The present invention relates generally to optical drop cables containing optical fiber ribbons or bundles of optical fibers, and, more particularly, optical drop cables having a jacket with a generally flat shape and a concave surface for crush resistance and easy fiber access.
Drop cables for optical fibers are typically used for short lengths to provide the last or second to last connection from the distribution cable to the end user. Because of the large number of cables and cable access requirements of drop cables within optical network architecture, a key requirement of drop cables is craft friendliness. This includes easy access to the optical fibers for connection, through removal of protective jacketing and tubes. Also, the use of ribbonizing technology allows for mass fusion splicing of the optical fibers in the drop cable. Rather than splicing one fiber at a time, multiple fibers can be spliced at one time.
One prior art type of drop cable used for bundles and ribbons of optical fiber is round, as shown in
Prior art drop cables often contain metallic elements, such as the protective sheath, that must be grounded at each end during the installation process to prevent the buildup of an electrical charge within the drop cable. This grounding is often labor intensive and requires additional parts. Many times the metallic element is a toning wire, which is in the drop cable only for locating purposes. In order to locate an underground drop cable, the a tone is applied through the toning wire. The tone is sensed by detection equipment and the exact location of the underground drop cable can be determined.
Also, access to the optical ribbons is known to be difficult with the prior solutions. Many designs do not incorporate ripcords and require a labor intensive shaving or stripping procedure to remove the jacket along the radial strength members in order to access the optical ribbons. Thick jackets surrounding the optical ribbons can make access to the optical ribbons more difficult as well.
In one aspect, the present invention relates to an optical fiber drop cable. The drop cable includes a jacket having first and second opposing sides. At least the first side has a concave surface. At least one strength member is disposed in the jacket. An optical transmission component that includes a plurality of optical fibers is disposed within the jacket and proximate the concave surface.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
a) and 3(b) show force diagrams of a drop cable having flat sides.
a) and 4(b) show force diagrams of a drop cable in accordance with an embodiment of the present invention; and
Embodiments of the invention relate generally to drop cables having a jacket that contains an optical transmission component with a plurality of optical fibers contained therein. The optical fibers may be loosely bundled or joined in some manner, such as in an optical ribbon. The jacket has two wide opposing sides that are wider than two other opposing sides. At least one of the two wide opposing sides includes a concave surface. As used herein, “concave” refers broadly to a surface curving inward.
In
In order to make the drop cable more flexible transverse to the two wide opposing sides as compared to parallel to the wide opposing sides, the optical transmission component and the two strength members 241 may be aligned in a direction parallel to the wide opposing sides, as shown in
According to one embodiment of the invention, the jacket 220 includes a concave surface 202 on one of the two wide opposing sides and a flat surface 203 on the opposite side. The optical transmission component is preferably aligned in a direction transverse the wide opposing sides with the deepest portion of the concave surface 202, as shown in
In one embodiment, the concave surface 202 allows for easy access to the optical transmission component through the jacket 220 because there is less jacket material present around at least a portion of the optical transmission component. More specifically, the thinned section of the jacket 220 is more easily cut to access the optical transmission component and remove it without the extra step of stripping out the strength members 241. A ripcord 210 may be provided in the thinned section near the deepest part of the concave surface 210. Pulling on the end of an exposed portion of the ripcord 210 will split open the jacket 220 over a certain length of the drop cable and allow removal of the optical transmission component or optical fibers from the jacket 220. This feature allows for an installer to easily access the optical fibers in order to splice them in an installed arrangement. When compared to a similarly sized drop cable lacking a concave surface in the jacket, the thinned portion of the jacket 220 also allows a smaller and cheaper ripcord 210 to be used because the tensile strength required to rip the jacket 220 open is reduced because there is less jacket material to rip through.
A second advantage is that the optical transmission component and the optical fibers contained therein are protected from a force exerted on the wide opposing sides of the cable.
Returning to
For embodiments having one of the two wide opposing sides that is flat, an advantage is that the wide, flat side can be used for large legible printing of cable information such as manufacturer, manufacture date, production identification, fiber count, and any other information that would be useful. The flat shape is also advantageous as the cable can be used in an aerial self-support configuration using standard industry hardware clamps. Wedge clamps common for both copper and fiber optical drop cables are widely available.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
This Application claims the benefit of U.S. Provisional Application No. 60/710,873, filed in the United States Patent and Trademark Office on Aug. 25, 2005.That application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6449412 | Rutterman et al. | Sep 2002 | B1 |
6493491 | Shen et al. | Dec 2002 | B1 |
6501888 | Gimblet et al. | Dec 2002 | B2 |
6542674 | Gimblet | Apr 2003 | B1 |
6567592 | Gimblet et al. | May 2003 | B1 |
6714710 | Gimblet | Mar 2004 | B2 |
6836603 | Bocanegra et al. | Dec 2004 | B1 |
7079734 | Seddon et al. | Jul 2006 | B2 |
20060165355 | Greenwood et al. | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070047884 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60710873 | Aug 2005 | US |