i.e., two sets of twelve oppositely moving adapter modules 14), each adapter module 14 including twelve adapter ports. The fiber counts can be varied depending upon the desired density at both the input side (different fan-out devices) or at the output side.


Although in the foregoing description, terms such as “top,” “bottom,” “front,” “back,” “right,” “left,” “upper,” and “lower” may have been used for ease of description and illustration, no restriction is intended by such use of the terms. The devices described herein can be used in any orientation, depending upon the desired application.


Having described the preferred aspects and embodiments of the present disclosure, modifications and equivalents of the disclosed concepts may readily occur to one skilled in the art. However, it is intended that such modifications and equivalents be included within the scope of the claims which are appended hereto.

Claims
  • 1. A fiber optic cable slack management module comprising: a base defining a first cable management spool, an outer face of which is configured to contact cables when cables are pulled away from the base;a second cable management spool, within which the first cable management spool is located, wherein an inner face of the second cable management spool is configured to contact cables when cables are in a relaxed, non-pulled state, wherein the fiber optic cable slack management module defines a cable exit; anda plurality of removable trays mounted to the base in a stacked configuration, each of the trays configured for managing cables, wherein an outer peripheral wall of each tray defines the second cable management spool.
  • 2. A fiber optic cable slack management module according to claim 1, wherein fibers entering the base along a common plane are directed to multiple different levels provided by the trays via ramps.
  • 3. A fiber optic cable slack management module according to claim 1, wherein the plurality of trays comprises two trays.
  • 4. A fiber optic cable slack management module according to claim 1, wherein an input for the cable slack management module is defined by a fiber optic fan-out.
  • 5. A fiber optic cable slack management module according to claim 4, wherein the input is defined at a rear of the base and the cable exit is defined at a front of the base, wherein the input and the cable exit are generally aligned along a right to left direction.
  • 6. A fiber optic cable slack management module according to claim 1, wherein each tray defines a smooth, flush ceiling so as to allow unobstructed movement of the cables between the relaxed, non-pulled state and a pulled state.
  • 7. A fiber optic cable slack management module according to claim 6, wherein each tray defines cable retention fingers extending inwardly from the outer peripheral wall, the retention fingers fitting within notches defined by a cover for each tray so as to define the smooth, flush ceiling.
  • 8. A fiber optic cable slack management module according to claim 7, wherein the cover for at least one of the trays is defined by a floor of an adjacent upper tray.
  • 9. A fiber optic cable slack management module according to claim 1, further comprising snap-fit features for removably mounting to a telecommunications fixture.
  • 10. A fiber optic telecommunications system comprising: a telecommunications chassis including a plurality of fiber optic adapters mounted to the chassis;at least one cable slack management module mounted to the chassis, the cable slack management module configured to manage cables extending from fiber optic connectors coupled to the plurality of fiber optic adapters, the at least one cable slack management module comprising: a base defining a first cable management spool, an outer face of which is configured to contact cables when cables are pulled away from the base;a second cable management spool, within which the first cable management spool is located, wherein an inner face of the second cable management spool is configured to contact cables when cables are in a relaxed, non-pulled state, wherein the fiber optic cable slack management module defines a cable exit; anda plurality of removable trays mounted to the base in a stacked configuration, each of the trays configured for managing cables, wherein an outer peripheral wall of each tray defines the second cable management spool.
  • 11. A fiber optic telecommunications system according to claim 10, further comprising a plurality of the cable slack management modules mounted to the chassis in a stacked arrangement.
  • 12. A fiber optic telecommunications system according to claim 10, wherein the plurality of fiber optic adapters includes LC format fiber optic adapters.
  • 13. A fiber optic telecommunications system according to claim 10, wherein an input for the cable slack management module is defined by a fiber optic fan-out that separates ribbonized fibers into individual cabled fibers leading to the fiber optic connectors coupled to the plurality of fiber optic adapters.
  • 14. A fiber optic telecommunications system according to claim 10, wherein fibers entering the base along a common plane are directed to multiple different levels provided by the trays via ramps.
  • 15. A fiber optic telecommunications system according claim 10, wherein each cable slack management module includes two of the trays.
  • 16. A fiber optic telecommunications system according to claim 10, wherein each tray defines a smooth, flush ceiling so as to allow unobstructed movement of the cables between the relaxed, non-pulled state and a pulled state.
  • 17. A fiber optic telecommunications system according to claim 16, wherein each tray defines cable retention fingers extending inwardly from the outer peripheral wall, the retention fingers fitting within notches defined by a cover for each tray so as to define the smooth, flush ceiling.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 15/533,837, filed on Jun. 7, 2017, now U.S. Pat. No. 10,247,886; which is a National Stage Application of PCT/US2015/064345, filed on Dec. 7, 2015, which claims the benefit of U.S. Patent Application Ser. No. 62/090,203, filed on Dec. 10, 2014, the disclosures of which are incorporated herein by reference in their entireties. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.

US Referenced Citations (215)
Number Name Date Kind
2805106 Penkala Sep 1957 A
2864656 Yorinks Dec 1958 A
3901564 Armstrong Aug 1975 A
4070076 Zwillinger Jan 1978 A
4172625 Swain Oct 1979 A
4320934 Röck et al. Mar 1982 A
4359262 Dolan Nov 1982 A
4373776 Purdy Feb 1983 A
4494806 Williams et al. Jan 1985 A
4502754 Kawa Mar 1985 A
4585303 Pinsard et al. Apr 1986 A
4595255 Bhatt et al. Jun 1986 A
4630886 Lauriello et al. Dec 1986 A
4697874 Nozick Oct 1987 A
4699455 Erbe et al. Oct 1987 A
4708430 Donaldson et al. Nov 1987 A
4717231 Dewez et al. Jan 1988 A
4737039 Sekerich Apr 1988 A
4765710 Burmeister et al. Aug 1988 A
4792203 Nelson et al. Dec 1988 A
4820007 Ross et al. Apr 1989 A
4840449 Ghandeharizadeh Apr 1989 A
4898448 Cooper Feb 1990 A
4971421 Cooper Feb 1990 A
4986762 Keith Jan 1991 A
4995688 Anton et al. Feb 1991 A
5024498 Becker et al. Jun 1991 A
5066149 Wheeler et al. Nov 1991 A
5067678 Henneberger et al. Nov 1991 A
5071211 Debortoli et al. Dec 1991 A
5100221 Carney et al. Mar 1992 A
5127082 Below et al. Jun 1992 A
5129030 Petrunia Jul 1992 A
5138688 Debortoli Aug 1992 A
5142606 Carney et al. Aug 1992 A
5142607 Petrotta et al. Aug 1992 A
5174675 Martin Dec 1992 A
5240209 Kutsch Aug 1993 A
5247603 Viadacovich et al. Sep 1993 A
5275064 Hobbs Jan 1994 A
5285515 Milanowski et al. Feb 1994 A
5289558 Teichler et al. Feb 1994 A
5316243 Henneberger May 1994 A
5323480 Mullaney et al. Jun 1994 A
5335349 Kutsch et al. Aug 1994 A
5339379 Kutsch et al. Aug 1994 A
5353367 Czosnowski et al. Oct 1994 A
5363466 Milanowskki et al. Nov 1994 A
5363467 Keith Nov 1994 A
5402515 Vidacovich et al. Mar 1995 A
5412751 Siemon et al. May 1995 A
5430823 Dupont et al. Jul 1995 A
5438641 Malacame Aug 1995 A
5490229 Ghanderharizadeh et al. Feb 1996 A
5497444 Wheeler Mar 1996 A
5509096 Easley Apr 1996 A
5511144 Hawkins et al. Apr 1996 A
5530783 Belopolsky et al. Jun 1996 A
5570450 Fernandez et al. Oct 1996 A
5613030 Hoffer et al. Mar 1997 A
5640481 Llewellyn et al. Jun 1997 A
5655044 Finzel et al. Aug 1997 A
5717810 Wheeler Feb 1998 A
5724469 Orlando Mar 1998 A
5802237 Pulido Sep 1998 A
5811055 Geiger Sep 1998 A
5836148 Fukao Nov 1998 A
5882100 Rock Mar 1999 A
5887106 Cheeseman et al. Mar 1999 A
5917984 Röseler et al. Jun 1999 A
5923753 Haataja et al. Jul 1999 A
5946440 Puetz Aug 1999 A
5966492 Bechamps et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
5975769 Larson et al. Nov 1999 A
5978540 Bechamps et al. Nov 1999 A
6009224 Allen Dec 1999 A
6022150 Erdman et al. Feb 2000 A
6027252 Erdman et al. Feb 2000 A
6044194 Meyerhoefer Mar 2000 A
6076908 Maffeo Jun 2000 A
6215938 Reitmeier et al. Apr 2001 B1
6226436 Daoud et al. May 2001 B1
6236795 Rodgers May 2001 B1
6269214 Naudin et al. Jul 2001 B1
6301424 Hwang Oct 2001 B1
6360050 Moua et al. Mar 2002 B1
6438310 Lance et al. Aug 2002 B1
6439523 Chandler et al. Aug 2002 B1
6496638 Anderson Dec 2002 B1
6504988 Trebesch et al. Jan 2003 B1
6591051 Solheid et al. Jul 2003 B2
6594434 Davidson et al. Jul 2003 B1
6600866 Gatica et al. Jul 2003 B2
RE38311 Burmeister et al. Nov 2003 E
6677520 Kim et al. Jan 2004 B1
6715619 Kim et al. Apr 2004 B2
6748155 Kim et al. Jun 2004 B2
6768860 Liberty Jul 2004 B2
6804447 Smith et al. Oct 2004 B2
6809258 Dang et al. Oct 2004 B1
6810193 Müller Oct 2004 B1
6845208 Thibault et al. Jan 2005 B2
6865331 Mertesdorf Mar 2005 B2
6925241 Bohle et al. Aug 2005 B2
6934457 Vincent et al. Aug 2005 B2
6945620 Lam et al. Sep 2005 B2
6968111 Trebesch et al. Nov 2005 B2
7006748 Dagley et al. Feb 2006 B2
7068907 Schray Jun 2006 B2
7079744 Douglas et al. Jul 2006 B2
7116777 Knudsen et al. Oct 2006 B2
7120348 Trebesch et al. Oct 2006 B2
7171099 Barnes et al. Jan 2007 B2
7302153 Thom Nov 2007 B2
7302154 Trebesch et al. Nov 2007 B2
7308184 Barnes et al. Dec 2007 B2
7367823 Rapp et al. May 2008 B2
7373071 Douglas et al. May 2008 B2
7406240 Murano Jul 2008 B2
7409137 Barnes Aug 2008 B2
7460757 Hoehne et al. Dec 2008 B2
7463811 Trebesch et al. Dec 2008 B2
7496268 Escoto et al. Feb 2009 B2
7499623 Barnes et al. Mar 2009 B2
7664361 Trebesch et al. Feb 2010 B2
7689089 Wagner et al. Mar 2010 B2
7706656 Zimmel Apr 2010 B2
7715681 Krampotich et al. May 2010 B2
7747125 Lee et al. Jun 2010 B1
RE41460 Wheeler Jul 2010 E
7751647 Hill Jul 2010 B2
7764859 Krampotich et al. Jul 2010 B2
7856166 Biribuze et al. Dec 2010 B2
7869683 Barnes et al. Jan 2011 B2
7876993 Krampotich et al. Jan 2011 B2
7889961 Cote et al. Feb 2011 B2
7945138 Hill et al. May 2011 B2
8027558 Barnes et al. May 2011 B2
8059932 Hill et al. Nov 2011 B2
8078030 Trebesch et al. Dec 2011 B2
8195022 Coburn et al. Jun 2012 B2
8285104 Davis et al. Oct 2012 B2
8374477 Hill Feb 2013 B2
8452149 Krampotich et al. May 2013 B2
8559785 Barlowe et al. Oct 2013 B2
8600208 Badar et al. Dec 2013 B2
8639081 Barnes et al. Jan 2014 B2
8655136 Trebesch et al. Feb 2014 B2
8690593 Anderson et al. Apr 2014 B2
9075203 Holmberg Jul 2015 B2
20010001270 Williams Vigliaturo May 2001 A1
20020181922 Xin et al. Dec 2002 A1
20030007767 Douglas et al. Jan 2003 A1
20030128951 Lecomte et al. Jul 2003 A1
20030165315 Trebesch et al. Sep 2003 A1
20030174996 Henschel et al. Sep 2003 A1
20030190035 Knudsen et al. Oct 2003 A1
20040011750 Kim et al. Jan 2004 A1
20040013390 Kim et al. Jan 2004 A1
20040136676 Mertesdorf Jul 2004 A1
20040175090 Vastmans et al. Sep 2004 A1
20040258384 Trebesch et al. Dec 2004 A1
20050025444 Barnes et al. Feb 2005 A1
20050058421 Dagley et al. Mar 2005 A1
20050078929 Iwanek Apr 2005 A1
20050100301 Solheid et al. May 2005 A1
20050123261 Bellekens et al. Jun 2005 A1
20060093302 Solheid et al. May 2006 A1
20060275008 Xin Dec 2006 A1
20070003204 Makrides-Saravanos et al. Jan 2007 A1
20070031099 Herzog et al. Feb 2007 A1
20070036506 Kewitsch Feb 2007 A1
20070047894 Holmberg et al. Mar 2007 A1
20070201806 Douglas et al. Aug 2007 A1
20080175550 Coburn et al. Jul 2008 A1
20090067800 Vazquez et al. Mar 2009 A1
20090067802 Hoehne et al. Mar 2009 A1
20090097813 Hill Apr 2009 A1
20090103879 Tang et al. Apr 2009 A1
20090214171 Coburn et al. Aug 2009 A1
20090226142 Barnes et al. Sep 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090274431 Krampotich et al. Nov 2009 A1
20100142910 Hill et al. Jun 2010 A1
20100158465 Smrha Jun 2010 A1
20100183276 Smith Jul 2010 A1
20100266253 Krampotich et al. Oct 2010 A1
20100316346 Krampotich et al. Dec 2010 A1
20100322578 Cooke et al. Dec 2010 A1
20100322579 Cooke et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110026894 Rudenick et al. Feb 2011 A1
20110188809 LeBlanc et al. Aug 2011 A1
20110211799 Conner et al. Sep 2011 A1
20110217016 Mullsteff Sep 2011 A1
20110267794 Anderson et al. Nov 2011 A1
20110268404 Cote et al. Nov 2011 A1
20110268408 Giraud et al. Nov 2011 A1
20110268410 Giraud et al. Nov 2011 A1
20110268412 Giraud et al. Nov 2011 A1
20110268414 Giraud et al. Nov 2011 A1
20110286712 Puetz et al. Nov 2011 A1
20110317974 Krampotich et al. Dec 2011 A1
20120051708 Badar et al. Mar 2012 A1
20120057838 Hill et al. Mar 2012 A1
20120237173 Alston et al. Sep 2012 A1
20130089292 Ott et al. Apr 2013 A1
20130089298 Holmberg et al. Apr 2013 A1
20130148936 Hill Jun 2013 A1
20130183018 Holmberg Jul 2013 A1
20130287359 Haataja Oct 2013 A1
20140086545 Solheid et al. Mar 2014 A1
20140133819 Trebesch et al. May 2014 A1
20140259602 Thompson Sep 2014 A1
Foreign Referenced Citations (37)
Number Date Country
4099585 Apr 1985 AU
5531486 Mar 1986 AU
102203653 Sep 2011 CN
27 35 106 Feb 1979 DE
29 18 309 Nov 1980 DE
33 08 682 Sep 1984 DE
38 36 273 Apr 1990 DE
44 13 136 May 1995 DE
295 04 191 Mar 1996 DE
0 146 478 Jun 1985 EP
0 149 250 Jul 1985 EP
0 356 942 Jul 1990 EP
0 406 151 Jan 1991 EP
0 464 570 Jan 1992 EP
0 479 226 Apr 1992 EP
0 196 102 Mar 1993 EP
0 538 164 Apr 1993 EP
0 801 317 Oct 1997 EP
0 563 995 Oct 1999 EP
2 531 576 Feb 1984 FR
2 587 127 Mar 1987 FR
2 678 076 Dec 1992 FR
59-074523 Apr 1984 JP
60-169811 Sep 1985 JP
61-055607 Mar 1986 JP
61-090104 May 1986 JP
20-0337929 Jan 2004 KR
2008-0033420 Apr 2008 KR
10-2010-0027636 Mar 2010 KR
9110927 Jul 1991 WO
9507480 Mar 1995 WO
9610203 Apr 1996 WO
9900619 Jan 1999 WO
03005095 Jan 2003 WO
2010083369 Jul 2010 WO
2013177413 Nov 2013 WO
2016029171 Feb 2016 WO
Non-Patent Literature Citations (11)
Entry
International Search Report and Written Opinion of the International Searching Authority for corresponding International Patent Application No. PCT/US2015/064345 dated Apr. 4, 2016, 10 pgs.
“ITU Fiber Handbook” with English translation, 14 pages, Mar. 1992.
“Precision Mechanical” with English translation, 5 pages.
Northern Telecom Bulletin #91-004, Issue #2, May 1991.
AT&T Product Bulletin 2987D-DLH-7/89, “High Density Interconnect System (HDIC),” Issue 2 (Copyright 1989).
Preface to the book “Structure, Installation, Connection and Protection of Communication Optical Fiber Cable,” in Chinese with English Translation, 14 pages (Mar. 1992).
Complaint relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Apr. 11, 2011 (14 pages).
Complaint relating to Civil Action No. 1:11cv-735 (GBL-IDD), ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (5 pages).
Plaintiff's Notice of Dismissal relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (1 page).
Stipulation and Order of Dismissal relating to Civil Action No. 1:11-cv-735-GBL-IDD, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Feb. 21, 2012 (2 pages).
Extended European Search Report for corresponding European Patent Application No. 15867719.5 dated Jun. 27, 2018, 8 pages.
Related Publications (1)
Number Date Country
20200081192 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62090203 Dec 2014 US
Continuations (1)
Number Date Country
Parent 15533837 US
Child 16352267 US